6. Blatt zur Vorlesung Gewöhnliche Differentialgleichungen

Abgabe: 28.-30.11.2017 siehe Hinweis.

Hinweis: Studierende mit der Gruppennummer **3** legen ihre Lösungen zu Blatt 6 bitte bis Mittwoch, den 29.11.17, um 10:00 Uhr in den entsprechenden Kasten des Studierendenarbeitsraums (Raum 301) im Mathematischen Institut.

Studierende mit der Gruppennummer 1, 2, 4 oder 5 geben ihre Lösungen zu Blatt 6 bitte im Zeitraum 28.-30.11.17 in ihrer jeweiligen Übungsgruppe ab.

Abgaben der Gruppe 3, die nicht bis zur genannten Frist in den Kasten gelegt werden, bzw. Abgaben der Gruppen 1, 2, 4 und 5, die in den Kasten gelegt werden, können aus organisatorischen Gründen leider nicht korrigiert und daher auch nicht mit Punkten versehen werden. Wir bitten um Ihr Verständnis.

1. Aufgabe (2 Punkte)

Man betrachte die Funktion $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} x \ln|x|, & \text{falls } x \neq 0, \\ 0 & \text{falls } x = 0. \end{cases}$$

Ziege, dass das AWP

$$x'(t)f(t) - f(x(t)) = 0, x(0) = 0$$

unendlich viele Lösungen $x:\mathbb{R}\to\mathbb{R}$ besitzt.

2. Aufgabe (6 Punkte)

Zeige, dass das AWP

$$x' = t^4 + x^2 + 3t^2x^2, \quad x(0) = 0$$

eine eindeutige maximale Lösung auf einem Intervall $(-T,T), \frac{1}{\sqrt{3}} < T \le \frac{\pi}{2} + 1$ hat. Tipp: Angenommen $T > \frac{\pi}{2} + 1$, so gilt für alle $1 \le t \le \frac{\pi}{2} + 1$

$$\frac{x'(t)}{1+4x^2(t)} \ge 1.$$

Integriere von 1 bis t. Für die untere Abschätzung $T>1/\sqrt{3}$ benutze Cauchy-Picard-Lindelöf.

3. Aufgabe (4 Punkte)

Man betrachte die Funktion $f: \mathbb{R} \times (0, \infty) \to \mathbb{R}, f(t, x) = -\frac{1}{x}$.

(a) Zeige, dass f lokal Lipschitz-stetig in x ist.

Für $x_0 > 0$ betrachte man das AWP $x'(t) = -\frac{1}{x}$, $x(0) = x_0$.

- (b) Finde die maximale Lösung $x\colon (T_1,T_2)\to \mathbb{R}.$
- (c) Berechne $\lim_{t\to T_2} x(t)$. Zeige, dass der Graph von x jede kompakte Teilmenge von $\mathbb{R}\times(0,\infty)$ verlässt.

 ${\bf Zusatzaufgabe} \hspace{2cm} (+ \ 4 \ {\bf Punkte})$

Zeige, dass das AWP

 $x' + x^6 = 3t^2, \quad x(0) = 1$

eine eindeutige Lösung $x \colon [0, \infty) \to \mathbb{R}$ besitzt. Tipp: Zeigen Sie, dass für alle $t \in [0, T)$ gilt

$$0 < x(t) < 1 + t^3$$
.