Riemannsche Flächen - Blatt 0

Wiederholung aus der Funktionentheorie

1. Problem

Sei $D \subset \mathbb{C}$ ein Gebiet, $D \neq \emptyset$, und $S \subset D$ eine diskrete Teilmenge, $S \neq \emptyset$, und $f: D \setminus S \to \mathbb{C}$ holomorph und injektiv. Zeige:

- (a) Kein Punkt $s \in S$ ist eine wesentliche Singularität.
- (b) Ist $s \in S$ ein Pol von f, so ist s ein Pol erster Ordnung.

2. Problem

- (i) Jede meromorphe Funktion auf $\widehat{\mathbb{C}}$ ist rational.
- (ii) Eine meromorphe Funktion f in \mathbb{C} mit $\lim_{z\to\infty} f(z) = \infty$ ist rational.

3. Problem

(a) Sei $f \not\equiv 0$ eine meromorphe Funktion auf $\widehat{\mathbb{C}}$ und $A = N(f) \cup P(f)$ die Menge der Null- und Polstellen von f in $\widehat{\mathbb{C}}$. Dann gilt

$$\sum_{z \in \widehat{\mathbb{C}}} \operatorname{ord}_z f = \sum_{z \in A} \operatorname{ord}_z f = 0.$$

(b) Seien $z_1, \ldots, z_n \in \widehat{\mathbb{C}}$ paarweise verschieden, und seien $m_1, \ldots, m_n \in \mathbb{Z}$ so, dass $m_1 + \ldots + m_n = 0$. Dann gibt es eine meromorphe Funktion f auf $\widehat{\mathbb{C}}$ mit

$$\operatorname{ord}_z f = egin{cases} m_j, & ext{falls } z = z_j ext{ f\"ur ein } j \in \{1, \dots, n\}\,, \ 0, & ext{falls } z
otin \{z_1, \dots, z_n\}\,. \end{cases}$$

4. Problem

Sei f meromorph im Punkt $a \in \mathbb{C}$. Zeige:

- (a) Ist a Polstelle erster Ordnung, dann gilt $\operatorname{res}_a f = \lim_{z \to a} (z a) f(z)$.
- (b) Ist a eine einfache Nullstelle von f, dann gilt $\operatorname{res}_a \frac{1}{f} = 1/f'(a)$.

Hat f in ∞ eine isolierte Singularität, so defineirt man $\operatorname{res}_{\infty} f = -\frac{1}{2\pi i} \int_{\partial B_R(0)} f(z) dz$, wobei der Radius R der Kreisscheibe so gro gewählt wird, dass f keine weitere Singularität im Komplement der Kreisscheibe hat. Zudem sei wie üblich $n(\partial B_R(0),0)=1$.

- (c) Dann gilt $\operatorname{res}_{\infty} f = -\operatorname{res}_0 \tilde{f}$, wobei $\tilde{f}(z) = z^{-2} f(\frac{1}{z})$.
- (d) Sei $f\colon\hat{\mathbb{C}}\to\hat{\mathbb{C}}$ eine rationale Funktion. Dann gilt $\sum_{p\in\hat{\mathbb{C}}}\operatorname{res}_p f=0$.

5. Problem

Sei $D \subset \mathbb{C}$ offen, $f \in \mathcal{M}(D)$ und $a \in D$.

- (a) Zeige:
- (i) Ist a eine Nullstelle von f von $\operatorname{ord}_a(f) = k \ge 1$ so gilt $\operatorname{ord}_a(f') = k 1$.
- (ii) Ist a eine Nullstelle von f' von $\operatorname{ord}_a(f') = k \geqslant 0$ so gilt $\operatorname{ord}_a(f) = 0$ oder $\operatorname{ord}_a(f') = k + 1$.
- (iii) Ist a eine Pollstelle von Ordnung k von f, so ist a eine Pollstelle von Ordnung k+1 von f' und in der Laurententwicklung von f' kommt kein Summand $\frac{a-1}{z-a}$ vor.
- (iv) Ist a eine Pollstelle von Ordnung k von f', so gilt $k \ge 2$ und a ist eine Pollstelle von Ordnung k-1 von f.
- (b) Sei a eine Pollstelle von f. Zeige, dass e^f eine wesentliche Singularität in a besitzt.

6. Problem

Satz von der lokalen Werteannahme: Sei D ein Gebiet und $f: D \to \mathbb{C}$ holomorph. Weiter habe f in z_0 eine k-fache w_0 -Stelle, $1 \le k < \infty$. Dann gibt es Umgebungen $U \subset D$ von z_0 und V von w_0 , so dass jedes $w \in V \setminus \{w_0\}$ genau k verschiedene Urbilder z_1, \ldots, z_k in U hat, und zwar mit $\nu(f, z_j) = 1$ für $j = 1, \ldots, k$.

7. Problem

Sei $P:\mathbb{C}\to\mathbb{C}$ ein nichtkonstantes Polynom. Dann ist $P(\mathbb{C})$ offen nach dem Satz von der Gebietstreue. Zeige, dass $P(\mathbb{C})$ auch abgeschlossen ist, und folgere $P(\mathbb{C})=\mathbb{C}$. Zeige, dass in dieser Aussage der Fundamentalsatz der Algebra als Spezialfall enthalten ist.