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Serie 7 mit Musterlosungen

Aufgabe 1 4 Punkte
Zeigen Sie: Eine Untermannigfaltigkeit M™ C R™*! ist genau dann orientierbar, wenn auf
M ein glattes Einheitsnormalenfeld existiert, d.h. eine glatte Abbildung v : M — R"*+!
mit v(z) € NyM und ||v(z)|| =1 fiir alle z € M.

0 0
Tipp: Fir eine positiv orientierte Karte (U, p = (z1,...,2y)) setze v(x) = 9z, " Bay ax”
Ham x|
Losung:

<" Wir nehmen an, dass ein glattes Einheitsnormalenfeld existiert, d.h. eine glatte Ab-
bildung v : M — R™™! mit v(z) € N, M und ||v(x)|| = 1 fiir alle z € M. Nach Definition
12.4.1 ist zu zeigen, dass eine nirgends verschwindende n-Form existiert. Betrachte die
n-Form auf M definiert durch

n(x)(vi,...,vn) = (dxy Ao Adapyr) (v(x),v1, ..., vn) = det(v(x),v1,...,0p)
wobei x € M, vy,...,v, € T, M. Weil v glatt ist, ist auch n glatt, n € Q"(M). Sei
v1,. ..,V eine Basis von T, M. Da v(z) L T, M und v(x) # 0, sind
v(z),vi,...,0p

linear unabhéngig, d.h n(x)(vi,...,vn) # 0 und n(z) € A"TrM \ {0} fir alle x € M.
Auferdem ist M eine n-dimensionale Untermannigfaltigkeit. Es folgt, dass M orientierbar
ist.

, = Nehmen wir an, dass M orientierbar ist und definiere wie im Tip,
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‘Txlx...xw
Nach Definition des Kreuzproduktes gilt
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da wgn alternierend ist. Damit ist v(z) € N, M fiir alle x € M. Offensichtlich gilt auch

|v(x)|| = 1 und fiir die kanonische Basis e1, ..., en41 des R
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Da = — i(31:) glatt ist, impliziert die obige Darstellung, dass v glatt ist (in der

8mk
Determinante tauchen nur Produkte auf).
Sei v1,...,v, eine positiv orientierte Basis von T, M und setze
D(x) =vp X -+ X Up.

Dann gilt

sign((7(x),v(z))) = sign(dVR,,,, (v(z),v1,...,v,))

= sign(dVr,,,, (v(z), 8%1’ . %))

= sign (‘ 6%1 X e X % <1/(w),y(af)>>

=1
Wegen dim N, M = 1 folgt daraus, dass v(z) unabhingig von der Wahl der positiv
orientierten Karte ist. O
Aufgabe 2 4 Punkte

Zeigen Sie, dass folgende Untermannigfaltigkeiten orientierbar sind. Wéahlen Sie eine
Orientierung und berechnen Sie jeweils eine lokale Darstellung der Volumenform.

a) Bizylinderkurve: C = {(z,y,2) e R3| 22 +¢y*=1,4? +22=2}.
b) Rotationsfliche: Ry = { (f(z)cosep, f(z)sinp,z) € R3| (p,2) € R x (a,b) }, wobei
feC>((a,b)) und f > 0.
c) Wendelfliche: W = { (rcosg,rsinp,¢) € R?| (¢,r) € R?}.
d) Graph einer Funktion f € C*(R%, R): Gf = {(u,v, f(u,v)) € R?| (u,v) € R*}.
Losung:
Zu a): Die Bizylinderkurve ist die Losungsmenge von zwei global definierten unabhéngigen
Gleichungen, also nach Satz 12.4.3 orientierbar.
Eine Orientierung ist gegeben durch die 1-Form
n = grad fi.(grad foowgs) ,

wobei fi(r,y,2) =22 +9? — 1 und fao(x,y,2) = y* + 22 — 2. Eine Parametrisierung von
C ergibt sich, indem wir z = cost, y = sint setzen und z dazu aus der zweiten Gleichung

ermitteln: z = ++/2 — sin?t. Also

tsint
v:(0,21) = C, tw (cos t,sint, £v/2 — sin® t) . Y= (— sint,cost,:FCOSSan>
2 —sin“t

und die Volumenform ist:
cos? tsin?t
2 —sin’t )

() () dt = () (1 +



Das Vorzeichen der Volumenform berechnet man, indem man das Vorzeichen von

2cost 0 —sint
n-7'(t) = ws (grad fi,grad fo,9/(1)) = 250t 2sm? cost
0 4+4/2 — sin2 t costsint

+ VvV 2—sin?t

ermittelt. Auf jeder Zusammenhangskomponente ist das Vorzeichen konstant, also ermittelt
man es, wenn man t = 7 setzt. Es folgt () = —1 fiir die Komponente mit z = /2 — sin? ¢

und () = 1 fiir z = —/2 — sin?¢.

Zu b): Die Rotationsflache ist gegeben durch eine (unabhéngige) Gleichung. Sie ist also
orientierbar wegen Satz 12.4.3. Wir parametrisieren die Rotationsfliche Ry um einen
Punkt durch

¢(p, 2) = (f(2) cos g, f(2) sinp, 2),
wobei ¢ € (po — m, 90+ m) und z € (a,b). Als Orientierung auf R; wihle wir die durch
die Basis (g—i(cp, z), g—f(go, z)) in den Tangentialrdumen Ty, ) Ry. Dann gilt

gi(% z) = (—f(2)siny, f(z)cosp,0),

gf(go, z) = (f’(z) cos p, f'(2) sin ¢, 1) )

Fir die Koeflizientenmatrix der induzierten Metrik erhalten wir
- _(f)? 0
(gZ](gb(Qsz))) - ( 0 f/(2)2 4 1 .

Es folgt die lokale Darstellung der Volumenform

dRy = f(2)\/1+ f'(2)%de N dz.

Zu c): Die Wendelfliache ist gegeben durch eine einzige Parametrisierung v, sie ist also
orientierbar, denn

w=(¢71)"(dp A dp2)

ist eine nicht-verschwindende 2-Form auf W. Parametrisierung von W:

d(p, 1) = (rcosp,rsing, )
Kanonische Basis:

gi(go, z) = (—rsing,rcosp, 1)
¢

5(90, z) = (cos @, sin ¢, 0)



Koeffizientenmatrix der induzierten Metrik:

astotem = ("0 1Y)

Volumenform (bei Orientierung wie bei a):

dW = /1?2 4+ 1dp A dr.

Zu d) Graph einer Funktion f:

Der Graph ist auch gegeben durch eine einzige Parametrisierung, man also wie in 2c¢)
argumentieren.

Parametrisierung von Graph(f):

P(u,v) = (u,0, f(u,v))

Kanonische Basis:

¢ B of
%(u,v) = <1,0, au(u,v)>

0 0
%(u,v) = (O, 1, (%j(u,v))

Koeffizientenmatrix der induzierten Metrik:

2
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- 9F\2 9F\2
=1+ (5) + (&)
Volumenform (bei Orientierung durch (%, 8%)

2 2
dGraph(f) = \/1 + (gi) + (gi) du N dv

Somit ist




Aufgabe 3 4 Punkte
Seien U C R? eine offene Menge, f € C°(U) eine Funktion und F € C*(U,R3) ein
Vektorfeld.
a) Zeigen Sie:

i) rot(grad f) = 0 und

ii) div(rot F') = 0.

b) Wir nehmen an, dass U sternformig ist. Zeigen Sie:

i) Zu jedem Vektorfeld F € C*°(U,R?) mit rot F = 0 existiert ein Potential h :
U — R mit gradh = F.

ii) Zu jedem Vektorfeld FF € C*°(U,R?) mit divF = 0 existiert ein Vektorfeld
G € C*°(U,R3) mit rotG = F.

Losung:
Zu a): Man erhilt i) und ii) durch direktes Rechnen mit Hilfe folgender (in R? giiltigen)
Konventionen:

grad f = (8f0x1,0f |Ox2, Of [Ox3) T

rot F =V x F
= (8F3/8x2 — 8F2/8(L‘3, 8F1/81‘3 — 8F3/8x1, 8F2/81‘1 — 8F1/8x2)T (1)
divF =V.-F

= 6F1/8.Z‘1 + 8F2/8x2 + 8F3/81‘3

fir f € C®°(U) und F = (F1, Fy, F3)T € C*°(U,R?). Eine andere Méglichkeit i) und ii)

zu zeigen, ist folgendes Diagramm zu verwenden
oOw) 4 ow) 3 2u) & o)
T O 1t¥ O t¥ O 1Y9;

rot

o) 2 rav) ) W oo~ w)
wobei Wy, ..., V3 Isomorphismen sind, definiert durch

o(f) = f, (Wi(F)(X) =(F,X), U(F)=Fw ¥3(f) = fw

fir f € C®°(U), F,X € T(TU) (I'(TU) ~ C*(U,R3) da U C R? offen ist) bzgl. der
Standard-Riemann-Metrik ((F, X) = F1 X1+ F»Xo+F3X3) und der Standard-Volumenform
(bzw. Orientierung) w = dx1 A dz2 A drs auf R3. Mit den Definitionen von Gradient
Rotation und Divergenz in (1) kommutiert das Diagramm. Dann ergeben sich i) und ii)
aus d o d = 0 wie folgt:

rot(grad f) = U3 1 (dU1 (U7 (dTo(f)))) = T3 ((dod)f) =0



div(rot F) = W3 (dUs (U5 (dW(F)))) = U3 ((dod)¥y(F)) = 0.

Zu b): Die Ausagen i) und ii) folgen mit Hilfe des obigen Diagramms und dem Fakt,
dass auf sternformigen Gebieten im R™ jede geschlossene Differentialform exakt ist.

i) Fiir F € C*(U,R3) mit rot F = 0 erhalten wir d¥;(F) = 0 und somit ist ¥ (F)
geschlossen. Da U sternférmig ist, ist U1 (F) exakt, d.h. es existiert h € Q°(U) = C=(U)
mit dh = ¥;(F) und man rechnet

grad h = U7 (dh) = U7 H (U (F)) = F.

ii) Fiir F € C*°(U,R3) mit divF = 0 erhalten wir d¥s(F) = 0 und somit ist Wo(F)
geschlossen. Da U sternformig ist, ist Wo(F) exakt, d.h. es existiert a € QY(U) mit
da = Uy(F) und man rechnet

rot U7 (a) = U5 H(da) = U1 (WUy(F)) = F.

Mit G = \Ilfl(oz) folgt die Behauptung.



Zusatzaufgabe +5 Punkte
Sei U C R3 eine offene Menge. Es sei E = E(z,t) : U x R — R3 das elektrische Feld
und H = H(x,t) : U x R — R? das magnetische Feld. Dabei bezeichnen wir die Punkte
des R? mit = (x1,72,23) und mit ¢ € R die Zeit. Die Operationen der Divergenz
und Rotation auf die rdumlichen Koordinaten x € R? der zeitabhiingigen Vektorfelder
bezeichnen wir mit div, bzw.rot,. Im Vakuum lauten die ersten Maxwellschen Gleichungen
(bei geeigneter Normierung):
0H

rotzE:—E N lexHZO

Wir definieren folgende 2-Form in R*:

Q= Z Ej(z,t)dx; Ndt + H(z,t)owgrs , wobei wgrs = dxy1 Adry Adzrs .
j=1

a) Zeigen Sie, dass die Maxwellschen Gleichungen dquivalent zu d€2 = 0 sind.

b) Sei V C U x R ein sternférmiges Gebiet. Zeigen Sie, dass es ein magnetisches Vektor-
potential A = A(z,t) € C*°(V,R3) und ein skalares Potential a = a(z,t) € C*(V,R)
gibt mit

0A

+A=H | ,a——=F.
rot grad, a AT (%)

¢) Sei (ag, Ap) eine Losung von (x). Zeigen Sie, dass alle andere Losungen von der Form

0
(ao + a—f, Ag + grad, ¢)

sind, mit einer Funktion ¢ : V' — R (Freiheit der Eichung).

d) Nehmen wir an, dass die Eichbedingung % = div, A gilt. Zeigen Sie, dass A der
Wellengleichung
%A
geniigt. Dabei wirken die Differentialoperatoren komponentenweise.

Tipp: Zeigen Sie zuerst, dass rotyroty A+ Ay A = grad, div, A, und nutzen Sie dabei

eine weitere Mazwellsche Gleichung: rot, H = %—f.

e) Sei (ag, Ap) eine Losung der Gleichung (x) und ¢ : V' — R eine Losung von

dag ..
ﬁ — Ax@ = _W + dlvx AQ.

Beweisen Sie, dass (a, 4) = (ap + %—f, Ao + grad,, ¢) die Eichbedingung erfiillt.



Losung:
Zu a) Wir fiihren die Notation d = d, ;) = dy + d; ein, wobei

3 9 9
dz:;d:vj/\axj, dp=dt A .

[Diese Operatoren wirken folgendermafen: Zuerst werden die Koeffizienten abgeleitet und
dann wird das &dufere Produkt mit dr entsprechenden Form gebildet.| Mit der Notation
in der Losung zu Aufgabe 3 schreibt man

Q= Uy (E) Adt + Ua(H)

Wegen %(wRa) =0 gilt diWo(H) = dt A \Ilg(%—lj) und man rechnet

0 OH
092 = (A1 () Nt = 01 (B) QL o WalH) + b A ()
. 0H

=dt A <\I!2 <roth + %?)) + Ws(divy H).

Da dxq1 A dxo A dxs, dt Adzi A dxo, dt Adxy A dzxs, dt A dxo N dxs linear unabhéingig und
Wy, U3 Isomorphismen sind, folgt die Behauptung.

Zu b) Da V sternférmig ist und d2 = 0 gilt, finden wir a € QY(V) mit da = Q.
Wir schreiben a = adt + ¥1(A) mit a € C®°(V) und 4 € C*(V,R?). Mit d;¥(A) =
7\111(%) A dt rechnet man

da 9A

Ui(E) Adt+ Wo(H) = Q= da = (dpa) Nt + 5 dt_A dt +dy (U1 (A)) — Ty (Z0) A dt

ot

0A
= U, (grad, a) A dt + Ua(roty A) — ¥y <8t> A dt

=, (gradx a— %j) A dt + Wa(rot, A).

Ahnlich wie oben folgt daraus E = grad, a — % und H = rot; A.

Zu c) Die Rechnung in b) zeigt, dass (ag, Ag) genau dann eine Losung von () ist, wenn
ap = apdt + ¥ (Ap) die Gleichung dag = (2 erfiillt. Sei (a, A) eine weitere Losung von (x).
Wir setzen a = adt + V1 (A). Dann gilt d(a —ap) = 2 —Q =0, d.h. @ — g ist geschlossen.
Da V sternformig ist, gibt es ¢ € QO(V) = C*°(V) mit dp = o — ap. Wir erhalten

adt + V1 (A) = a = ag+ dp = apdt + V1 (Ag) + dip + dyp

0
= <a0 + (;:) dt + U1 (Ag) + ¥y(grad, ¢)



Jp
= <a0+ at) dt + U1 (Ag + grad,, ¢).

Also gilt
Oy
(CL, A) = <a0 + = ot 7A0 + gradx @)

Zu d) Den Hinweis zeigt man durch direkte Rechnung &hnlich wie die Grafmann-Identitét
des Kreuzprodukts. Es gilt

. 0A
i)grad, a — e E,
OF
TR
iii)roty A = H,

Oa

ii)roty H =

Ableiten von i) nach ¢ und Einsetzen von ii) und iii) gibt

2

A
% grad, a — %Tt = rot, H = rot,(rot, A).

Mit 2 5 grad, a = gradx 5t Z;) grad, div, A, und dem Hinweis gilt dann

2 2
0= o4 + grad,, div, A — rot,(rot, A) = —88;;1

~ 5 + ALA.

Zu e) Mit A, = div,(grad, ¢) rechnet man

da _ dag N 0%

ot ot 0%
o 8@0 8 agn
_W—FAQC@ W"’_lexAO

= div,(grad, ¢ + Ag) = div, A.

Also erfiillt (a, A) die Eichbedingung.



