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Aufgabe 1 4 Punkte
Zeigen Sie: Eine Untermannigfaltigkeit Mn ⊂ Rn+1 ist genau dann orientierbar, wenn auf
M ein glattes Einheitsnormalenfeld existiert, d.h. eine glatte Abbildung ν : M → Rn+1

mit ν(x) ∈ NxM und ‖ν(x)‖ = 1 für alle x ∈M .

Tipp: Für eine positiv orientierte Karte (U,ϕ = (x1, . . . , xn)) setze ν(x) =
∂
∂x1
×···× ∂

∂xn∥∥∥ ∂
∂x1
×···× ∂

∂xn

∥∥∥ .
Lösung:
„⇐“: Wir nehmen an, dass ein glattes Einheitsnormalenfeld existiert, d.h. eine glatte Ab-
bildung ν : M → Rn+1 mit ν(x) ∈ NxM und ‖ν(x)‖ = 1 für alle x ∈M . Nach Definition
12.4.1 ist zu zeigen, dass eine nirgends verschwindende n-Form existiert. Betrachte die
n-Form auf M definiert durch

η(x)(v1, . . . , vn) = (dx1 ∧ . . . ∧ dxn+1)(ν(x), v1, . . . , vn) = det(ν(x), v1, . . . , vn)

wobei x ∈ M , v1, . . . , vn ∈ TxM . Weil ν glatt ist, ist auch η glatt, η ∈ Ωn(M). Sei
v1, . . . , vn eine Basis von TxM . Da ν(x) ⊥ TxM und ν(x) 6= 0, sind

ν(x), v1, . . . , vn

linear unabhängig, d.h η(x)(v1, . . . , vn) 6= 0 und η(x) ∈ ΛnT ∗xM \ {0} für alle x ∈ M .
Außerdem ist M eine n-dimensionale Untermannigfaltigkeit. Es folgt, dass M orientierbar
ist.
„⇒“: Nehmen wir an, dass M orientierbar ist und definiere wie im Tip,

ν(x) =
∂
∂x1
× · · · × ∂

∂xn∥∥∥ ∂
∂x1
× · · · × ∂

∂xn

∥∥∥ .
Nach Definition des Kreuzproduktes gilt

〈
ν(x), ∂

∂xi

〉
=

〈
∂
∂x1
× · · · × ∂

∂xn
, ∂
∂xi

〉
∥∥∥ ∂
∂x1
× · · · × ∂

∂xn

∥∥∥ =
ωRn

(
∂
∂xi
, ∂
∂x1

, . . . , ∂
∂xi
, . . . , ∂

∂xn

)
∥∥∥ ∂
∂x1
× · · · × ∂

∂xn

∥∥∥ = 0,

da ωRn alternierend ist. Damit ist ν(x) ∈ NxM für alle x ∈M . Offensichtlich gilt auch
‖ν(x)‖ = 1 und für die kanonische Basis e1, . . . , en+1 des Rn+1

ν(x) =
∂
∂x1
× · · · × ∂

∂xn∥∥∥ ∂
∂x1
× · · · × ∂

∂xn

∥∥∥ =

det


e1

〈
∂
∂x1

, e1

〉
· · ·

〈
∂
∂xn

, e1

〉
e2

〈
∂
∂x1

, e2

〉
· · ·

〈
∂
∂xn

, e2

〉
...

...
. . .

...
en+1

〈
∂
∂x1

, en+1

〉
· · ·

〈
∂
∂xn

, en+1

〉


∥∥∥ ∂
∂x1
× · · · × ∂

∂xn

∥∥∥ .
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Da x 7→ ∂
∂xk

(x) glatt ist, impliziert die obige Darstellung, dass ν glatt ist (in der
Determinante tauchen nur Produkte auf).
Sei v1, . . . , vn eine positiv orientierte Basis von TxM und setze

ν̃(x) = v1 × · · · × vn .

Dann gilt

sign(〈ν̃(x), ν(x)〉) = sign(dVRn+1(ν(x), v1, . . . , vn))

= sign(dVRn+1(ν(x), ∂
∂x1

, . . . , ∂
∂xn

))

= sign
(∥∥∥ ∂

∂x1
× · · · × ∂

∂xn

∥∥∥ 〈ν(x), ν(x)〉
)

= 1

Wegen dimNxM = 1 folgt daraus, dass ν(x) unabhängig von der Wahl der positiv
orientierten Karte ist.

Aufgabe 2 4 Punkte
Zeigen Sie, dass folgende Untermannigfaltigkeiten orientierbar sind. Wählen Sie eine
Orientierung und berechnen Sie jeweils eine lokale Darstellung der Volumenform.

a) Bizylinderkurve: C = { (x, y, z) ∈ R3 | x2 + y2 = 1 , y2 + z2 = 2 } .

b) Rotationsfläche: Rf = { (f(z) cosϕ, f(z) sinϕ, z) ∈ R3 | (ϕ, z) ∈ R × (a, b) } , wobei
f ∈ C∞((a, b)) und f > 0.

c) Wendelfläche: W = { (r cosϕ, r sinϕ,ϕ) ∈ R3 | (ϕ, r) ∈ R2 } .

d) Graph einer Funktion f ∈ C∞(R2,R) : Gf = { (u, v, f(u, v)) ∈ R3 | (u, v) ∈ R2 } .

Lösung:
Zu a): Die Bizylinderkurve ist die Lösungsmenge von zwei global definierten unabhängigen
Gleichungen, also nach Satz 12.4.3 orientierbar.
Eine Orientierung ist gegeben durch die 1-Form

η = grad f1y (grad f2yωR3) ,

wobei f1(x, y, z) = x2 + y2 − 1 und f2(x, y, z) = y2 + z2 − 2. Eine Parametrisierung von
C ergibt sich, indem wir x = cos t, y = sin t setzen und z dazu aus der zweiten Gleichung
ermitteln: z = ±

√
2− sin2 t. Also

γ : (0, 2π)→ C, t 7→
(

cos t, sin t,±
√

2− sin2 t
)
, γ′(t) =

(
− sin t, cos t,∓ cos t sin t√

2− sin2 t

)
und die Volumenform ist:

ε(γ)‖γ′(t)‖dt = ε(γ)

(
1 +

cos2 t sin2 t

2− sin2 t

)
.
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Das Vorzeichen der Volumenform berechnet man, indem man das Vorzeichen von

η · γ′(t) = ωR3

(
grad f1, grad f2, γ

′(t)
)

=

∣∣∣∣∣∣∣
2 cos t 0 − sin t
2 sin t 2 sin t cos t

0 ±
√

2− sin2 t ∓ cos t sin t√
2−sin2 t

∣∣∣∣∣∣∣
ermittelt. Auf jeder Zusammenhangskomponente ist das Vorzeichen konstant, also ermittelt
man es, wenn man t = π

2 setzt. Es folgt ε(γ) = −1 für die Komponente mit z =
√

2− sin2 t

und ε(γ) = 1 für z = −
√

2− sin2 t.

Zu b): Die Rotationsfläche ist gegeben durch eine (unabhängige) Gleichung. Sie ist also
orientierbar wegen Satz 12.4.3. Wir parametrisieren die Rotationsfläche Rf um einen
Punkt durch

φ(ϕ, z) = (f(z) cosϕ, f(z) sinϕ, z) ,

wobei ϕ ∈ (ϕ0 − π, ϕ0 + π) und z ∈ (a, b). Als Orientierung auf Rf wähle wir die durch
die Basis ( ∂φ∂ϕ(ϕ, z), ∂φ∂z (ϕ, z)) in den Tangentialräumen Tφ(ϕ,z)Rf . Dann gilt

∂φ

∂ϕ
(ϕ, z) = (−f(z) sinϕ, f(z) cosϕ, 0) ,

∂φ

∂z
(ϕ, z) =

(
f ′(z) cosϕ, f ′(z) sinϕ, 1

)
.

Für die Koeffizientenmatrix der induzierten Metrik erhalten wir

(gij(φ(ϕ, z))) =

(
f(z)2 0

0 f ′(z)2 + 1

)
.

Es folgt die lokale Darstellung der Volumenform

dRf = f(z)
√

1 + f ′(z)2dϕ ∧ dz.

Zu c): Die Wendelfläche ist gegeben durch eine einzige Parametrisierung ψ, sie ist also
orientierbar, denn

ω = (φ−1)∗(dϕ ∧ dϕ2)

ist eine nicht-verschwindende 2-Form auf W . Parametrisierung von W :

φ(ϕ, r) = (r cosϕ, r sinϕ,ϕ)

Kanonische Basis:

∂φ

∂ϕ
(ϕ, z) = (−r sinϕ, r cosϕ, 1)

∂φ

∂r
(ϕ, z) = (cosϕ, sinϕ, 0)
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Koeffizientenmatrix der induzierten Metrik:

(gij(φ(ϕ, r))) =

(
r2 + 1 0

0 1

)
Volumenform (bei Orientierung wie bei a):

dW =
√
r2 + 1dϕ ∧ dr.

Zu d) Graph einer Funktion f :
Der Graph ist auch gegeben durch eine einzige Parametrisierung, man also wie in 2c)
argumentieren.
Parametrisierung von Graph(f):

φ(u, v) = (u, v, f(u, v))

Kanonische Basis:

∂φ

∂u
(u, v) =

(
1, 0,

∂f

∂u
(u, v)

)
∂φ

∂v
(u, v) =

(
0, 1,

∂f

∂v
(u, v)

)
Koeffizientenmatrix der induzierten Metrik:

(gij ◦ φ) =

1 +
(
∂f
∂u

)2
∂f
∂u

∂f
∂v

∂f
∂u

∂f
∂v 1 +

(
∂f
∂v

)2


Somit ist

det (gij ◦ φ) =

(
1 +

(
∂f

∂u

)2
)(

1 +

(
∂f

∂v

)2
)
−
(
∂f

∂u

)2(∂f
∂v

)2

= 1 +

(
∂f

∂u

)2

+

(
∂f

∂v

)2

Volumenform (bei Orientierung durch ( ∂
∂u ,

∂
∂v ):

dGraph(f) =

√
1 +

(
∂f

∂u

)2

+

(
∂f

∂v

)2

du ∧ dv
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Aufgabe 3 4 Punkte
Seien U ⊂ R3 eine offene Menge, f ∈ C∞(U) eine Funktion und F ∈ C∞(U,R3) ein
Vektorfeld.

a) Zeigen Sie:

i) rot(grad f) = 0 und

ii) div(rotF ) = 0.

b) Wir nehmen an, dass U sternförmig ist. Zeigen Sie:

i) Zu jedem Vektorfeld F ∈ C∞(U,R3) mit rotF = 0 existiert ein Potential h :
U → R mit gradh = F .

ii) Zu jedem Vektorfeld F ∈ C∞(U,R3) mit divF = 0 existiert ein Vektorfeld
G ∈ C∞(U,R3) mit rotG = F .

Lösung:
Zu a): Man erhält i) und ii) durch direktes Rechnen mit Hilfe folgender (in R3 gültigen)
Konventionen:

grad f = (∂f/∂x1, ∂f/∂x2, ∂f/∂x3)
T

rotF = ∇× F
= (∂F3/∂x2 − ∂F2/∂x3, ∂F1/∂x3 − ∂F3/∂x1, ∂F2/∂x1 − ∂F1/∂x2)

T

divF = ∇ · F
= ∂F1/∂x1 + ∂F2/∂x2 + ∂F3/∂x3

(1)

für f ∈ C∞(U) und F = (F1, F2, F3)
T ∈ C∞(U,R3). Eine andere Möglichkeit i) und ii)

zu zeigen, ist folgendes Diagramm zu verwenden

Ω0(U)
d→ Ω1(U)

d→ Ω2(U)
d→ Ω3(U)

↑ Ψ0 	 ↑ Ψ1 	 ↑ Ψ2 	 ↑ Ψ3

C∞(U)
grad→ Γ(TU)

rot→ Γ(TU)
div→ C∞(U)

wobei Ψ0, . . . ,Ψ3 Isomorphismen sind, definiert durch

Ψ0(f) = f, (Ψ1(F ))(X) = 〈F,X〉, Ψ2(F ) = Fyω Ψ3(f) = fω

für f ∈ C∞(U), F,X ∈ Γ(TU) (Γ(TU) ' C∞(U,R3) da U ⊂ R3 offen ist) bzgl. der
Standard-Riemann-Metrik (〈F,X〉 = F1X1+F2X2+F3X3) und der Standard-Volumenform
(bzw. Orientierung) ω = dx1 ∧ dx2 ∧ dx3 auf R3. Mit den Definitionen von Gradient
Rotation und Divergenz in (1) kommutiert das Diagramm. Dann ergeben sich i) und ii)
aus d ◦ d = 0 wie folgt:

rot(grad f) = Ψ−12 (dΨ1(Ψ
−1
1 (dΨ0(f)))) = Ψ−12 ((d ◦ d)f) = 0
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div(rotF ) = Ψ−13 (dΨ2(Ψ
−1
2 (dΨ1(F )))) = Ψ−13 ((d ◦ d)Ψ1(F )) = 0.

Zu b): Die Ausagen i) und ii) folgen mit Hilfe des obigen Diagramms und dem Fakt,
dass auf sternförmigen Gebieten im Rn jede geschlossene Differentialform exakt ist.
i) Für F ∈ C∞(U,R3) mit rotF = 0 erhalten wir dΨ1(F ) = 0 und somit ist Ψ1(F )
geschlossen. Da U sternförmig ist, ist Ψ1(F ) exakt, d.h. es existiert h ∈ Ω0(U) = C∞(U)
mit dh = Ψ1(F ) und man rechnet

gradh = Ψ−11 (dh) = Ψ−11 (Ψ1(F )) = F.

ii) Für F ∈ C∞(U,R3) mit divF = 0 erhalten wir dΨ2(F ) = 0 und somit ist Ψ2(F )
geschlossen. Da U sternförmig ist, ist Ψ2(F ) exakt, d.h. es existiert α ∈ Ω1(U) mit
dα = Ψ2(F ) und man rechnet

rot Ψ−11 (α) = Ψ−12 (dα) = Ψ−12 (Ψ2(F )) = F.

Mit G = Ψ−11 (α) folgt die Behauptung.
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Zusatzaufgabe +5 Punkte
Sei U ⊂ R3 eine offene Menge. Es sei E = E(x, t) : U ×R −→ R3 das elektrische Feld
und H = H(x, t) : U ×R −→ R3 das magnetische Feld. Dabei bezeichnen wir die Punkte
des R3 mit x = (x1, x2, x3) und mit t ∈ R die Zeit. Die Operationen der Divergenz
und Rotation auf die räumlichen Koordinaten x ∈ R3 der zeitabhängigen Vektorfelder
bezeichnen wir mit divx bzw.rotx. Im Vakuum lauten die ersten Maxwellschen Gleichungen
(bei geeigneter Normierung):

rotxE = −∂H
∂t

, divxH = 0 .

Wir definieren folgende 2–Form in R4:

Ω =
3∑
j=1

Ej(x, t) dxj ∧ dt+H(x, t)yωR3 , wobei ωR3 = dx1 ∧ dx2 ∧ dx3 .

a) Zeigen Sie, dass die Maxwellschen Gleichungen äquivalent zu dΩ = 0 sind.

b) Sei V ⊂ U ×R ein sternförmiges Gebiet. Zeigen Sie, dass es ein magnetisches Vektor-
potential A = A(x, t) ∈ C∞(V,R3) und ein skalares Potential a = a(x, t) ∈ C∞(V,R)
gibt mit

rotxA = H , gradx a−
∂A

∂t
= E . (∗)

c) Sei (a0, A0) eine Lösung von (∗). Zeigen Sie, dass alle andere Lösungen von der Form

(a0 +
∂ϕ

∂t
,A0 + gradx ϕ)

sind, mit einer Funktion ϕ : V → R (Freiheit der Eichung).

d) Nehmen wir an, dass die Eichbedingung ∂a
∂t = divxA gilt. Zeigen Sie, dass A der

Wellengleichung
∂2A

∂t2
−∆xA = 0

genügt. Dabei wirken die Differentialoperatoren komponentenweise.
Tipp: Zeigen Sie zuerst, dass rotx rotxA+ ∆xA = gradx divxA, und nutzen Sie dabei
eine weitere Maxwellsche Gleichung: rotxH = ∂E

∂t .

e) Sei (a0, A0) eine Lösung der Gleichung (∗) und ϕ : V −→ R eine Lösung von

∂2ϕ

∂t2
−∆xϕ = −∂a0

∂t
+ divxA0.

Beweisen Sie, dass (a,A) = (a0 + ∂ϕ
∂t , A0 + gradx ϕ) die Eichbedingung erfüllt.
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Lösung:
Zu a) Wir führen die Notation d = d(x,t) = dx + dt ein, wobei

dx =

3∑
j=1

dxj ∧
∂

∂xj
, dt = dt ∧ ∂

∂t
.

[Diese Operatoren wirken folgendermaßen: Zuerst werden die Koeffizienten abgeleitet und
dann wird das äußere Produkt mit dr entsprechenden Form gebildet.] Mit der Notation
in der Lösung zu Aufgabe 3 schreibt man

Ω = Ψ1(E) ∧ dt+ Ψ2(H)

Wegen ∂
∂t(ωR3) = 0 gilt dtΨ2(H) = dt ∧Ψ2(

∂H
∂t ) und man rechnet

dΩ = (dxΨ1(E)) ∧ dt− ∂

∂t
Ψ1(E) dt ∧ dt︸ ︷︷ ︸

=0

+dxΨ2(H) + dt ∧Ψ2(
∂H

∂t
)

= dt ∧Ψ2(rotxE) + Ψ3(divxH) + dt ∧Ψ2

(
∂H

∂t

)
= dt ∧

(
Ψ2

(
rotxE +

∂H

∂t

))
+ Ψ3(divxH).

Da dx1 ∧ dx2 ∧ dx3, dt ∧ dx1 ∧ dx2, dt ∧ dx1 ∧ dx3, dt ∧ dx2 ∧ dx3 linear unabhängig und
Ψ2,Ψ3 Isomorphismen sind, folgt die Behauptung.
Zu b) Da V sternförmig ist und dΩ = 0 gilt, finden wir α ∈ Ω1(V ) mit dα = Ω.
Wir schreiben α = adt + Ψ1(A) mit a ∈ C∞(V ) und A ∈ C∞(V,R3). Mit dtΨ1(A) =
−Ψ1(

∂A
∂t ) ∧ dt rechnet man

Ψ1(E) ∧ dt+ Ψ2(H) = Ω = dα = (dxa) ∧ dt+
∂a

∂t
dt ∧ dt︸ ︷︷ ︸

=0

+dx(Ψ1(A))−Ψ1(
∂A

∂t
) ∧ dt

= Ψ1(gradx a) ∧ dt+ Ψ2(rotxA)−Ψ1

(
∂A

∂t

)
∧ dt

= Ψ1

(
gradx a−

∂A

∂t

)
∧ dt+ Ψ2(rotxA).

Ähnlich wie oben folgt daraus E = gradx a− ∂A
∂t und H = rotxA.

Zu c) Die Rechnung in b) zeigt, dass (a0, A0) genau dann eine Lösung von (∗) ist, wenn
α0 = a0dt+ Ψ1(A0) die Gleichung dα0 = Ω erfüllt. Sei (a,A) eine weitere Lösung von (∗).
Wir setzen α = adt+ Ψ1(A). Dann gilt d(α−α0) = Ω−Ω = 0, d.h. α−α0 ist geschlossen.
Da V sternförmig ist, gibt es ϕ ∈ Ω0(V ) = C∞(V ) mit dϕ = α− α0. Wir erhalten

adt+ Ψ1(A) = α = α0 + dϕ = a0dt+ Ψ1(A0) + dtϕ+ dxϕ

=

(
a0 +

∂ϕ

∂t

)
dt+ Ψ1(A0) + Ψ1(gradx ϕ)
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=

(
a0 +

∂ϕ

∂t

)
dt+ Ψ1(A0 + gradx ϕ).

Also gilt

(a,A) =

(
a0 +

∂ϕ

∂t
,A0 + gradx ϕ

)
.

Zu d) Den Hinweis zeigt man durch direkte Rechnung ähnlich wie die Graßmann-Identität
des Kreuzprodukts. Es gilt

i) gradx a−
∂A

∂t
= E,

ii) rotxH =
∂E

∂t
,

iii) rotxA = H,

iv)
∂a

∂t
= divxA.

Ableiten von i) nach t und Einsetzen von ii) und iii) gibt

∂

∂t
gradx a−

∂2A

∂2t
= rotxH = rotx(rotxA).

Mit ∂
∂t gradx a = gradx

∂a
∂t =

iv)
gradx divxA, und dem Hinweis gilt dann

0 = −∂
2A

∂2t
+ gradx divxA− rotx(rotxA) = −∂

2A

∂2t
+ ∆xA.

Zu e) Mit ∆xϕ = divx(gradx ϕ) rechnet man

∂a

∂t
=
∂a0
∂t

+
∂2ϕ

∂2t

=
∂a0
∂t

+ ∆xϕ−
∂a0
∂t

+ divxA0

= divx(gradx ϕ+A0) = divxA.

Also erfüllt (a,A) die Eichbedingung.
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