
8. ABELIAN DIFFERENTIALS

8.1. Differentials and homology group. We will consider a compact Riemann surface

X. Since we are in two dimensions, we have the following differential forms on X: scalar

functions F (z, z̄), 1-forms (differentials), which locally look like

ω = f(z, z̄)dz + g(z, z̄)dz̄,

and 2-forms v(z, z̄)dz∧dz̄. These objects are invariant under changes of coordinates from

local chart to chart, so they are defined on all X. We can also decompose ω into (1, 0) and

(0, 1) parts as f(z, z̄)dz (and g(z, z̄)dz̄) and this decomposition is invariant on X since

the transition functions are holomorphic, i.e., f(zα, z̄α) = f(zβ, z̄β)dzα
dzβ

.

As a topological space the Riemann surfaces are classified by the genus g, i.e. a number

of ”handles”.

Claim: The homology group H1(X,Z) of the Riemann surface is generated by 2g cycles

a1, ..., ag, b1, ..., bg.

Definition 8.1. This basis is called canonical if the intersection numbers are

aj ◦ bl = δjl, aj ◦ al = bj ◦ bl = 0. (1)

The intersection number of two 1-cycles is ±1, depending on the orientation of the

intersection and a self-intersection number of each 1-cycle is assumed to be zero. (For a

precise definition of intersection numbers see [Farkas-Kra, §III.1]).

Remark: Canonical bases are not unique. Indeed, let us represent the basis by the

2g-dimensional vector as follows (
a

b

)
.

Then any other canonical basis is related by the integer matrix A ∈ GL(2g,Z) transfor-

mation (
a′

b′

)
= A

(
a

b

)
,

with the condition of preserving the intersection numbers Eq. , i.e.

J = AJAT , J =

(
a

b

)
◦
(
a b

)
=

(
0 I

−I 0

)
. (2)

Hence the new basis is canonical if and only if A ∈ Sp(g,Z) is a symplectic matrix.
1
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Consider now closed differentials ω, dω = 0. Given a (canonical) basis of 1-cycles,

periods of ω are well-defined ∫
aj

ω,

∫
bj

ω,

i.e. independent of the choice of paths representing the cycles, for the homological chocies

of paths. This is because for any two homological closed paths a and a′, we have
∫
a
ω =∫

a′
ω for any closed differential ω.

8.2. Canonical dissection. We will often work with the canonical dissection of the

Riemann surface. The idea is to fix a base point P0 and then contract the canonical basis

a, b so that the cycles start and end at P0, as illustrated on the picture below.

P0
X0

a+1

b+1

a−1

b−1a+2

b+2

a−2

b−2

Figure 1. Riemann surface of genus 2 and its canonical dissection.

As a result we end up with the simply-connected 2-cell X0 with the boundary

∂X0 =

g∑
j=1

(
−a+j − b+j + a−j + b−j

)
,

where a+j , b
+
j (resp. a−j , b

−
j ) are right (resp. left) sides of cuts along cycles aj, bj.

8.3. Riemann’s bilinear identity.

Theorem 8.1. Let X be a genus-g compact Riemann surface, with the canonical basis

and corresponding canonical dissection.

(a1) For any two closed differentials ω1, ω2 we have∫
X

ω1 ∧ ω2 =

g∑
j=1

∫
aj

ω1 ·
∫
bj

ω2 −
∫
bj

ω1 ·
∫
aj

ω2 (3)
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(a2) and

∫
∂X0

(
ω2(P )

∫ P

P0

ω1

)
=

g∑
j=1

∫
aj

ω1 ·
∫
bj

ω2 −
∫
bj

ω1 ·
∫
aj

ω2, (4)

where we assume that the contour from P0 to P on the left side lies completely

inside ∂X0.

(b) For all holomorphic differentials ω, η

g∑
j=1

∫
aj

ω ·
∫
bj

η −
∫
bj

ω ·
∫
aj

η = 0 (5)

(c) and for holomorphic differential ω 6≡ 0 we have

Im

g∑
j=1

∫
aj

ω̄

∫
bj

ω > 0. (6)

Proof. To prove (a1), we note that since X0 is simply-connected, there exists a function

f on X0, s.t. ω1 = df . Then by Stokes theorem,

∫
X

ω1 ∧ ω2 =

∫
X0

ω1 ∧ ω2 =

∫
X0

df ∧ ω2 =

∫
X0

d(fω2) =

∫
∂X0

fω2

=

g∑
j=1

(
−
∫
a+j

−
∫
b+j

+

∫
a−j

+

∫
b−j

)
fω2

=

g∑
j=1

∫
aj

(
f on a−j − f on a+j

)
ω2 +

∫
bj

(
f on b−j − f on b+j

)
ω2.

Next, we note that df has no discontinuity on aj or bj, so f on a+j and a−j must differ by

a constant, and same for b+j , b
−
j . Since the path bj connects a−j and a+j (as can be seen

from the Fig. 1), we can write the last expression as

g∑
j=1

∫
aj

ω1 ·
∫
bj

ω2 −
∫
bj

ω1 ·
∫
aj

ω2,

establishing (a1).
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The proof of (a2) goes along similar lines. We have∫
∂X0

(
ω2(P )

∫ P

P0

ω1

)
=

g∑
j=1

(
−
∫
a+j

−
∫
b+j

+

∫
a−j

+

∫
b−j

)
ω2(P )

∫ P

P0

ω1

=

g∑
j=1

∫
aj

(
ω2(Pa−j )

∫ P
a−
j

P0

ω1 − ω2(Pa+j )

∫ P
a+
j

P0

ω1

)

+

g∑
j=1

∫
bj

(
ω2(Pb−j )

∫ P
b−
j

P0

ω1 − ω2(Pb+j )

∫ P
b+
j

P0

ω1

)
(7)

Let Pa−j and Pa+j be the points, resp., on a−j and a+j which coincide on X, and Pb−j and

Pb+j are the points, resp., on b−j and b+j which coincide on X.

First we note that

ω2(Pa−j ) = ω2(Pa+j ), ω2(Pb−j ) = ω2(Pb+j ).

Next, consulting Fig. 1. one can see that∫ P
a−
j

P0

ω1 −
∫ P

a+
j

P0

ω1 =

∫ P
a−
j

P
a+
j

ω1 = −
∫
bj

ω1

and ∫ P
b−
j

P0

ω1 −
∫ P

b+
j

P0

ω1 =

∫ P
b−
j

P
b+
j

ω1 =

∫
aj

ω1

Plugging this back to (7) we obtain (a2),∫
∂X0

(
ω2(P )

∫ P

P0

ω1

)
=

g∑
j=1

∫
aj

ω1 ·
∫
bj

ω2 −
∫
bj

ω1 ·
∫
aj

ω2.

Now, if ω1, ω2 are holomorphic, then ω1 ∧ ω2 = 0 and (b) follows.

Next, for holomorphic ω, there exists a holomorphic function f on X0, s.t. ω = df . We

apply (3) for ω1 = ω and ω2 = ω̄,

Im

g∑
j=1

∫
aj

ω̄

∫
bj

ω = − 1

2i

∫
X

ω̄ ∧ ω = − 1

2i

∫
X0

df̄ ∧ df

=
1

2i

∫
X0

|∂f |2dz ∧ dz̄ =

∫
X0

|∂f |2dx ∧ dy > 0

where we used some local complex coordinates z = x+ iy and the fact that dx ∧ dy is a

everywhere positive 2-form on X0. �

Corollary 8.1. From Eq. (6) it follows that if all a -periods of a holomorphic differential

ω vanish, then ω ≡ 0.
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8.4. Holomorphic differentials and period matrix. We know from Riemann-Roch

theorem (Lecture 4) that the dimension of the vector space H1,0(X) of holomorphic dif-

ferentials on X is equal to genus g = dimH1,0(X).

Example: For the sphere g = 0 and there are no holomorphic differentials. Consider Ĉ,

with the charts (C\∞, z) and (C\0, 1/z). Naively the differential zNdz is holomorphic in

the first chart for N > 0. However it becomes singular in the second chart (1/z)Nd(1/z) =

−z−N−2dz.

Example: Consider the torus g = 1, T = C mod Λ, Λ = nτ + m where n,m ∈ Z. We

can pull back from C the differential ω = dz, z ∈ C. Indeed ω(z+ 1) = ω(z+ τ) = ω. We

could try to pull back ω̃ = f(z)dz, where f(z) is a doubly periodic and holomorphic, but

such function is a constant (see Liouville theorem).

Example: See the exercise sheet 4 for the holomorphic differentials on a hyperelliptic

surface.

From Cor. 8.1 it follows that for any basis ωj of H1,0(X) the matrix of a-periods

Ajl =

∫
aj

ωl

is non-degenerate and invertible. Thus we can normalize the basis of holomorphic differ-

entials as follows

Definition 8.2. Given the canonical basis aj, bj of 1-cycles, the basis of holomorphic

differentials normalized as ∫
aj

ωl = δjl (8)

is called canonical. The matrix of b-periods of the canonical basis

τjl =

∫
bj

ωl

is called the period matrix of X.

Corollary 8.2. The period matrix is symmetric τjl = τlj and the matrix Im τ > 0 is

positive-definite.

Proof. Symmetry immediately follows by applying (5) to ω = ωj and η = ωl.

Let αj be a real vector and apply (6) to ω =
∑

j αjωj. It follows that Im
∑

j,l αjτjlαl =∑
j,l αj(Im τjl)αl > 0. �
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8.5. Abel map. This is the key application of holomorphic differentials on compact Rie-

mann surfaces.

The period matrix of X generates a lattice Λ in Cg

Λ = {nj + τjlml, n,m ∈ Zg},

generated by the a and b - periods of holomorphic differentials.

Definition 8.3 The Jacobean variety (equiv., Jacobian) of X is the complex torus

Jac(X) = Cg/Λ.

If P0 is a base point then using holomorphic differentials we obtain the holomorphic

map X → Jac(X) as follows

Definition 8.4 The Abel map is defined as

I : X → Jac(X),

P →
(∫ P

P0

ω1, ...,

∫ P

P0

ωg

)
.

This is well-defined because the right hand side is defined modulo period integrals, i.e.,

modulo Λ, so its a point in Jac(X).

8.6. Abelian differentials and their properties.

Definition 8.3. A differential η is called meromorphic, or equivalently, Abelian differen-

tial, if in a local coordinate z it has the form h(z)dz where h(z) is meromorphic function.

Zeros and poles of local function h(z) define zeroes and poles of the meromorphic

differentials and the notion of order of zero or pole is well-defined, i.e. independent of the

choice of local coordinates.

The residue Resz0η of the Abelian differential at a singular point z0 is defined as the

h−1 coefficient in the Laurent expansion around z0,

h(z) =
∞∑

n=n0

hn(z − z0)n.

The residue is independent of the choice of local coordinates, since it can be written in

the manifestly invariant form

Resz0η =
1

2πi

∫
∂Bz0

η(z),

where Bz0 is a disk containing z0 in the interior, s.t. η is holomorphic on B̄z0\{z0}, e.g.

no other singular points in the closure. The following property holds.



8. ABELIAN DIFFERENTIALS 7

Lemma 8.5. Let z1, ..., zm be the singular points of the Abelian differential η, then

m∑
j=1

Reszjη = 0.

Proof. Let Bj be small disk around zj containing no other singularities in its closure.

Then,
m∑
j=1

Reszjη =
1

2πi

∑
j

∫
∂Bj

η = − 1

2πi

∫
X−∪Bj

dη = 0, (9)

since η is holomorphic on X − ∪Bj and thus closed there. �

8.7. Differentials of 2nd and 3rd kind. The following terminology is commonly used:

(a) Holomorphic differentials are called Abelian differentials of the first kind,

(b) Meromorphic differentials with poles with vanishing residues are called Abelian

differentials of the second kind,

(c) Meromorphic differentials with non-zero residues are called Abelian differentials

of the third kind.

Any meromorphic differential is a combination of differentials of three types.

We have already constructed the canonical basis of differentials of the first kind. Nor-

malized Abelian differentials of the second kind are constructed as follows. The differential

of 2nd kind η
(N)
P , N ∈ N has only one singularity of order N + 1 at P ∈ X, i.e. for a local

coordinate z, z(P ) = 0,

η
(N)
P =

(
1

zN+1
+O(1)

)
dz.

Remark: This construction depends on the choice of the local coordinate, but the order

of the pole is independent of the choice of local coordinate.

Example: Consider η
(N)
0 = dz

zN+1 on the sphere.

The basic differential of 3rd kind ηPQ has only two singularities at P and Q with

opposite residues

ResP ηPQ = −ResQ ηPQ = 1.

Example: Consider ηz0z1 = d log z−z0
z−z1 on the sphere.

Note that adding holomorphic differentials to η
(N)
P and ηPQ preserves the form of sin-

gularities. Taking into account (8), this ambiguity can be used in a straightforward way

to normalize the differentials above as follows∫
aj

η
(N)
P = 0,

∫
aj

ηPQ = 0,
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for the a-cycles. Such differentials are called normalized Abelian differentials of, resp.,

2nd and 3rd kind. We now have to demonstrate their existence and uniqueness.

8.8. Divisors of meromorphic functions and Abelian differentials.

Definition 8.6 Divisors on compact Riemann surfaces are given by formal finite sums

of points

D =
N∑
k=1

nkPk, nk ∈ Z, Pk ∈ X,

and the sum

degD =
N∑
k=1

= nk

is called the degree of D.

Set of divisors Div(X) form an Abelian group with well-defined group operation (sum-

mation) and inverse element (D → −D).

Definition 8.7 Divisor is called positive, if all nk > 0.

Divisor (f) of meromorphic function f is a sum of its zeroes P1, .., PN and poles

Q1, ..., QM with their orders as multiplicities

(f) = n1P1 + ...+ nNPN − n′1Q1 − ...− n′MQM .

Recall that zeroes and poles of an Abelian differential is well defined

Definition 8.8 The divisor of Abelian differential ω is the sum of its zeroes and poles

(ω) =
∑
P∈X

ord(P )P.

Here ord(P ) = n0 is the order of zero or singularity in local Laurent expansion h(z) =∑∞
n=n0

hn(z − zP )n in local coordinate at the point P and locally ω = h(z)dz.

Definition 8.9 A divisor is called principal if it is a divisor of a meromorphic function.

Lemma 8.10. Divisor of a meromorphic function has degree zero deg(f) = 0.

Proof. Given a meromorphic function f , consider the Abelian differential df/f . Its

residues are equal to the multiplicities of the zeroes and poles of f . By Lemma 8.5,

the sum of residues is zero. �

We now note that the Abel map can be naturally extended to divisorsD =
∑

P∈X nPP, nP ∈
Z, as

I(D) =
∑
P∈X

nP

∫ P

P0

ωj.
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Note that if degD = 0, i.e. D = P1 + ...+ PN −Q1 − ...−QN , then the Abel map

I(D) =
N∑
m=1

∫ Pm

Qm

ωj

is independent of the base point P0.

9. Abel theorem

9.1. Harmonic differentials. We have established that the divisor of meromorphic func-

tion has degree zero. In other direction, given a degree zero divisor we may ask whether

it is a divisor of a meromorphic function. The goal of this section is to prove the Abel

theorem, saying that the divisor is principal if and only if its degree zero and I(D) = 0.

This relies on a two technical results on the existence of abelian differentials and on the

decomposition theorem for differentials, which we cover first.

First, we would like to prove the existence of 2nd and 3rd kind differentials. Here

we sketch the argument, the full construction is based on the decomposition theorem of

differentials on Riemann surface, is covered e.g. in [Jost,FarkasKra].

Let ω = ω(1,0) + ω(0,1) be the unique decomposition of the differential ω in (1, 0) and

(0, 1) components. The Hodge ∗-operator is defined on the differential forms as follows

∗ω = −iω(1,0) + iω(0,1).

Clearly ∗2 = −1 and type (1, 0) (resp. (0, 1)) differential form eigenspaces of ∗ with

eigenvalues −i (resp. i).

Let X be a Riemann surface and consider the natural scalar product on the smooth

differentials

(ω1, ω2) =

∫
X

ω1 ∧ ∗ω̄2. (10)

The Hilbert space L2
1(X) of is the completion of the space of smooth differentials E1(X)

under this scalar product.

We have: (ω1, ω2) = (ω2, ω1) and (∗ω1, ∗ω2) = (ω1, ω2).

The smooth differential ω ∈ E1(X) is closed (resp., co-closed) if dω = 0 (resp., d ∗ ω =

0). The E1(X) differential ω is exact (resp., co-exact) if ω = df (resp., ω = ∗df), for

f ∈ E(X) = C∞(X) smooth functions on X.

Next we introduce subspaces dE(X) and ∗dE(X) of exact and co-exact differentials

dE(X) = {df |f ∈ E(X)},

∗dE(X) = {∗df |f ∈ E(X)},

where bar denotes closure in L1
2(X). If X is non-compact then we shall take functions

with compact support.
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dE(X) and ∗dE(X) are orthogonal, because (df, ∗dg) =
∫
X
df ∧ dg =

∫
X
d(fdg) = 0 by

Stokes theorem, since X has no boundary. Consider orthogonal complements dE(X)⊥,

∗dE(X)⊥ under the scalar product (10). We have

Lemma 9.1. Let α ∈ L2
1(X) be of class E1(X). Then α ∈ ∗dE⊥ ⇔ dα = 0 and α ∈

∗dE⊥ ⇔ d ∗ α = 0

Proof. Lets do it for α ∈ B⊥, applying Stokes theorem again

(α, df) = (df, α) =

∫
X

df̄ ∧ ∗α = −
∫
X

f̄ ∧ d ∗ α = 0,

for any f ∈ E(X). Hence d ∗ α = 0. �

Definition 9.2 A differential α is harmonic if it is smooth and both closed and co-closed.

It follows immediately from definition that locally, harmonic differentials have the form

α = f(z)dz + g(z)dz̄,

where f, g are holomorphic, and also α = dh, where where h is harmonic function (∂∂̄h =

0). The proof is straightforward and is left as an exercise. Then it follows that

α + i ∗ α = 2fdz (11)

is a holomorphic differential.

Consider now the space H = dE⊥ ∩ ∗dE⊥, which is intersection of orthogonal comple-

ments. All harmonic differentials by definition are in H. The stronger statement is that

H consists only of harmonic differentials (for technical proof based on Weyl’s lemma we

refer to Jost [Theorem 5.2.1]).

Hence the statement is

Corollary 9.3. Every square-integrable smooth differential ω on X is represented by an

orthogonal sum

ω = df + ∗dg + α

of exact, co-exact and harmonic forms, i.e. E1(X) = dE(X)⊕ ∗dE(X)⊕H

This discussion can be continued further to prove that dimH = 2g, dimH1(X,C) = 2g

and the dimension of space of holomorphic differentials is g, see [FarkasKra].

9.2. Existence and uniqueness of differentials of 2nd and 3rd kind.

Theorem 9.4. Given points P,Q on a compact Riemann surface X and a canonical basis

of cycles there exists unique normalized Abelian differentials η
(N)
P , N ∈ N of 2nd kind and

ηPQ of 3rd kind.
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Proof. Uniqueness of 2nd and 3rd kind differentials follows from simple considerations:

the difference of two normalized differentials is a holomorphic differential with vanishing

a-cycles. Hence it vanishes identically due to Cor. 8.1.

The existence can be verified by the following explicit construction. Consider nested

neighbourhoods P ∈ U0 ⊂ U1 ⊂ X and a C∞(X) interpolating function ρ : ρ = 1 on U0

and ρ = 0 on X\U1. Let z be a local coordinate on U1 centered at P and consider the

differential on X\{P}

ψ = d
(
− ρ

NzN

)
=

(
− ∂ρ

NzN
+

ρ

zN+1

)
dz −

(
∂̄ρ

NzN

)
dz̄.

The (0, 1) part of ψ is smooth on X and following Cor. 9.3 it can be decomposed as

ψ − i ∗ ψ = df + ∗dg + α (12)

into exact, co-exact and harmonic parts. Consider now differential γ = ψ − df .

The key claim is that γ is harmonic on X\P and γ − dz
zN+1 is harmonic on U0. Indeed,

γ = d
(
− ρ

NzN
− f

)
,

so it is closed on X\P , and from Eq. (12) it follows that γ = i ∗ ψ + ∗dg + α, so it is

co-closed. Hence γ ∈ H(X\P ).

Next, observe that ψ − dz
zN+1 ≡ 0 on U0 by construction. Hence,

γ − dz

zN+1
= −df = ∗dg + α on U0,

so γ − dz
zN+1 ∈ H(U0).

Then the direct corollary of (11) is that the differential η = 1
2
(γ + i ∗ γ) is holomorphic

on X\P and η − dz
zN+1 is holomorphic on U0. Hence η has exactly the pole of the order

N + 1 at P and holomorphic otherwise.

In order to prove the existence of the 3rd kind differential the above construction shall

be applied to

ψz1z2 = d

(
ρ log

z − z1
z − z2

)
,

for z1, z2 ∈ U0. For arbitrary two points P,Q we can do a telescopic sum of ψz1z2 . �

9.3. Abel theorem. The Abel theorem describes what happens to the principal divisors

under the Abel map, defined in the previous lecture.

Theorem 9.1. (Abel theorem) The divisor is principal if and only if degD = 0 and

I(D) = 0 mod Λ.
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Proof. Let f be a meromorphic function. As we have already shown in Lemma 8.10,

deg(f) = 0. Hence we can write for its divisor

(f) = P1 + ...+ PN −Q1 − ...−QN ,

where some of the points could coincide. Consider the meromorphic differential

η = d log f

Since f is s scalar function, the periods of η can only be integer multiples of 2πi,∫
aj

η = 2πinj,

∫
bj

η = 2πimj, nj,mj ∈ Z.

We need to compute I(D). Following the definition I(D), in sec. 8.5, we have

I((f)) =
N∑
k=1

∫ Pk

Qk

ωj.

In order to compute this we apply the Riemann bilinear identity Eq. (4), Thm. 8.1 to

ω1 = ωl, where ωl is the l-th element of canonical basis of holomorphic differentials, and

to ω2 = η. Note that η = d log f is closed. We have

1

2πi

∫
∂X0

(
η(P )

∫ P

P0

ωl

)
=
∑
P∈X

Res η(P )

∫ P

P0

ωl =
N∑
k=1

∫ Pk

Qk

ωl

=
1

2πi

g∑
j=1

(2πimjδjl − 2πiτjlnj) = ml − τljnj ∈ Λ,

hence

I((f)) = 0 mod Λ.

In the opposite direction, consider a divisor D = P1 + ...+PN −Q1− ...−QN of degree

zero, such that

I(D) = 0 mod Λ. (13)

The main idea is to construct the meromorphic function f with the divisor (f) = D.

Let us consider the normalized abelian differentials of the third kind ηPkQk and let

η̃ =
N∑
k=1

ηPkQk . (14)

Then a-periods of η̃ vanish by definition. Consider b-periods of ηPkQk and apply Eq. (4)

Thm. 8.1 for ω1 = ωl (holomorphic differential from canonical basis) and ω2 = ηPkQk .

Then ∫
bl

ηPkQk =

∫
∂X0

(
ηPkQk(P )

∫ P

P0

ωl

)
= 2πi

(∫ Pk

P0

ωl −
∫ Qk

P0

ωl

)
= 2πi

∫ Pk

Qk

ωl.
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Hence, ∫
bl

η̃ =
N∑
k=1

∫
bl

ηPkQk = 2πi
N∑
k=1

∫ Pk

Qk

ωl = 2πiI(D) = 2πi(nl + τljmj) ∈ Λ,

for some nl,ml ∈ Z, according to the assumption (13). Then the function

f(P ) = exp

(∫ P

P0

η̃ − 2πi

g∑
j=1

mj

∫ P

P0

ωj

)
,

where η̃ is given by Eq. (14) is single-valued on X and is a meromorphic function with

the divisor D.

�
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