Riemann Surfaces - Homework 4

1. Problem

Let $(U, \varphi = z = x + iy)$ and $(V, \psi = w = u + iv)$ be two charts on a Riemann surface X. (a) Show that

$$du \wedge dv = \frac{\partial(u, v)}{\partial(x, y)} dx \wedge dy = \left| \frac{\partial(\psi \circ \varphi^{-1})}{\partial z} \right|^2 dx \wedge dy,$$

where $\frac{\partial(u,v)}{\partial(x,y)} := \det J_{\psi \circ \varphi^{-1}}$ is the Jacobi determinant of $\psi \circ \varphi^{-1}$.

(b) Let α be a smooth form on X such that $\alpha = fdx + gdy$ on U and $\alpha = hdu + jdv$ on V. Show that

$$\left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy = \left(\frac{\partial j}{\partial u} - \frac{\partial h}{\partial v}\right) du \wedge dv \quad \text{on } U \cap V,$$

hence $d\alpha := \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y}\right) dx \wedge dy$ is a well defined 2-form on X.

2. Problem

Suppose X is a compact Riemann surface and D is a divisor on X with deg D < 0. Show that $H^0(X, \mathcal{O}_D) = 0$.

3. Problem

Prove that the positions and orders of zeroes and poles of a meromorphic differential are well-defined, i.e., independent of the choice of charts and local holomorphic coordinate.

4. Problem

Recall that Jacobi theta function is defined as $\vartheta(z,\tau) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau + 2\pi i n z}$ for $z \in \mathbb{C}$ and $\tau \in \mathbb{H}$, i.e., in the complex upper-half plane $\operatorname{Im} \tau > 0$.

(a) Find the zeroes of $\vartheta(z,\tau)$ in z. Then construct meromorphic functions on the torus $X = \mathbb{C}/\Gamma$, where $\Gamma = \mathbb{Z} + \tau\mathbb{Z}$, for a divisor D (check Abel's theorem). Is there a meromorphic function on X with only one simple pole?

(b) Construct the differentials of the first, second and third kind on the torus.

(c) Fix a positive integer n, and choose any two sets of n complex numbers $\{a_i : 1 \le i \le n\}$ and $\{b_j : 1 \le j \le n\}$ such that $\sum_i a_i - \sum_j b_j$ is an integer. Show that the ratio of translated theta functions

$$R(z) = \frac{\prod_{i=1}^{n} \theta(z - a_i, \tau)}{\prod_{j=1}^{n} \theta(z - b_j, \tau)}$$

is a meromorphic Γ -periodic function on \mathbb{C} and so descends to a meromorphic function on X.

(d) Show that any meromorphic function on *X* has the above form.

5. Problem

Consider the hyperelliptic Riemann surface $w^2 = \prod_{j=1}^{N} (z - z_j)$, where $z_j \neq z_k$ for $j \neq k$ and N = 2g + 1 or N = 2g + 2. Show that the differentials $z^{a-1}dz/w$, $a = 1, \ldots, g$, form a basis of holomorphic differentials.

6. Problem

(a) Let p, q two disjoint points on the Riemann sphere \mathbb{P}^1 . Find a meromorphic function f on \mathbb{P}^1 such that (f) = p - q.

(b) Show that two divisors D and D' on \mathbb{P}^1 are linearly equivalent if and only if $\deg D = \deg D'$.

(b) Consider the divisor D = 0 + 1 on \mathbb{P}^1 . Calculate $H^0(\mathbb{P}^1, \mathcal{O}(D))$.

7. Problem

Let X be a complex torus and p a point of X. Show that

$$\dim H^0(X, \mathcal{O}(np)) = \begin{cases} 0, & \text{for } n < 0, \\ 1, & \text{for } n = 0, \\ n, & \text{for } n \ge 1. \end{cases}$$

8. Problem

Let $X = \mathbb{C}/\Gamma$ be a complex torus, where $\Gamma = \mathbb{Z} + \tau \mathbb{Z}$ for $\tau \in \mathbb{H}$. Let $\wp(z, \tau)$ be the associated Weierstrass \wp -function.

(a) Calculate the divisors (\wp) and (\wp') .

(b) Construct explicitly a meromorphic function on X with an unique pole at a given point p such that the order of this pole is a given integer $n \in \mathbb{N}$. Deduce that $\dim H^0(X, \mathcal{O}(np)) = n$.

(c) Calculate a canonical divisor of *X*.

9. Problem

Let X be a compact Riemann surface of genus g.

(a) Show that for any point $p \in X$ there exists a meromorphic function on X, which has a pole at p of order $\leq g + 1$ and is holomorphic on $X \setminus \{p\}$. Show that if g = 1 the order of the pole cannot be 1.

(b) Show that there exists a branched covering $f : X \to \mathbb{P}^1$ with at most g + 1 sheets. Deduce that a compact Riemann surface of genus g = 0 is biholomorphic to \mathbb{P}^1 .

(c) Show that for any $n \ge 2g$ there exists a meromorphic function with a unique pole and this pole has order n.

(d) Let $f : X \to X$ a biholomorphic map different from the identity. Show that f has at most 2g + 2 fixed points.

10. Problem

Let $X = \mathbb{C}/\Gamma$ be a complex torus, where $\Gamma = \mathbb{Z} + \tau \mathbb{Z}$ for $\tau \in \mathbb{H}$. Theta functions with characteristics $\vartheta \begin{bmatrix} a \\ b \end{bmatrix} (z, \tau)$ were defined in the lecture. Prove the following Fay's identity:

$$\det \psi_i(z_j) = \mu(\tau)\vartheta \left[\begin{array}{c} \alpha + (N-1)/2\\ \beta + (N-1)/2 \end{array} \right] \left(\sum_{1}^N z_j, \tau \right) \prod_{i < j} \vartheta \left[\begin{array}{c} 1/2\\ 1/2 \end{array} \right] (z_i - z_j, \tau)$$

where $\psi_j = \vartheta \begin{bmatrix} \frac{\alpha+j}{N} \\ \beta \end{bmatrix} (Nz, N\tau)$, where $\mu(\tau)$ is independent of z.