Riemann Surfaces - Homework 1

1. Problem

Let $\Gamma = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ and $\Gamma' = \mathbb{Z}\omega'_1 + \mathbb{Z}\omega'_2$ be two lattices in \mathbb{C} , i.e. $\omega_j, \omega'_j \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ for $j \in 1, 2$ and $\operatorname{Im} \frac{\omega_1}{\omega_2} \neq 0$ resp. $\operatorname{Im} \frac{\omega'_1}{\omega'_2} \neq 0$. Show that $\Gamma = \Gamma'$ if and only if

$$\begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix} = A \begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix}$$

for some matrix $A \in \mathbf{SL}(2, \mathbb{Z}) := \{A \in \mathbf{GL}(2, \mathbb{Z}) \mid \det A = 1\}.$

2. Problem

(a) Let $\Gamma, \Gamma' \subset \mathbb{C}$ be two lattices and $\alpha \in \mathbb{C}^*$ such that $\alpha \Gamma \subset \Gamma'$. Show that the map

$$\begin{array}{rccc} f:\mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & \alpha z \end{array}$$

induces a holomorphic map $\tilde{f}: \mathbb{C}/\Gamma \to \mathbb{C}/\Gamma'$ which satisfies

$$\tilde{f} \circ \pi = \pi' \circ f$$

where $\pi : \mathbb{C} \to \mathbb{C}/\Gamma$ resp. $\pi' : \mathbb{C} \to \mathbb{C}/\Gamma'$ are the standard projection maps. Furthermore, show that \tilde{f} is biholomorphic if and only if $\alpha \Gamma = \Gamma'$.

(b) Show that every torus $X = \mathbb{C}/\Gamma$ (seen as additive group) is isomorphic to a torus of the form

$$X(\tau) = \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau),$$

where $\tau \in \mathbb{C}$ satisfies $\operatorname{Im}(\tau) > 0$. (c) Suppose $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{Z})$ and $\tau \in \mathbb{C}$ such that $\operatorname{Im}(\tau) > 0$. Let

$$\tau' = \frac{a\tau + b}{c\tau + d}.$$

Show that the tori $X(\tau)$ and $X(\tau')$ are isomorphic.

3. Problem

Show that every automorphism of \mathbb{C} is of the form $\Phi(z) = az + b$, where $a \neq 0$. *Hint*. Show that Φ has a pole of order one at ∞ by using the Casoratti-Weierstrass and open mapping theorems.

4. Problem

Any matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{GL}(2, \mathbb{C})$ defines a Möbius transformation

$$M_A: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}, \ M_A(z) = \frac{az+b}{cz+d}$$

Here we set $M_A(-d/c) = \infty$ and $M_A(\infty) = a/c$

(a) Show that $M_A : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is an automorphism and find $(M_A)^{-1}$.

(b) Show that the set ${\cal M}$ of all Möbius transformations forms a group for the composition of maps.

(c) Show that $\operatorname{GL}(2,\mathbb{C}) \to \mathcal{M}$, $A \mapsto M_A$ is a group morphism whose kernel is $\mathbb{C}I_2$ and this morphism induces an isomorphism $\operatorname{PSL}(2,\mathbb{C}) := \operatorname{SL}(2,\mathbb{C})/\{I_2,-I_2\} \cong \mathcal{M}$.

(d) Show that if ∞ is a fixed point of $\Phi \in \operatorname{Aut} \widehat{\mathbb{C}}$, then $\Phi(z) = az + b$, where $a \neq 0$.

(e) Show that $\operatorname{Aut} \widehat{\mathbb{C}}$ acts transitively on $\widehat{\mathbb{C}}$, that is, for any two points $z_1, z_2 \in \widehat{\mathbb{C}}$ there exists $\Phi \in \operatorname{Aut} \widehat{\mathbb{C}}$ with $\phi(z_1) = z_2$.

(f) Show that $\operatorname{Aut} \widehat{\mathbb{C}} = \mathcal{M}$.

5. Problem

Let $\Gamma\subset \mathbb{C}$ be a lattice. The Weierstass \wp function with respect to the lattice Γ is defined by

$$\wp_{\Gamma}(z) = \frac{1}{z^2} + \sum_{\omega \in \Gamma \setminus \{0\}} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right).$$

(a) Show that \wp_{Γ} is a doubly periodic meromorphic function with poles in the points of Γ . (A meromorphic function F on \mathbb{C} is called doubly periodic if for all $z \in \mathbb{C}$, $\omega \in \Gamma$, we have $F(z + \omega) = F(z)$.)

(b) Show that \wp_{Γ} defines a meromorphic function on the torus \mathbb{C}/Γ .

(c) Let f be a doubly periodic meromorphic function on \mathbb{C} with poles in the points of Γ , whose Laurent expansion at 0 is $\frac{1}{z^2} + \sum_{n>1} a_n z^n$. Show that $f = \wp_{\Gamma}$.

6. Problem

Let $\Gamma \subset \mathbb{C}$ be a lattice and \wp be the The Weierstass \wp function with respect to the lattice Γ .

(a) Let f be a doubly periodic meromorphic function f. Show that there exists a polynomial $P \in \mathbb{C}[z]$ such that $P(\wp)f$ is a doubly periodic meromorphic function with poles in Γ .

Hint. For any zero *a* of *f* consider $(\wp(z) - \wp(a))^n$ for *n* large enough.

(b) Let f be a doubly periodic meromorphic function f with poles in Γ . Assume that f is even, that is, f(z) = f(-z). Show that there exists a polynomial $P \in \mathbb{C}[z]$ such that $f = P(\wp)$.

(c) Let f be a doubly periodic meromorphic function f. Show that there exist rational functions $r, q \in \mathbb{C}(z)$ such that $f = r(\wp) + q(\wp)\wp'$.

Hint. The quotient of two even functions is even.

(d) Show that $z \in \mathbb{C}$ is a zero of of \wp' if and only if $z \notin \Gamma$ and $2z \in \Gamma$. Conclude that \wp' has exactly three zeros of order one on the torus \mathbb{C}/Γ .

(d) Let ω_1, ω_2 be a basis of Γ , that is, $\Gamma = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Show that

$$\wp'(z)^2 = 4(\wp(z) - e_1)(\wp(z) - e_2)(\wp(z) - e_3),$$

where $e_1 = \wp(\omega_1/2)$, $e_2 = \wp(\omega_2/2)$, $e_3 = \wp((\omega_1 + \omega_2)/2)$. Show that e_1, e_2, e_3 depend only on Γ and not on the choice of ω_1, ω_2 .

(e) Show that the field $\mathcal{M}(\mathbb{C}/\Gamma)$ of meromorphic functions on the torus \mathbb{C}/Γ is isomorphic to $\mathbb{C}(X)[Y]/(Y^2 - 4(X - e_1)(X - e_2)(X - e_3))$.

Hint. Consider the morphism $\mathbb{C}(X)[Y] \to \mathbb{C}/\Gamma$, $(X, Y) \mapsto (\wp, \wp')$.