Ein topologischer Raum X heißt kompakt, wenn X die Heine-Borel-Überdeckungseigenschaft hat, d.h. wenn aus jeder offenen Überdeckung $(V_i)_{i\in I}$ von X endlich viele i_1,\ldots,i_k ausgewählt werden können so, dass schon $X=\bigcup_{r=1}^k V_{i_r}$. Die Familie (V_{i_1},\ldots,V_{i_k}) heißt Teilüberdeckung, und die Heine-Borel-Überdeckungseigenschaft kann auch so formuliert werden: Jede offene Überdeckung besitzt eine endliche Teilüberdeckung 1 .

In \mathbb{C} gelten die Sätze von Bolzano-Weierstrass und Heine-Borel.

- 1.1.14. **Satz** (Bolzano-Weierstraß in \mathbb{C}). Jede beschränkte Folge in \mathbb{C} besitzt einen Häufungswert.
- 1.1.15. **Satz** (Heine-Borel). *Sei* $K \subset \mathbb{C}$. *Dann sind folgende Aussagen äquivalent:*
- (i) K ist kompakt, d.h. jede offene Überdeckung von K besitzt eine endliche Teilüberdeckung.
- (ii) K ist folgenkompakt, d.h. jede Folge in K hat eine in K konvergente Teilfolge.
- (iii) K ist abgeschlossen und beschränkt.
- 1.1.16. **Satz** (Satz vom Maximum und Minimum (Weierstrass)). Sei $K \subset \mathbb{C}$ eine nichtleere kompakte Menge. Dann ist jede stetige Funktion $f: K \to \mathbb{C}$ beschränkt und ihr Absolutbetrag nimmt ihr Maximum und sein Minimum an, d. h. es gibt $\zeta_1, \zeta_2 \in K$ mit $|f(\zeta_1)| \leq |f(z)| \leq |f(\zeta_1)|$ für alle $z \in K$.

Ein topologischer Raum X heißt zusammenhängend, wenn es keine Zerlegung von X in zwei nichtleere disjunkte offene Teilmengen U, V gibt. Folgende Aussagen sind äquivalent:

- (i) X ist zusammenhängend.
- (ii) Ist $U \in X$ nichtleer, offen und abgeschlossen, so gilt U = X.
- (iii) Jede lokal-konstante Funktion auf *X* ist konstant.
- (iv) Jede stetige Funktion von X nach $\{0,1\}$ ist konstant.

Sei X ein topologischer Raum. Eine stetige Abbildung $\gamma:[a,b]\longrightarrow X$ heißt Weg. Der Punkt $\gamma(a)$ heißt Anfagspunkt und der Punkt $\gamma(b)$ heißt Endpunkt von γ . Wir sagen auch, dass γ Verbindet $\gamma(a)$ und $\gamma(b)$.

Ein topologischer Raum X heißt wegzusammenhängend, wenn je zwei Punkte durch einen Weg verbunden werden können.

1.1.17. **Satz.** Ein wegzusammenhängender topologischer Raum ist zusammenhängend.

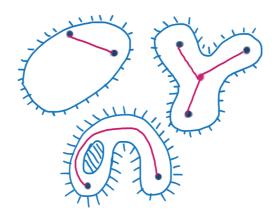
Die Umkehrung ist falsch (siehe Übungsblätter).

Sei nun X ein topologischer Raum. Eine Teilmenge $A \subset X$ heißt zusammenhängend (bzw. wegzusammenhängend), falls A versehen mit der Teilraumtopologie zusammenhängend (bzw. wegzusammenhängend) ist. Wir interessieren uns in der Funktionentheorie für Teilmengen von $\mathbb C$. Auf einer Teilmenge von $\mathbb C$ betrachte wir

 $^{^1}$ "Teil" heißt nicht, dass nur ein Teil von X überdeckt wird, sondern dass man nur eine Teilmenge der Indizes benutzt.

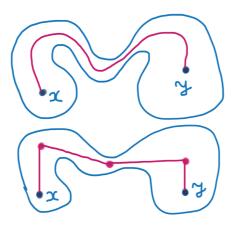
stets die Teilraumtopologie induziert durch die standard Topologie von $\mathbb C$. Somit können wir über zusammenhängende (bzw. wegzusammenhängende) Teilmengen von $\mathbb C$ reden. Eine offene und zusammenhängende Teilmenge $D \subset \mathbb C$ heißt **Gebiet**.

Für $z,w\in\mathbb{C}$ heißt $[z,w]=\{(1-t)z+tw:t\in[0,1]\}$ die *Strecke* von z nach w. Eine Menge $A\in\mathbb{C}$ heißt *konvex*, falls für alle $z,w\in A$ gilt $[z,w]\in A$. Eine Menge $A\in\mathbb{C}$ heißt *sternförmig*, falls es ein $z\in A$ gibt, so dass für alle $w\in A$ gilt $[z,w]\in A$. Jede konvexe Menge ist sternförmig, jede sternförmige Menge ist wegzusammenhängend (also zusammenhängend). Kreisscheiben und Halbebenen sind konvex (insbesondere die Einheitskreisscheibe $\mathbb{D}=\{z:|z|<1\}$, die obere Halbebene $\mathbb{H}=\{z:\operatorname{Re} z>0\}$). Die geschlitzte Ebene $\mathbb{C}_-=\mathbb{C}\setminus\mathbb{R}_-$, wobei $\mathbb{R}_-=\{x\in\mathbb{R}:x<0\}$, ist nicht konvex aber sternförmig.



Konvex, sternförmig, wegzusammenhängend...

- 1.1.18. **Satz.** Sei $D \subset \mathbb{C}$ eine offene Menge. Die folgenden Aussagen sind äquivalent:
- (i) D ist zusammenhängend (d. h. D ist ein Gebiet).
- (ii) D ist wegzusammenhängend.
- (iii) Für jede $x, y \in D$ gibt es einen Streckenzug $[x_0, x_1] \cup [x_1, x_2] \cup ... \cup [x_{k-1}, x_k] \subset D$ wobei $x_0 = x$ und $x_k = y$.



Beliebiger Weg und Streckenzug zwischen x und y

1.1.19. **Definition** (Wegekomponente). Sei X ein topologischer Raum. Zwei Punkten x,y heißen wege-äquivalent, falls sie durch einen Weg verbunden werden können. Dies ist eine Äquivalenzrelation und die Äquivalenzklassen heißen **Wegekomponenten** von X. Der Raum X ist disjunkte Vereinigung seiner Wegekomponenten.

1.1.20. Satz.

- (i) Die Wegekomponenten einer offenen Menge in $\mathbb C$ sind offen (also Gebiete).
- (ii) Eine offene Menge in $\mathbb C$ hat höchstens abzählbar viele Wegekomponenten.
- 1.1.21. **Bemerkung.** Sei X ein topologischer Raum. Die Vereinigung aller zusammenhängenden Teilmengen A von X, die $x \in X$ enthalten, heißt **Zusammenhangskomponente** X(x) von x. Die Wegekomponenten einer offenen Menge in $\mathbb C$ sind offen und stimmen mit den Zusammenhangskomponenten überein. Deshalb sprechen wir auch kurz einfach von **Komponenten**.

1.2. Riemannsche Sphäre.

Wir ergänzen $\mathbb C$ durch ein (ideales) Element $\infty \notin \mathbb C$ und setzten $\widehat{\mathbb C} = \mathbb C \cup \{\infty\}$. $\widehat{\mathbb C}$ heißt die *erweiterte Zahlenebene*.

Wir führen eine Topologie auf $\widehat{\mathbb{C}}$ ein: $U \subset \widehat{\mathbb{C}}$ heißt offen genau dann, wenn $U \cap \mathbb{C}$ offen ist und falls $\infty \in U$, gibt es M > 0 mit $\{z \in \mathbb{C} : |z| > M\} \subset U$. Eine Menge $U \subset \widehat{\mathbb{C}}$ mit $\infty \in U$ ist offen genau dann, wenn $\widehat{\mathbb{C}} \setminus U$ kompakt in \mathbb{C} ist. Für eine Folge (z_n) in $\widehat{\mathbb{C}}$ gilt $z_n \to \infty$, $n \to \infty$, genau dann, wenn $|z_n| \to \infty$, $n \to \infty$.

Setze $S^2=\{(w,t)\in\mathbb{C}\times\mathbb{R}\cong\mathbb{R}^3:|w|^2+t^2=1\}.$ Mit Hilfe der stereographischen Projektion definiere

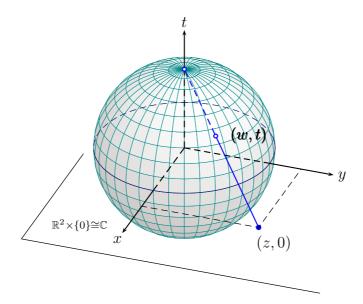
$$\sigma: S^2 \to \widehat{\mathbb{C}}, \quad \sigma(w,t) = \begin{cases} \frac{w}{1-t}, & (w,t) \neq (0,1) \\ \infty, & (w,t) = (0,1) =: N \end{cases}$$

(Man setzt die stereographische Projektion fort zu einer Bijektion von S^2 auf $\widehat{\mathbb{C}}$ durch $\sigma(N)=\infty$.) Die Umkehrung ist gegeben durch

$$\sigma^{-1}: \widehat{\mathbb{C}} \to S^2, \quad \sigma^{-1}(z) = \begin{cases} \left(\frac{2z}{1+|z|^2}, \frac{|z|^2 - 1}{1+|z|^2}\right), & z \neq \infty \\ N, & z = \infty \end{cases}$$

1.2.1. **Satz.** σ ist ein Homöomorphismus.

Deshalb betrachten wir S^2 als ein Modell für $\widehat{\mathbb{C}}$ und nennen $\widehat{\mathbb{C}}$ auch **Riemannsche Sphäre**.



Erweiterung der algebraischen Operationen:

$$a\cdot\infty=\frac{a}{0}=\infty\,,\quad \text{für } a\neq0$$

$$a\pm\infty=\infty\,,\quad \frac{a}{\infty}=0\,,\quad \text{für } a\neq\infty$$

$$\infty+\infty=\infty$$

Nicht definiert sind $0 \cdot \infty$, $\frac{0}{0}$, $\infty - \infty$, $\frac{\infty}{\infty}$.