
Analysis III – Winter 2016/17
Prof. Dr. George Marinescu/Dr. Frank Lapp / M.Sc. Hendrik Herrmann
Serie 2 mit Musterlösungen

Aufgabe 1 4 Punkte

a) Sei r > 0. Zeigen Sie, dass

ψ : (0, 2π) ×
(

−π
2
,
π

2

)

∋ (φ, θ) 7→ (r cosφ cos θ, r sinφ cos θ, r sin θ) ∈ R3

eine Parametrisierung der 2-Sphäre

S2
r =

{

(x, y, z) :
√

x2 + y2 + z2 = r
}

vom Radius r in R3 ist.

b) Zeigen Sie, dass der Zylinder

Z =
{

(x, y, z) ∈ R3 : x2 + y2 = 1
}

eine 2-dimensionale Untermannigfaltigkeit des R3 ist. Geben Sie lokale Parametrisie-
rungen an, die den Zylinder überdecken.

Lösung:
Zu a): Sei

P : R+ × (0, 2π) ×
(

−π
2
,
π

2

)

−→ R3
r {(x, 0, z) : x > 0}

die Kugelkoordinatenabbildung. P ist ein Diffeomorphismus. Identifiziere {r}× (0, 2π)×
(−π

2 ,
π
2 ) zu (0, 2π) × (−π

2 ,
π
2 ) für ein festes r ∈ R+. Dann gilt:

ψ = P |
{r}×(0,2π)×

(

−
π
2 ,
π
2

) .

Daraus folgt:

• Imψ = S2
r {(x, 0, z) : x > 0} ist offen in S2 bezüglich der Teilraumtopologie,

• ψ ist bijectiv (als Einschränkung einer bijektiven Abbildung),

• ψ−1 = (P |
{r}×(0,2π)×

(

−
π
2 ,
π
2

))−1 = P−1|Imψ ist stetig,

• ψ ist Immersion, da die zwei Spalten von Jψ(ϕ, ϑ) Spalten von JP (r, ϕ, ϑ) ∈ Gl(3)
sind, also linear unabhängig.
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Zu b): Der Zylinder Z ist Lösungsmenge einer unabhängigen Gleichung: Z = f−1(0)
wobei f : R3 → R, f(x, y, z) = x2 + y2 − 1. Für den Gradienten von f gilt

grad f(x, y, z) = (2x, 2y, 0)T

Für jeden Punkt p ∈ Z ist gradF (p) 6= 0 also p ist ein regulärer Punkt und 1 ein regulärer
Wert. Folglich ist Z eine 2-dimensionale Untermannigfaltigkeit des R3.
Wir betrachten einen Punkt p = (x, y, z) ∈ Z und ϕ0 ∈ [0; 2π) der Winkel zwischen der
positiven x-Achse und dem Strahl durch (0, 0) und (x, y) in der xy-Ebene, d.h. x = cosϕ0,
y = sinϕ0. Wir identifizieren (cosϕ, sinϕ) ∼= eiϕ. Wir zeigen, dass die Abbildung

f :W = (ϕ0 − π, ϕ0 + π)×R→ Z \ L , f(ϕ, z) = (eiϕ, z)

eine lokale Parametrisierung von Z um den Punkt p ist. L bezeichnet dabei die Gerade
{(ei(ϕ0), z) ∈ R3 : z ∈ R}. f(W ) = Z ∩ (R3 \ L) ist offen in der auf Z induzierten
Topologie. f ist bijektiv mit Inversem

f−1 : Z \ L→ (ϕ0 − π, ϕ0 + π)×R , f−1(w, z) = (arg(we−i(ϕ0−π)) + ϕ0 − π, z) ,

wobei w = x+iy. Da die arg-Funktion stetig ist, ist f ein Homöomorphismus. Die beiden
Spalten der Jacobi-Matrix von f sind gegeben durch

∂f

∂ϕ
=





− sinϕ
cosϕ
0





∂f

∂z
=





0
0
1





Diese Vektoren sind linear unabh¨angig, folglich hat df(ϕ, z) für alle Parameter in W

maximalen Rang. Dies zeigt, dass f eine lokale Parametrisierung von Z um p ist.

Aufgabe 2 4 Punkte

a) Zeigen Sie, dass der Kegel

K =
{

(x, y, z) ∈ R3 : x2 + y2 = z2
}

keine Untermannigfaltigkeit des R3 ist aber K \ {0} eine 2-dimensionale Unterman-
nigfaltigkeit des R3 ist.

b) Zeigen Sie, dass die Neilsche Parabel

P =
{

(x, y) ∈ R2 : x3 = y2
}

keine Untermannigfaltigkeit des R2 ist.
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Lösung:
Angenommen K sei eine Untermannigfaltigkeit, dann hätte diese die Dimension 2, da
z.B. {(x, y, z) ∈ K|z > 0} als offene Teilmenge von K eine Untermannigfaltigkeit dieser
Dimension ist (Betrachte die annihilierende Funktion F (x, y, z) := x2 + y2 − z2 aufR2 ×R+).
Zu a) Topologisches Gegenargument: Betrachte eine lokale Parametrisierung um
0 = (0, 0, 0) ∈ K, d.h. einen Homöomorphismus

f :W ⊂ R2 −→ K ∩ U∗ , U∗ ⊂ R3 offene Umgebung der 0 .

Wir können W oBdA als offene Kreisscheibe wählen. Entfernt man aus der Kreisscheibe
W den Punkt f−1(0), so bleibt W r f−1(0) zusammenhängend. Andererseits zerfällt
(K∩U∗)r{0} aber in zwei disjunkte nicht-leere offene Teilmengen {(x, y, z) ∈ K∩U∗|z <
0} und {(x, y, z) ∈ K ∩ U∗|z > 0}, da {(x, y, z) ∈ K ∩ U∗|z = 0} = {0}. Da f stetig
ist, so ist auch f(W r f−1(0)) = (K ∩U∗)r {0} zusammenhängend. Widerspruch. Also
kann es keine lokale Parametrisierung des Kegels im Punkt 0 geben.

Ein anderes Argument: Wäre K eine Untermannigfaltigkeit, so hätte K die Dimen-
sion 2. Nach dem Satz 11.2.6 wäre dann K in der Nähe von 0 ein Graph über eine der xy–
oder yz– oder zx–Ebenen. Man sieht aber leicht, dass dies nicht wahr ist. Widerspruch.

Ein weiteres Argument: Wäre K eine Untermannigfaltigkeit, so wäre K ∩ U =
F−1(c), wobei U eine Umgebung von 0 ist und c ein regulärer Wert von F : U −→ R ist.
Dann gilt F (t, 0, t) = F (0, t, t) = F (t, t,

√
2t) = 0 für t in einer Umgebung von 0 ∈ R.

Durch Ableiten nach t in t = 0 erhält man ein System in den Unbekannten ∂F
∂x (0),

∂F
∂y (0),

∂F
∂z (0), das die Einzige Lösung (0, 0, 0) hat. Folglich ist 0 ein kritischer Punkt von F .
Widerspruch.
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Zu b): Wäre P eine Untermannigfaltigkeit, so hätte P die Dimension 1. Nach dem Satz
wäre P in der Nähe von 0 ein Graph über eine der x–Achse oder y–Achse. Man sieht
leicht, dass P kein Graph über die x–Achse sein kann, z.B. weil

P ∋
(

1

n
,± 1

n3/2

)

n→∞−→ (0, 0) ∈ R2.

Es bleibt nur die Möglichkeit, dass P ein Graph über die y–Achse ist, etwa P = {(g(y), y) :
y ∈ (−ε, ε)} mit g : (−ε, ε) −→ R glatt. Daraus folgt aber g(y) = y2/3 und g ist in 0
nicht differenzierbar. Widerspruch.

Aufgabe 3 4 Punkte
Seien M1 ⊂ RN1 und M2 ⊂ RN2 Untermannigfaltigkeiten von Dimension n1 bzw. n2.
Seien {(Ui, ϕi) : i ∈ I} und {(Vj , ψj) : j ∈ J} Atlanten für M1 bzw. M2. Zeigen Sie, dass

M1 ×M2 ⊂ RN1+N2

eine (n1 + n2)-dimensionale Untermannigfaltigkeit des RN1+N2 ist und

{(Ui × Vj, ϕi × ψj) : i ∈ I , j ∈ J}

ein Atlas für M1 × M2 ist, wobei für ϕi : Ui → Rn1 , ψi : Vj → Rn2 die Abbildung
ϕj × ψj : Ui × Vj → Rn1+n2 definiert ist durch (ϕi × ψj)(x, y) = (ϕi(x), ψj(y)).

Lösung:
Seien U,ϕ ∈ A, (V, ψ) ∈ B. Dann gilt:

• U × V offen in M1 ×M2, ϕ(U) × ψ(V ) offen in Rn1×n2 ,

• ϕ× ψ : U × V −→ ϕ(U) × ψ(V ) ist bijektiv und stetig,

• (ϕ× ψ)−1 = ϕ−1 × ψ−1 : ϕ(U)× ψ(V ) −→ U × V ist stetig,

• d(ϕ−1 × ψ−1)(a, b) = dϕ−1(a)× dψ−1(b) ist injektiv, da dϕ−1(a), dψ−1(b) injektiv
sind.

Also ist (ϕ× ψ)−1 eine Parametrisierung von U × V . Außerdem gilt:

M1 ×M2 =
⋃

i∈I,j∈J

Ui × Vj .
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Zusatzaufgabe +4 Punkte
Zeigen Sie, dass die stereographische Projektionen einen Atlas auf Sn bilden und berech-
nen Sie die Kartenübergänge.

Lösung:
Um die Formel für pN : Sn r {N} −→ Rn zu finden, schreibt man die Gleichung der
Geraden Nx, mit x ∈ Snr {N}; nämlich Nx = {x(t) = tN +(1− t)x : t ∈ R} und setzt
xn+1(t) = 0. Man löst diese Gleichung nach t und setzt dann t in x1(t) . . . , xn(t) ein. Es
ergibt sich

pN (x) =
(x1, . . . , xn)

1− xn+1
.

Um die Formel für p−1
N : Rn −→ Snr{N} zu finden, betrachtet man die Gerade N(y, 0),

mit y ∈ Rn, nämlich N(y, 0) = {x(t) = tN + (1 − t)(y, 0) : t ∈ R} und setzt ‖x(t)‖ = 1.
Man löst diese Gleichung nach t und dann setzt t in x(t) ein. Es ergibt sich

p−1
N (y) =

(2y1, . . . , 2yn, ‖y‖2 − 1)

1 + ‖y‖2 .

Nun ist Sn r {N} offen in Sn, pN , p−1
N stetig als rationale Funktionen ohne Polstellen

auf ihren Definitionsbereich.

Es bleibt zu zeigen, dass p−1
N eine Immersion ist. Sei

Φ : Rn+1
r {x : xn+1 = 1} −→ Rn, Φ(x) =

(x1, . . . , xn)

1− xn+1
.

Dann gilt Φ|Sn
r{N} = pN , Φ ist glatt und Φ ◦ p−1

N = IdRn . Nach der Kettenregel

dΦ(p−1
N (y)) ◦ d(p−1

N )(y) = IdRn also d(p−1
N )(y) ist injektiv für alle y ∈ Rn. Es folgt,

dass (Sn r {N}, pN ) eine Karte auf Sn ist. Für pS : Snr {S} −→ Rn zeigt man ähnlich,

pS(x) =
(x1, . . . , xn)

1 + xn+1
, x ∈ Sn r {S}

p−1
S (y) =

(2y1, . . . , 2yn, 1− ‖y‖2)
1 + ‖y‖2 , y ∈ Rn .

Und (Sn r {S}, pS) ist eine Karte auf Sn. Da Sn = (Sn r {N}) ∪ (Sn r {S}), bilden die
stereographischen Projektionen einen Atlas auf Sn.
Man rechnet nach, dass pN ◦ p−1

S : Rn \ {0} → Rn \ {0}, pN ◦ p−1
S (y) = y

‖y‖2
.
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