
10. Theta functions

10.1. Theta functions in one variable. Theta function is an analytic function of z ∈ C
is defined as

ϑ(z, τ) =
∑
n∈Z

eπin
2τ+2πinz (1)

and parameter τ ∈ H takes values in the upper-half plane, i.e., Im τ > 0. The series

converges absolutely and uniformly on compact sets. Indeed for |Im z| < c and Im τ > ε

we have

|eπin2τ+2πinz| < e−πεn
2+2πcn < e−πεn(n−2c/ε)

hence starting from n0 > 2c/ε the series begin to rapidly converge.

Theta function is almost periodic with respect to the lattice Λ = m′ +mτ, m′,m ∈ Z.

Indeed,

ϑ(z + 1, τ) = ϑ(z, τ),

ϑ(z + τ, τ) =
∑
n∈Z

eπin
2τ+2πin(z+τ)

=
∑
n∈Z

eπi(n+1)2τ−πiτ+2πinz = e−πiτ−2πizϑ(z, τ)

and in general

ϑ(z +m′, τ) = ϑ(z, τ), ϑ(z +mτ, τ) = e−πim
2τ−2πimzϑ(z, τ), m′,m ∈ Z.

Theta functions with characteristics are defined as follows

ϑ
[
a

b

]
(z, τ) =

∑
n∈Z

exp
(
πi(n+ a)2τ + 2πi(n+ a)(z + b)

)
=

eπia
2τ+2πia(z+b)ϑ(z + aτ + b, τ), (2)

for a, b ∈ R.

Especially important are theta-functions with half-integer characteristics (Jacobi theta

functions)

θ1(z, τ) = −ϑ
[

1
2
1
2

]
(z, τ),

θ2(z, τ) = ϑ
[

1
2

0

]
(z, τ),

θ3(z, τ) = ϑ
[

0

0

]
(z, τ) = ϑ(z, τ),

θ4(z, τ) = ϑ
[

0
1
2

]
(z, τ).

Note that θ1(−z) = −θ1(z) is odd and θ2,3,4(−z) = θ2,3,4(z) are even.

These functions satisfy quadratic relations (see Mumford, vol. I).
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10.2. Zeroes. Theta functions are multivalued on the torus Tτ = C/Λ, but its zeroes are

well-defined on the torus, as follows from formulas above. We can immediately show that

theta function Eq.(1) has one zero in the torus. The number of zeroes is given by the

integral

# zeroes of ϑ =
1

2πi

∫
4 sides

d

dz
(log f)dz = 1 (3)

See Fig. 1. From definition (2) it immediately follows that theta function with character-

istics also has one zero. Its location can be determined as follows. It is not hard to show

that

ϑ
[

1
2
1
2

]
(z, τ) = −ϑ

[
1
2
1
2

]
(−z, τ), (4)

hence it vanishes at z = 0. Therefore from (2) one first infers that ϑ(z, τ) vanishes at
1
2
τ + 1

2
, and next, ϑ

[
a

b

]
(z, τ) has zeros at(

a+
1

2

)
τ +

(
b+

1

2

)
mod Λ.

10.3. Meromorphic functions on the torus. On P1 we can construct meromorphic

functions as ratios ∏
j

z − aj
z − bj

(5)

On the torus theta functions give us several ways to construct meromorphic functions

• We can take quotients of θ itself

N∏
j=1

ϑ(z − aj)
ϑ(z − bj)

(6)

This is periodic provided
∑
aj =

∑
bj. Hence, for N = 1 we only get constant

function as no meromorphic functions with only one simple pole exist on torus.

• One can take second logarithmic derivative

d2

dz2
log θ1(z, τ) = −℘(z) + const

where ℘(z) is Weierstrass ℘-function

℘(z, τ) =
1

z2
+

∑
n2+m2 6=0

(
1

(z +m+ nτ)2
− 1

(m+ nτ)2

)
.

The constant is chosen such that the Laurent expansion of ℘ at zero has no constant

term. This function has a pole of order 2 at z = 0 hence ℘(z) can be written as

a sum of constant function and, e.g., meromorphic function of the type (6) with

θ1(z)2 in the denominator. Indeed,

d2

dz2
log θ1(z, τ) =

θ′′3(0)

θ3(0)
− θ′1(0)2

θ3(0)2
θ3(z)2

θ1(z)2
,
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see Mumford, p.26, for the proof using quadratic relations.

10.4. Riemann theta function. Consider now coordinate vector zj ∈ Cg and the lattice

Λ = m′j + τjlml, m,m
′ ∈ Zg, where τ is symmetric complex matrix with positive definite

imaginary part Im τ > 0.

Remark: We reduce to the tori of this form, called principally polarized Abelian tori,

because its a classical theorem (Siegel) that non-constant meromorphic functions exist

only on such Abelian tori. (Mumford, Griffits-Harris). Abelian tori in general correspond

to the lattice Λ = m′jaj + τjlml, m,m
′ ∈ Zg, ak ∈ N, a1 = 1, ak|ak+1

Closely related fact is that for such tori there is projective embedding (Lefshetz embed-

ding theorem).

This is parameterized by an open subset in Cg(g+1)/2, called the Siegel upper-half plane.

Then

ϑ(z, τ) =
∑
nj∈Zg

eπinjτjlnl+2πinjzj , (7)

where we drop the indices on z, τ etc., where notation is obvious.

Proposition 10.1. ϑ converges absolutely and uniformly in each set maxj |Im zj| < c1
and Im τjl > c2δjl.

Proof.

|eπinjτjlnl+2πinjzj | 6 e−πc2
∑
n2
j+2πc1

∑
j |nj |. (8)

Hence the series are dominated by
(∑

n>0 e
−πc2

∑
n2+2πc1|n|

)g
, which we already know

converges. �

Theta function is quasi-periodic

ϑ(zj +m′j + τjlml, τ) = e−πimjτjlml−2πimjzjϑ(z, τ), m,m′ ∈ Zg. (9)

The proof is identical to the one-dimensional case.

11. Divisors and Jacobi inversion theorem

11.1. Divisor classes.

Definition 11.1 Two divisors D,D′ are called linearly equivalent with their difference

D − D′ = (f) is a principal divisor (=divisor of a meromorphic function). All linearly

equivalent divisors belong to the equivalence class, called divisor class, which is labelled as,

e.g., [D].

Since any principal divisor has degree zero, all divisors in the same divisor class have

the same degree. Notation for equivalent divisors: D ≡ D′.
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Definition 11.2 All Abelian differentials belong to the same divisor class, called the

canonical class K.

This is because the ratio ω1/ω2 of any two Abelian differentials is a meromorphic func-

tion.

It is an immediate consequence of the Abel theorem that Abel map depends only on

the divisor class.

Corollary 11.3. All divisors in the same divisor class map to the same point in the

Jacobian.

Proof. From linearity of the Abel map it follows

I(D + (f)) = I(D) + I((f)) = I(D),

by Abel theorem. �

11.2. Recap: Riemann-Roch theorem.

Theorem 11.1. For a divisor D on a Riemann surface of genus g

dimH0(X,O(D)) = degD − g + 1 + dimH0(X,Ω(−D)).

Here

H0(X,O(D)) = {f meromorphic on X | (f) +D > 0 or f ≡ 0}
and

H0(X,Ω(−D)) := {ω Abelian differential X | (ω) > D or ω ≡ 0}.
Notations:

h0(D) = dimH0(X,O(D))

(≡ l(−D) can be also encountered),

i(D) = dimH0(X,Ω(−D)),

the latter is also called index of speciality. Hence

h0(D) = degD − g + 1 + i(D).

Clearly, dimensions h0(D) and i(D) depend only on the divisor class. If D −D′ = (f̃)

then vector spaces are identified by multiplication by f̃ .

Lemma 11.4.

i(D) = h0(K −D) (10)

Proof. Let ω0 be an Abelian differential with divisor (ω0) ∈ [K]. Then the map ω ∈
H0(Ω(−D)) 3 ω → ω/ω0 ∈ H0(O((ω0) −D)) = H0(O(K −D)) is an isomorphism of of

vector spaces, hence their dimensions are equal. �
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This is a consequence of a more profound isomorphism between the corresponding vector

spaces, called Serre duality.

11.3. Canonical class.

Corollary 11.5. The degree of the canonical class degK = 2g − 2.

Proof. On the sphere dz has double pole at infinity. dz = −dw/w2, z = 1/w. For g > 0

the Rieman-Roch theorem states that h0(K) = degK − g + 1 + i(K). Form Eq. (10) it

follows that

i(K) = h0(0) = 1, and h0(K) = i(0) = g,

the latter is because there are g independent holomorphic differentials. Hence degK =

2g − 2. �

Corollary 11.6. There is no point on X where all holomorphic differentials vanish

simultaneously.

Proof. Suppose there exists such a point P ∈ X. Then for divisor D = P , we have

i(P ) = g and from the Riemann-Roch theorem it follows h0(D) = 2. Then besides the

constant function, there exists a nontrivial meromorphic function with only one simple

pole at P . Due to the Ex. 2, Homework 2 X is biholomorphic to the sphere. �

11.4. The Abel map as an embedding.

Definition 11.7 A holomorphic map F : X → Y between complex manifolds is called

embedding if F is an immersion (derivative is injective at every point) and F : X → F (X)

is an homeomorphism.

Lemma 11.8. If X is compact, this is equivalent to F being injective immersion.

Proof. Indeed, then F : X → F (X) is bijective and continuous. We will use the following

fact: a function g is continuous iff g−1(C) is closed for all C closed in X. Take g = F−1,

then g−1(C) = F−1
−1

(C) = F (C). C closed in X compact means C is compact. Since

F is continuous, it follows that F (C) is compact. Hence F (C) is closed. Hence F−1 is

continuous. Hence F : X → F (X) is a homeomorphism. �

Lemma 11.9. The Abel map I(P ) =
∫ P
P0
ωj is an embedding.

Proof. Derivative of the Abel map at a point P equals

dI(P ) = ωj(P )

From Cor. 11.6 we know that for any point P ∈ X holomorphic differentials cannot vanish

at P , hence dI(P ) 6= 0, so the Abel map is an immersion.
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Suppose that two point P1, P1 ∈ X have the same image I(P1) = I(P2). Then I(P1 −
P2) ≡ 0 and by Abel theorem P1 − P2 is a principal divisor. By Ex. 2, Homework 2

meromorphic function with just one simple pole does not exist for g > 0, hence P1 =

P2. �

11.5. Jacobi inversion theorem. The set Xn of positive divisors of degree n can be

described as nth symmetric product of X with itself, Xn = X × ... × X/Symn, where

quotient by the symmetric group Symn means that we do not distinguish between the

points.

In what follows we will also need a notion of a special divisor.

Definition 11.10 A positive divisor D of degree g is called special if i(D) > 0.

(Hence the name index of speciality). In other words there exists a non-zero holomorphic

differential ω with divisor

(ω) > D. (11)

This is rare. Indeed, since holomorphic differentials form a dim-g vector space, we can

write ω =
∑
αjωj for some basis. Then Eq. (11) translates into a homogeneous system

of linear equations on coefficients αj, one equation for each zero of D = P1 + ...+ Pg,∑
αjωj(Pk) = 0.

So to get non-zero αj’s we need the condition detωj(Pk) = 0. Hence most positive divisors

are non-special. In particular, in the proof of next theorem we will see that in for every

non-special divisor there is a neighbourhood where all divisors are also non-special.

Theorem 11.2. (Jacobi inversion theorem) Consider the set Xg of positive divisors

of degree g. The Abel map

I : Xg → Jac(X)

on this set is surjective.

Proof. We should show that for any point Cj ∈ Jac(X) there exists a positive divisor

D = P1 + ...+ Pg of degree g, such that

Cj =

g∑
l=1

∫ Pl

P0

ωj.

Let us start with some non-special degree-g divisor Dz = z1 + ...+ zg. Consider the Abel

map for this divisor I(Dz) and compute its differential

dzlI(Dz) = ωj(zl).
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Hence the Jacobian matrix of the map is ω1(z1) ... ω1(zg)
...

...

ωg(z1) ... ωg(zg)

 (12)

By the assumption that Dz is a non-special divisor, the determinant of this matrix is

non-zero.

Choose z1 such that ω1(z1) 6= 0. By subtracting first row we can set the following

entries to zero: ω2(z1) = ... = ωg(z1) = 0. Choose then z2 such that ω2(z2) 6= 0, and

repeat the procedure. Finally we will get upper-triangular matrix with non-zero entries

on the diagonal, hence it is not-degenerate. This holds also in the neighbourhood of

z1 + ...+ zg.

One can show that all divisors in a neighbourhood of Dz are non-special. Therefore, by

the implicit function theorem I maps the neighbourhood of (z1, ..., zg) bijectively onto a

neighbourhood VI(Dz) ⊂ Jac(X) of the point I(Dz) ∈ Jac(X).

Now let Cj ∈ Jac(X) be an arbitrary point. One can always find n ∈ N big enough so

that

I(Dz) +
1

n
C ∈ VI(Dz)

Then there exists another non-special divisor Dy (in the vicinity of Dz) such that it is the

preimage of the point above.

I(Dy) = I(Dz) +
1

n
C.

Then

C = n(I(Dy)− I(Dz))

and we need to show that

C = I(D), where D = P1 + ...+ Pg is a positive divisor of deg g.

Consider the divisor

D′ = n

g∑
j=1

yj − n
g∑
j=1

zj + gP0

of degree g. By Riemann-Roch theorem,

h0(D′) = g + 1− g + i(D′) > 1.

Hence there exists a meromorphic function f with divisor (f) + D′ > 0. Hence (f) + D′

is a positive divisor of degree g and we can write for this divisor

D = P1 + ...+ Pg = (f) +D′

Applying Abel theorem for this divisor we get

I(D) = I((f) + nDy − nDz + gP0) = I((f)) + I(nDy − nDz) + I(gP0) = 0 + C + 0.
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�

12. Theta divisor

12.1. Zeroes of the Riemann theta function. Obviously ϑ(e) 6≡ 0 for e ∈ Cg because

it is given by a Fourier expansion with non-zero coefficients. Let now τjl be a period

matrix of the Riemann surface X of genus g, so we restrict to the p.p. abelian varieties

which are a Jacobian of a Riemann surface.

The set of zeroes of theta function is called theta divisor. The goal of this lecture is to

describe the theta divisor in terms of divisors on X.

The function theory on X can be studied using the Jacobean embedding, via theta

function

f(P ) = ϑ

(∫ P

P0

ωj − ej, τ
)

(13)

as a function of a point P ∈ X, for an arbitrary vector ej ∈ Cg.

This function is locally single-valued, but globally multi-valued on X. It is invariant

around a-cycles. Around b-cycles it transforms as

ϑ

(
−ej +

∫ P

P0

ωj +

∫
bk

ωj, τ

)
= ϑ

(
−ej +

∫ P

P0

ωj + τkj, τ

)
= e

−πiτkk−2πi(
∫ P
P0
ωk−ek)ϑ

(
−ej +

∫ P

P0

ωj, τ

)
. (14)

It follows that its zeroes are well-defined on X.

Theorem 12.1. (Riemann vanishing theorem).

(1) Theta function either vanishes identically f(P ) ≡ 0 on X or has g zeroes (counting

multiplicities) Q1, ..., Qg.

(2) In the latter case there exists a vector ∆j ∈ Cg, such that

g∑
l=1

∫ Ql

P0

ωj = ej −∆j mod Λ. (15)

Proof. (1) Consider the canonical dissection X0 and assume all zeroes are separate

and Qi ∈ X0, P0 ∈ X0. Let δj be small disks around Qj. Consider differential

df/f and apply Stokes theorem

0 =

∫
X0−∪δj

d
df

f
=

∫
∂(X0−∪δj)

df

f
= −

∑
j

∫
∂δj

df

f

+

g∑
l=1

(∫
a−l

−
∫
a+l

+

∫
b−l

−
∫
b+l

)
d log f, (16)
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since df/f is holomorphic in X0 − ∪δj. Since f is invariant under a-cycles, b-

integrals cancel out. Since bl joins a−l and a+l and around bl-cycle we have Eq. (14)

d log f |a−l − d log f |a+l = 2πiωl. Hence

# of zeroes of f =
1

2πi

∑
j

∫
∂δj

df

f
=

g∑
l=1

∫
al

ωl = g. (17)

(2) Here the goal is to derive the formula for the vector of Riemann constants ∆j

∆j =
1

2
+

1

2
τjj −

∑
l 6=j

∫
al

ωl

∫ P

P0

ωj (18)

and the idea is to apply the previous argument to the one form gkdf/f , where

ωk = dgk and gk(P0) = 0 on X0.

0 =

∫
X0−∪δj

d
(
gk
df

f

)
= ... (19)

see [Mumord, vol. I, p.150]. One can check that ∆j in Eq. (18) is independent of

the integration path, but depends on the base point.

�
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