
LECTURE 9: THETA FUNCTIONS

9.1. Theta functions in one variable. Theta function is analytic function of z ∈ C is

defined as

ϑ(z, τ) =
∑
n∈Z

eπin
2τ+2πinz (1)

and parameter τ ∈ H takes values in the upper-half plane, i.e., Im τ > 0. The series

converges absolutely and uniformly on compact sets. Indeed for Im τ < c and Im τ > ε

we have

|eπin2τ+2πinz| < e−πεn
2+2πcn < e−πεn(n−2c/ε)

hence starting from n0 > 2c/ε the series begin to rapidly converge.

Theta function is almost periodic with respect to the lattice Λ = m′ +mτ, m′,m ∈ Z.

Indeed,

ϑ(z + 1, τ) = ϑ(z, τ),

ϑ(z + τ, τ) =
∑
n∈Z

eπin
2τ+2πin(z+τ)

=
∑
n∈Z

eπi(n+1)2τ−πiτ+2πinz = e−πiτ−2πizϑ(z, τ)

and in general

ϑ(z +m′, τ) = ϑ(z, τ), ϑ(z +mτ, τ) = e−πim
2τ−2πimzϑ(z, τ), m′,m ∈ Z.

Theta functions with characteristics are defined as follows

ϑ
[
a

b

]
(z, τ) =

∑
n∈Z

exp
(
πi(n+ a)2τ + 2πi(n+ a)(z + b)

)
=

eπia
2τ+2πia(z+b)ϑ(z + aτ + b, τ), (2)

Especially important are theta-functions with half-integer characteristics (Jacobi theta

functions)

θ1(z, τ) = −ϑ
[

1
2
1
2

]
(z, τ),

θ2(z, τ) = ϑ
[

1
2

0

]
(z, τ),

θ3(z, τ) = ϑ
[

0

0

]
(z, τ) = ϑ(z, τ),

θ4(z, τ) = ϑ
[

0
1
2

]
(z, τ).
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Note that θ1(−z) = −θ1(z) is odd and θ2,3,4(−z) = θ2,3,4(z) are even.

These functions satisfy quadratic relations (see Mumford, vol. I).

9.2. Zeroes. Theta functions are multivalued on the torus Tτ = C/Λ, but its zeroes are

well-defined on the torus, as follows from formulas above. We can immediately show that

theta function Eq.(1) has one zero in the torus. The number of zeroes is given by the

integral

# zeroes of ϑ =
1

2πi

∫
4 sides

d

dz
(log f)dz = 1 (3)

See Fig. 1. From definition (15) it immediately follows that theta function with charac-

teristics also has one zero. Its location can be determined as follows. It is not hard to

show that

ϑ
[

1
2
1
2

]
(z, τ) = −ϑ

[
1
2
1
2

]
(−z, τ), (4)

hence it vanishes at z = 0. Therefore from (15) one first infers that ϑ(z, τ) vanishes at
1
2
τ + 1

2
, and next, ϑ

[
a

b

]
(z, τ) has zeros at(

a+
1

2

)
τ +

(
b+

1

2

)
mod Λ.

We can define the vector space Rτ
k of analytic functions f(z) of C, quasi-periodic with

respect to Λ with weight k as follows

f(z + 1, τ) = f(z, τ), (5)

f(z + τ, τ) = e−πikτ−2πikzf(z, τ). (6)

Then one can show that

Proposition 9.1. (1) For any k > 1, dimRτ
k = k

(2) Rτ
k admits the bases

ϑ
[
j/k

0

]
(kz, kτ), and ϑ

[
0

j/l

]
(z, τ/k), j = 0, ..., k − 1 (7)

(3) if k = l2, then the 3rd basis is given by ϑ
[

j/l

j′/l

]
(kz, kτ), j, j′ = 0, ..., l − 1

(4) For k > 3 the basis elements fj(z) of Rτ
k have no common zero in C and defined

an embedding

Tτ = C/Λ 3 z → (f1(z), ..., fk(z)) ∈ CPk−1

Comments on the proof. (1) and (2) will be proven later for any g.
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9.3. Meromorphic functions on the torus. On P1 we can construct meromorphic

functions as ratios ∏
j

z − aj
z − bj

(8)

On the torus theta functions give us several ways to construct meromorphic functions

• The ratios of the basis functions in Eq. (16)

ϑ
[
j/k

0

]
(kz, kτ)

ϑ
[
j′/k

0

]
(kz, kτ)

This can be used to illustrate the Riemann-Roch theorem. Using the same argu-

ment as in the proof of Eq. (3), one can show that a basis function fj of Rτ
k has ex-

actly k zeroes. Let us pick one basis function, e.g. f0(z) = ϑ
[

0

0

]
(kz, kτ) and con-

sider the divisor of its zeroes Dk. We have degDk = k. The only holomorphic dif-

ferential on the torus is dz and its nowhere vanishing, hence dimH0(T,Ω(−Dk)) =

0. Hence dimH0(T,O(Dk)) = deg[Dk] = k and the basis is given by

ϑ
[
j/k

0

]
(kz, kτ)

ϑ
[

0/k

0

]
(kz, kτ)

, j = 0, ..., k − 1.

(for j = 0 this is constant function).

• We can take quotients of θ itself

N∏
j=1

ϑ(z − aj)
ϑ(z − bj)

(9)

This is periodic provided
∑
aj =

∑
bj. Hence, for N = 1 we only get constant

function as no meromorphic functions with only one simple pole exist on torus.

• One can take second logarithmic derivative

d2

dz2
log θ1(z, τ) = −℘(z) + const

where ℘(z) is Weierstrass ℘-function

℘(z, τ) =
1

z2
+

∑
n2+m2 6=0

(
1

(z +m+ nτ)2
− 1

(m+ nτ)2

)
.

The constant is chosen such that the Laurent expansion of ℘ at zero has no constant

term. This function has a pole of order 2 at z = 0. Taking the divisor D℘ = 2Pz=0

of degree 2, we have dimH0(T,O(D℘)) = degD℘ = 2, hence ℘(z) can be written
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as a sum of constant function and, e.g., meromorphic function of the type (9) with

θ1(z)2 in the denominator. Indeed,

d2

dz2
log θ1(z, τ) =

θ′′3(0)

θ3(0)
− θ′1(0)2

θ3(0)2
θ3(z)2

θ1(z)2
,

see Mumford, p.26, for the proof using quadratic relations.

Next, we can recall that by the Abel theorem the divisor of meromorphic func-

tion is mapped to zero in the Jacobian torus. In our case the Jacobian torus is

isomorphic to the original torus, so if z1 and z2 are zeroes of ℘(z) Abel theorem

simply means that∫ z1

0

dz +

∫ z2

0

dz = z1 + z2 = 0 mod Λ.

The actual position of the zero is quite hard to find (see M. Eichler and D. Zagier,

Math. Ann. 258, 399-407 (1982)).

• Finally one can also take the combinations of first logarithmic derivatives

N∑
j=1

λj
d

dz
log ϑ(z − aj, τ),

with
∑
λj = 0. For N = 2 this is proportional to the third kind Abelian differential

ηa1a2 . The second kind differentials are constructed with the help of ℘: η
(2)
0 ∼ ℘dz.

9.4. Riemann theta function. Consider now coordinate vector zj ∈ Cg and the lattice

Λ = m′j + τjlml, m,m
′ ∈ Zg, where τ is symmetric complex matrix with positive definite

imaginary part Im τ > 0.

Remark: We reduce to the tori of this form, called principally polarized Abelian tori,

because its a classical theorem (Siegel) that non-constant meromorphic functions exist

only on such Abelian tori. (Mumford, Griffits-Harris). Abelian tori in general correspond

to the lattice Λ = m′jaj + τjlml, m,m
′ ∈ Zg, ak ∈ N, a1 = 1, ak|ak+1

Closely related fact is that for such tori there is projective embedding (Lefshetz embed-

ding theorem).

This is parameterized by an open subset in Cg(g+1)/2, called the Siegel upper-half plane.

Then

ϑ(z, τ) =
∑
nj∈Zg

eπinjτjlnl+2πinjzj , (10)

where we drop the indices on z, τ etc., where notation is obvious.

Proposition 9.2. ϑ converges absolutely and uniformly in each set maxj |Im zj| < c1
and Im τjl > c2δjl.
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Proof.

|eπinjτjlnl+2πinjzj | 6 e−πc2
∑
n2
j+2πc1

∑
j |nj |. (11)

Hence the series are dominated by
(∑

n>0 e
−πc2

∑
n2+2πc1|n|

)g
, which we already know

converges. �

Theta function is quasi-periodic

ϑ(zj +m′j + τjlml, τ) = e−πimjτjlml−2πimjzjϑ(z, τ), m,m′ ∈ Zg. (12)

The proof is identical to the one-dimensional case.

By analogy with (5), we can define the vector space Rτ
k of analytic functions f(z) of

Cg, quasi-periodic with respect to Λ with weight k as

f(zj +m′j, τ) = f(z, τ), (13)

f(zj +m′j + τjlml, τ) = e−πikmjτjlml−2πikmjzjf(z, τ). (14)

Theta functions with characteristics are defined as follows

ϑ
[
aj

bj

]
(z, τ) =

∑
nj∈Zg

exp (πi(nj + aj)τjl(nl + al) + 2πi(nj + aj)(zj + bj)) =

eπiajτjlal+2πiaj(zj+bj)ϑ(zj + τjlal + bj, τ), (15)

Then one can show that

Proposition 9.3. (1) For any k > 1, dimRτ
k = kg

(2) Rτ
k admits the bases

faj(z) = ϑ
[
aj/k

0

]
(kz, kτ), and gbj(z) = ϑ

[
0

bj/l

]
(z, τ/k), 0 6 aj, bj < k (16)

(3) if k = l2, then the 3rd basis is given by ϑ
[

aj/l

bj′/l

]
(kz, kτ), 0 6 j, j′ < l

(4) For k > 3 the basis elements faj(z) of Rτ
k have no common zero in Cg and defined

an embedding

Cg/Λ 3 z → (f1(z), ..., fkg(z)) ∈ CPkg−1

Proof. By Eq. (13), we can expand the function f in Fourier series

f(z) =
∑
nj

cnj
e2πinjzj .

Applying now (14), ∑
n

cne
2πin(z+τm) = e−πikmτm−2πikzm

∑
n

cne
2πinz,

cn = χne
πi 1

k
nτn, =⇒ χn = χn+km. (17)
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Hence χ is constant on cosets of Zg/kZg. Taking

χam =

1, for m = a+ kZg

0, othewise,

we obtain

f(z) =
∑
m

χame
πi 1

k
mτm+2πimz =

∑
n

eπi
1
k
(a+kn)τ(a+kn)+2πi(a+kn)z = faj(z). (18)

In order to get gbj , take χbn = e2πi
1
k
njbj . �
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