
LECTURE 5: ABELIAN DIFFERENTIALS

5.1. Differential forms on a Riemann surface. We will consider a compact Riemann

surface X as a complex manifold of dimension one. In particular, it is an orientable

manifold, i.e. given a collection of charts with local complex coordinates (Uα, zα), with

holomorphic transition functions at each intersection Uα∩Uβ, the orientation is preserved
i
2
dzα ∧ dz̄α =

∣∣dzα
dzβ

∣∣2 i
2
dzβ ∧ dz̄β.

Since complex dimension is one, we have the following differential forms on X: scalar

functions f(z, z̄), 1-forms (differentials), which locally look like

ω = ωz(z, z̄)dz + ωz̄(z, z̄)dz̄,

and 2-forms v(z, z̄)dz∧dz̄. These objects are invariant under changes of coordinates from

local chart to chart, so they are defined on all X. We can also decompose ω into (1, 0)

and (0, 1) parts as ωz(z, z̄)dz (and ωz̄(z, z̄)dz̄) and this decomposition is invariant on X

since the transition functions are holomorphic, i.e., ωz(zα, z̄α) = ωz(zβ, z̄β)dzα
dzβ

.

5.2. Homology group and closed differentials. As a topological space the Riemann

surfaces are classified by the genus g, i.e. a number of ”handles”.

Claim: The homology group H1(X,Z) of the Riemann surface is generated by 2g cycles

a1, ..., ag, b1, ..., bg.

Definition 5.1. This basis is called canonical if the intersection numbers are

aj ◦ bl = δjl, aj ◦ al = bj ◦ bl = 0. (1)

The intersection number of two 1-cycles is ±1, depending on the orientation of the

intersection.

Remark: Canonical bases are not unique. Indeed, let us represent the basis by the

2g-dimensional vector as follows (
a

b

)
.

Then any other canonical basis is related by the integer matrix A ∈ GL(2g,Z) transfor-

mation (
a′

b′

)
= A

(
a

b

)
,

1
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with the condition of preserving the intersection numbers Eq. , i.e.

J = AJAT , J =

(
a

b

)
◦
(
a b

)
=

(
0 I

−I 0

)
. (2)

Hence the new basis is canonical if and only if A ∈ Sp(g,Z) is a symplectic matrix.

Consider now closed differentials ω, dω = 0. Given a (canonical) basis of 1-cycles,

periods of ω are well-defined ∫
aj

ω,

∫
bj

ω,

i.e. independent of the choice of paths representing the cycles, for the homological chocies

of paths. This is because for any two homological closed paths a and a′, we have
∫
a
ω =∫

a′
ω for any closed differential ω.

5.3. Canonical dissection. We will often work with the canonical dissection of the

Riemann surface. The idea is to fix a base point P0 and then contract the canonical basis

a, b so that the cycles start and end at P0, as illustrated on the picture below.

P0
X0

b+
1

a+
1

b−1

a−1b+
2

a+
2

b−2

a−2

Figure 1. Riemann surface of genus 2 and its canonical dissection.

As a result we end up with the simply-connected 2-cell X0 with the boundary

∂X0 =

g∑
j=1

(
−a+

j − b+
j + a−j + b−j

)
,

where a+
j , b

+
j (resp. a−j , b

−
j ) are left (resp. right) sides of cuts along cycles aj, bj.
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5.4. Riemann’s bilinear identity.

Theorem 5.1. Let X be a genus-g compact Riemann surface, with the canonical basis

and corresponding canonical dissection.

(a) For any two closed differentials ω1, ω2 we have

∫
X

ω1 ∧ ω2 =

g∑
j=1

∫
aj

ω1 ·
∫
bj

ω2 −
∫
bj

ω1 ·
∫
aj

ω2 (3)

(b) For all holomorphic differentials ω, η

g∑
j=1

∫
aj

ω ·
∫
bj

η −
∫
bj

ω ·
∫
aj

η = 0 (4)

(c) and for holomorphic differential ω 6≡ 0 we have

Im

g∑
j=1

∫
aj

ω̄

∫
bj

ω > 0. (5)

Proof. To proof (a), we note that since X0 is simply-connected, there exists a function f

on X0, s.t. ω1 = df . Then by Stokes theorem,

∫
X

ω1 ∧ ω2 =

∫
X0

ω1 ∧ ω2 =

∫
X0

df ∧ ω2 =

∫
X0

d(fω2) =

∫
∂X0

fω2

=

g∑
j=1

(
−
∫
a+j

−
∫
b+j

+

∫
a−j

+

∫
b−j

)
fω2

=

g∑
j=1

∫
aj

(
f on a−j − f on a+

j

)
ω2 +

∫
bj

(
f on b−j − f on b+

j

)
ω2.

Next, we note that df has no discontinuity on aj or bj, so f on a+
j and a−j must differ by

a constant, and same for b+
j , b

−
j . Since the path bj connects a+

j and a−j (as can be seen

from the Fig. 1), we can write the last expression as

g∑
j=1

∫
aj

ω1 ·
∫
bj

ω2 −
∫
bj

ω1 ·
∫
aj

ω2,

establihing (a).

If ω1, ω2 are holomorphic, then ω1 ∧ ω2 = 0 and (b) follows.
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Next, for holomorphic ω, there exists a holomorphic function f on X0, s.t. ω = df . We

apply (3) for ω1 = ω and ω2 = ω̄,

Im

g∑
j=1

∫
aj

ω̄

∫
bj

ω = − 1

2i

∫
X

ω̄ ∧ ω = − 1

2i

∫
X0

df̄ ∧ df

=
1

2i

∫
X0

|∂f |2dz ∧ dz̄ =

∫
X0

|∂f |2dx ∧ dy > 0

where we used some local complex coordinates z = x+ iy and the fact that dx ∧ dy is a

everywhere positive 2-form on X0. �

Corollary 5.1. From Eq. (5) it follows that if all a -periods of a holomorphic differential

ω vanish, then ω ≡ 0.

5.5. Holomorphic differentials and period matrix. We know from Riemann-Roch

theorem (Lecture 4) that the dimension of the vector space H0(X,Ω) of holomorphic

differentials on X is equal to genus g = dimH0(X,Ω).

From Cor. 5.1 it follows that for any basis ωj of H1(X) the matrix of a-periods

Ajl =

∫
aj

ωl

is non-degenerate and invertible. Thus we can normalize the basis of holomorphic differ-

entials as follows

Definition 5.2. Given the canonical basis aj, bj of 1-cycles, the basis of holomorphic

differentials normalized as ∫
aj

ωl = δjl (6)

is called canonical. The matrix of b-periods of the canonical basis

τjl =

∫
bj

ωl

is called the period matrix of X.

Corollary 5.2. The period matrix is symmetric τjl = τlj and Im τ > 0 is positive-

definite.

Proof. Symmetry immediately follows by applying (4) to ω = ωj and η = ωl.

Let αj be a real vector and apply (5) to ω =
∑

j αjωj. It follows that Im
∑

j,l αjτjlαl =∑
j,l αj(Im τjl)αl > 0. �
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5.6. Abel map. This is the key application of holomorphic differentials on compact Rie-

mann surfaces.

The period matrix of X generates a lattice Λ in Cg

Λ = {nj + τjlml, n,m ∈ Zg},

generated by the a and b - periods of holomorphic differentials.

Definition 5.3 The Jacobean variety (equiv., Jacobian) of X is the complex torus

Jac(X) = Cg/Λ.

If P0 is a base point then using holomorphic differentials we obtain the holomorphic

map X → Jac(X) as follows

Definition 5.4 The Abel map is defined as

I : X → Jac(X),

P →
(∫ P

P0

ω1, ...,

∫ P

P0

ωg

)
.

This is well-defined because the right hand side is defined modulo period integrals, i.e.,

modulo Λ, so its a point in Jac(X). The Abel map can be naturally extended to divisors

D =
∑

P∈X nPP, nP ∈ Z, as

I(D) =
∑
P∈X

nP

∫ P

P0

ωj.

Note that if degD = 0, i.e. D = P1 + ...+ PN −Q1 − ...−QN , then the Abel map

I(D) =
N∑
m=1

∫ Pm

Qm

ωj

is independent of the base point P0.

5.7. Abelian differentials and their properties.

Definition 5.3. A differential η is called meromorphic, or equivalently, Abelian differen-

tial, if in a local coordinate z it has the form h(z)dz where h(z) is meromorphic function.

Zeros and poles of local function h(z) define zeroes and poles of the meromorphic

differentials and the notion of order of zero or pole is well-defined, i.e. independent of the

choice of local coordinates.

The residue Resz0η of the Abelian differential at a singular point z0 is defined as the

h−1 coefficient in the Laurent expansion around z0,

h(z) =
∞∑

n=n0

hn(z − z0)n.
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The residue is independent of the choice of local coordinates, since it can be written in

the manifestly invariant form

Resz0η =
1

2πi

∫
∂Bz0

η(z),

where Bz0 is a disk containing z0 in the interior, s.t. η is holomorphic on B̄/{z0}, e.g. no

other singular points in the closure. The following property holds.

Lemma 5.5. Let z1, ..., zm be the singular points of the Abelian differential η, then
m∑
j=1

Reszjη = 0.

Proof. Let Bj be small disk around zj containing no other singularities in its closure.

Then,
m∑
j=1

Reszjη =
1

2πi

∑
j

∫
∂Bj

η = − 1

2πi

∫
X−∪Bj

dη = 0, (7)

since η is holomorphic on X − ∪Bj and thus closed there. �

5.8. Differentials of 2nd and 3rd kind. The following terminology is commonly used:

(a) Holomorphic differentials are called Abelian differentials of the first kind,

(b) Meromorphic differentials with poles with vanishing residues are called Abelian

differentials of the second kind,

(c) Meromorphic differentials with non-zero residues are called Abelian differentials

of the third kind.

Any meromorphic differential is a combination of differentials of three types.

We have already constructed the canonical basis of differentials of the first kind. Nor-

malized Abelian differentials of the second kind are constructed as follows. The differential

of 2nd kind η
(N)
P , N ∈ N has only one singularity of order N + 1 at P ∈ X, i.e. for a local

coordinate z, z(P ) = 0,

η
(N)
P =

(
1

zN+1
+O(1)

)
dz.

Remark: This construction depends on the choice of the local coordinate, but the order

of the pole is independent of the choice of local coordinate.

Example: Consider η
(N)
0 = dz

zN+1 on the sphere.

The basic differential of 3rd kind ηPQ has only two singularities at P and Q with

opposite residues

ResP ηPQ = −ResQ ηPQ = 1.

Example: Consider ηz0z1 = d log z−z0
z−z1 on the sphere.
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Note that adding holomorphic differentials to η
(N)
P and ηPQ preserves the form of sin-

gularities. Taking into account (6), this ambiguity can be used in a straightforward way

to normalize the differentials above as follows∫
aj

η
(N)
P = 0,

∫
aj

ηPQ = 0,

for the a-cycles. Such differentials are called normalized Abelian differentials of, resp.,

2nd and 3rd kind. We now have to demonstrate their existence and uniqueness.
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