2.1.3. Satz. Sei $D \subset \mathbb{C}$ offen, $f: D \longrightarrow \mathbb{C}$ und $z_0 \in D$. Die folgenden Aussagen sind äquivalent:

- (i) f ist komplex-differenzierbar in z_0 ,
- (ii) f ist reell-differenzierbar in z_0 und $df(z_0)$ ist \mathbb{C} -linear,
- (iii) f ist reell-differenzierbar in z_0 und erfüllt zusätzlich die **Cauchy-Riemann- Gleichungen**:

(2.2)
$$\frac{\partial f}{\partial x}(z_0) + i \frac{\partial f}{\partial y}(z_0) = 0$$

d.h.

(2.3)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

In diesem Falle gilt

(2.4)
$$df(z_0)(v) = f'(z_0) \cdot v , \quad \text{für } v \in \mathbb{C}.$$

Beweis: (i) \iff (ii) ist klar, da $\mathscr{L}_{\mathbb{C}}(\mathbb{C},\mathbb{C}) \subset \mathscr{L}_{\mathbb{R}}(\mathbb{C},\mathbb{C})$. Zu (ii) \iff (iii): $df(z_0) \in \mathscr{L}_{\mathbb{C}}(\mathbb{C},\mathbb{C}) \iff \exists \ \lambda \in \mathbb{C} \ \text{mit} \ df(z_0)(z) = \lambda \cdot z \iff \exists \ \lambda \in \mathbb{C} \ \text{mit}$

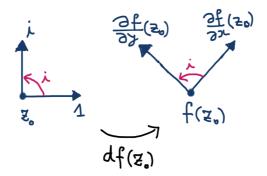
$$df(z_0) \cdot 1 = \lambda$$
, $df(z_0) \cdot i = i\lambda$.

d.h. das folgende Diagramm kommutiert:

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{z \mapsto \lambda \cdot z} & \mathbb{C} \\
z \mapsto (x,y) \downarrow & & \downarrow z \mapsto (x,y) \\
\mathbb{R}^2 & \xrightarrow{df(z_0)} & \mathbb{R}^2
\end{array}$$

Wir wissen aus Analysis II, dass $\frac{\partial f}{\partial x}(z_0)=df(z_0)\cdot e_1$ und $\frac{\partial f}{\partial x}(z_0)=df(z_0)\cdot e_2$, wobei $e_1=(1,0)$ und $e_2=(0,1)$. Durch den Isomorphismus $\mathbb{R}^2\cong\mathbb{C}$, $(x,y)\mapsto x+iy$ werden e_1 und e_2 auf 1 und i abgebildet. Es folgt

$$df(z_0) \cdot 1 = \frac{\partial f}{\partial x}(z_0), \quad df(z_0) \cdot i = \frac{\partial f}{\partial y}(z_0).$$



Also $df(z_0) \in \mathscr{L}_{\mathbb{C}}(\mathbb{C}, \mathbb{C}) \iff$ (2.2). Wenn wir Realteil und Imaginärteil von (2.2) betrachten, erhalten wir (2.3).

Ist $f'(z_0) \neq 0$ so ist die lineare Abbildung $df(z_0) : \mathbb{R}^2 \to \mathbb{R}^2$ eine Ähnlichkeitstransformation: sie entspricht eine Streckung mit dem Faktor $|f'(z_0)|$ zusammengesetzt mit einer Rotation von Winkel $\arg f'(z_0)$.

Sei $D \subset \mathbb{C}$ offen, $f: D \to \mathbb{C}$ reell-diffbar in $z_0 \in D$. Das Differential von f in z_0 ist

$$df(z_0) = \frac{\partial f}{\partial x}(z_0)dx + \frac{\partial f}{\partial y}(z_0)dy \in \mathscr{L}_{\mathbb{R}}(\mathbb{C}, \mathbb{C})$$

wobei $\mathscr{L}_{\mathbb{R}}(\mathbb{C},\mathbb{C})$ der \mathbb{C} -Vektorraum der \mathbb{R} -linearen Abbildungen von \mathbb{C} nach \mathbb{C} ist. $\mathscr{L}_{\mathbb{R}}(\mathbb{C},\mathbb{C})$ ist 2-dimensional mit Basis $\{dx,dy\}$.

Betrachte die folgenden Unterräume:

$$\begin{split} \mathscr{L}_{\mathbb{C}}(\mathbb{C},\mathbb{C}) &:= \{\ell: \mathbb{C} \to \mathbb{C}: \ \ell \ \ \mathbb{C}\text{-linear}\} \\ \mathscr{L}_{\overline{\mathbb{C}}}(\mathbb{C},\mathbb{C}) &:= \{\ell: \mathbb{C} \to \mathbb{C}: \ \ell \ \ \mathbb{C}\text{-antilinear}\} \end{split}$$

 $(\ell \ \mathbb{C}$ -antilinear : $\iff \ell \ \mathbb{R}$ -linear und $\ell(\lambda z) = \overline{\lambda}\ell(z)$ für $\lambda, z \in \mathbb{C}$)

Eine Basis in $\mathscr{L}_{\mathbb{C}}(\mathbb{C},\mathbb{C})$ ist $\{dz\}, dz = dx + idy$, und eine Basis in $\mathscr{L}_{\overline{\mathbb{C}}}(\mathbb{C},\mathbb{C})$ ist $\{d\overline{z}\}, d\overline{z} = dx - idy$. Es gilt

$$\mathscr{L}_{\mathbb{R}}(\mathbb{C},\mathbb{C})=\mathscr{L}_{\mathbb{C}}(\mathbb{C},\mathbb{C})\oplus\mathscr{L}_{\overline{\mathbb{C}}}(\mathbb{C},\mathbb{C})\;.$$

Zu $\ell \in \mathscr{L}_{\mathbb{R}}(\mathbb{C}, \mathbb{C})$, $\ell = a \, dx + b \, dy$, gibt es eine eindeutig bestimmte Zerlegung $\ell = \ell_1 + \ell_2 \, \text{mit} \, \ell_1 \in \mathscr{L}_{\mathbb{C}}(\mathbb{C}, \mathbb{C})$, $\ell_2 \in \mathscr{L}_{\overline{\mathbb{C}}}(\mathbb{C}, \mathbb{C})$: Wegen

$$dx = \frac{dz + d\overline{z}}{2}$$
 , $dy = \frac{dz - d\overline{z}}{2i}$

$$\ell = adx + bdy = a\frac{dz + d\overline{z}}{2} + b\frac{dz + d\overline{z}}{2i}$$
$$= \underbrace{\frac{1}{2}(a - ib)dz}_{=:\ell_1} + \underbrace{\frac{1}{2}(a + ib)d\overline{z}}_{=:\ell_2}.$$

Für $\ell = df(z_0), a = \frac{\partial f}{\partial x}(z_0), b = \frac{\partial f}{\partial y}(z_0)$ folgt die Zerlegung in \mathbb{C} -lineare und \mathbb{C} -antilineare Komponenten von $df(z_0)$:

$$df(z_0) = \frac{\partial f}{\partial z}(z_0)dz + \frac{\partial f}{\partial \overline{z}}(z_0)d\overline{z}.$$

wobei

(2.5)
$$\frac{\partial f}{\partial z} = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right), \quad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right).$$

Wir erhalten erneut:

f ist \mathbb{C} -differenzierbar in $z_0 \& df(z_0)$ ist \mathbb{C} -linear $\iff f$ ist \mathbb{R} -differenzierbar in $z_0 \& die \mathbb{C}$ -antilineare Komponente von $df(z_0)$ verschwindet

$$\iff f \text{ ist } \mathbb{R}\text{-differenzierbar in } z_0 \text{ und } \boxed{ \dfrac{\partial f}{\partial \overline{z}}(z_0) = 0 }$$

(Cauchy-Riemannsche-Gleichungen)

Ist f komplex-differenzierbar, so gilt nach (2.2), (2.5)

(2.6)
$$\frac{\partial f}{\partial z}(z_0) = \frac{\partial f}{\partial x}(z_0) = df(z_0) \cdot 1 = f'(z_0).$$

Wenn wir z und \overline{z} als Variablen betrachten und eine Funktion

$$f(x,y) = f\left(\frac{z+\overline{z}}{2}, \frac{z-\overline{z}}{2i}\right)$$

nach z und \overline{z} mittels Kettenregel ableiten, erhalten wir die Formel (2.5). Dies bedeutet, dass wir $\frac{\partial f}{\partial z}$, $\frac{\partial f}{\partial \overline{z}}$ durch formelles Differenzieren nach den Variablen z und \overline{z} erhalten

Dies erleichtert viele Rechnungen. Z.B.

$$\frac{\partial}{\partial z}z^n = nz^{n-1}, \quad \frac{\partial}{\partial \overline{z}}z^n = 0.$$

$$\frac{\partial}{\partial z}|z|^2 = \frac{\partial}{\partial z}(z\overline{z}) = \overline{z}.$$

Die Variablen z und \overline{z} sind sicherlich abhängig voneinander, aber beim Differenzieren nach den konjugiert komplexen Variablen z und \overline{z} darf man so tun, als ob z und \overline{z} unabhängige Variable seien. Die Cauchy-Riemannsche-Gleichungen kann man so deuten: Holomorphe Funktionen sind unabängig von \overline{z} und hängen nur von z ab.

Einige leichte Folgerungen aus Def. 2.1.1:

- 2.1.4. **Folgerung.** Ist f komplex-differenzierbar in z_0 , so ist f stetig in z_0 .
- **2.1.5. Folgerung.** Ist D ein Gebiet, $f: D \to \mathbb{C}$ holomorph mit f'(z) = 0, für alle $z \in D$, so ist f konstant.

Beweis: f holomorph $\Rightarrow f$ reell-differenzierbar und df(z) = f'(z)dz = 0, für alle $z \in D$. Nach dem Konstanzkriterium (Skript 9.4.2; Königsberger 2, Kap. 2, §2.2.) ist f konstant.

Zusatz. Sei $D \subset \mathbb{C}$ offen, $f: D \to \mathbb{C}$ eine Funktion. Dann sind äquivalent:

- (i) f lokal-konstant (d.h. konstant in jeder Zusammenhangskomponente),
- (ii) f holomorph und f'(z) = 0 für alle $z \in D$.

Auf völlig gleiche Weise wie im Reellen beweist man den folgenden Satz.

2.1.6. Satz (Rechenregeln für die Ableitung). Seien $f, g: D \to \mathbb{C}$ komplex-differenzierbar in $z_0 \in D$. Dann sind f+g, λf ($\lambda \in \mathbb{C}$), fg und falls $f'(z_0) \neq 0$ auch 1/f in z_0 komplex-differenzierbar und es gilt:

$$(f+g)'(z_0) = f'(z_0) + g'(z_0) , \quad (\lambda f)'(z_0) = \lambda f'(z_0)$$
$$(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$$
$$\left(\frac{1}{f}\right)'(z_0) = -\frac{f'(z_0)}{f^2(z_0)}$$

- 2.1.7. **Beispiel.**
- (i) $f: \mathbb{C} \to \mathbb{C}$, $f(z) = z^n \ (n \in \mathbb{N})$ ist holomorph, $(z^n)' = nz^{n-1}$, $z \in \mathbb{C}$.
- (ii) Polynome $P: \mathbb{C} \to \mathbb{C}, P(z) = a_n z^n + \ldots + a_1 z + a_0$, sind holomorph, und $P'(z) = n a_n z^{n-1} + \ldots + a_1, z \in \mathbb{C}$.
- (iii) Eine rationale Funktion ist definiert als Quotient zweier Polynome $P,Q\in\mathbb{C}[z],\,Q\not\equiv 0$: $R:\mathbb{C}\setminus\{z:Q(z)=0\}\to\mathbb{C},\,R(z)=\frac{P(z)}{Q(z)},\,R$ ist holomorph auf seinen Definitionsbereich.
- (iv) Sei $\sum_{n\geq 0} a_n z^n$ eine Potenzreihe mit Konvergenzradius R>0.

Sei $P:B_R(0) \to \mathbb{C}, P(z) = \sum_{n=0}^\infty a_n z^n.$ Dann ist P holomorph und es gilt

$$P'(z) = \left(\sum_{n=0}^{\infty} a_n z^n\right)' = \sum_{n=0}^{\infty} (a_n z^n)' = \sum_{n=1}^{\infty} n a_n z^{n-1} , \text{ d.h.}$$

eine Potenzreihe darf im Kovergenzbereich gliedweise differenziert werden.

Beweis: Sei $z_0 \in B_R(0)$. Wähle $\rho < R$ mit $z_0 \in B_\rho(0)$. Wir stellen fest:

- Die Funktionenreihe $\sum_{n\geq 0} a_n z^n$ konvergiert in $B_{\rho}(0)$.
- Die Reihe der Differentiale

$$\sum_{n\geq 0} d(a_n z^n) = \sum_{n\geq 1} n a_n z^{n-1} dz = \left(\sum_{n\geq 1} n a_n z^{n-1}\right) dz$$

konvergiert gleichmäßig in $B_{\rho}(0)$, da $\sum_{n\geq 1} na_n z^{n-1}$ Konvergenradius R hat.

Daraus folgt, dass P reell-differenzierbar in $B_{\rho}(0)$ ist, also auch in z_0 und

$$dP(z_0) = \left(\sum_{n=1}^{\infty} n a_n z_0^{n-1}\right) dz.$$

 $dP(z_0)$ ist deshalb $\mathbb C$ –linear, P ist komplex-differenzierbar und $P'(z_0) = \sum_{i=1}^{\infty} n a_n z_0^{n-1}$.

(v) Nach (iv) sind $\exp, \cos, \sin : \mathbb{C} \to \mathbb{C}$ holomorph und gilt für alle $z \in \mathbb{C}$:

$$\exp'(z) = \left(\sum_{n=0}^{\infty} \frac{1}{n!} z^n\right)' = \sum_{n=1}^{\infty} \frac{n}{n!} z^{n-1} = \sum_{n=1}^{\infty} \frac{z^{n-1}}{(n-1)!} = \exp(z)$$
$$\cos'(z) = \left(\sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}\right)' = \sum_{n=1}^{\infty} \frac{(-1)^n z^{2n-1}}{(2n-1)!} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} z^{2n+1}}{(2n+1)!} = -\sin(z)$$

und analog

$$\sin'(z) = \cos(z)$$

2.1.8. Satz (Kettenregel). Seien $D, G \subset \mathbb{C}$ offen. Sei $f: D \to G$ komplex-differenzierbar in $z_0 \in D$, g komplex-differenzierbar in $z_0 \in D$, g komplex-differenzierbar in $w_0 =$ $f(z_0) \in G$. Dann ist $g \circ f$ komplex-differenzierbar in z_0 und gilt

$$g \circ f'(z_0) = g'(f(z_0)) \cdot f'(z_0)$$
.

Insbesondere ist $g \circ f$ holomorph, wenn f und g holomorph sind.

Beweis: $g \circ f$ ist reell-differenzierbar und $d(g \circ f)(z_0) = dg(w_0) \circ df(z_0)$ (Kettenregel für Abbildungen $\mathbb{R}^2 \to \mathbb{R}^2$, siehe Skript 9.1.8 oder Königsberger 2, Kap. 2, §3.1). Nun sind $dg(w_0)$ und $df(z_0)$ C-linear, also auch $d(g \circ f)(z_0) \Rightarrow g \circ f$ komplexdifferenzierbar. Außerdem ist $df(z_0)$ die Multiplikation mit $f'(z_0)$, $dg(w_0)$ die Multiplikation mit $g'(w_0)$, also $dg(w_0) \circ df(z_0)$ die Multiplikation mit $g'(w_0) \cdot f'(z_0)$, d.h. $d(g \circ f)(z_0) = dg(w_0) \circ df(z_0) = g'(w_0) \cdot f'(z_0) dz$. Aber $d(g \circ f)(z_0) = (g \circ f)'(z_0) dz$. Es folgt $(g \circ f)'(z_0) = g'(w_0) \cdot f'(z_0)$.

- **2.1.9. Satz.** Seien $D, G \subset \mathbb{C}$ offen, $f: D \to G$, so dass
 - (i) f holomorph,
 - (ii) f Homöomorphismus, und
 - (iii) $f'(z) \neq 0$ für alle $z \in D$.

Dann ist auch f^{-1} holomorph und $f^{-1}(f^{-1})'(w) = \frac{1}{f'(f^{-1}(w))}$ für alle $w \in G$.

Beweis: Sei $w \in G$ fest, $z_0 := f^{-1}(w_0)$. Sei (w_n) eine Folge in $G, w_n \to w_0, n \to \infty$ und $w_n \neq w_0$. Dann gilt $z_n := f^{-1}(w_n) \to f^{-1}(w_0) =: z_0$ und $z_n \neq z_0$. Deshalb

$$\lim_{n \to \infty} \frac{f^{-1}(w_n) - f^{-1}(w_0)}{w_n - w_0} = \lim_{n \to \infty} \frac{z_n - z_0}{f(z_n) - f(z_0)} = \lim_{n \to \infty} \frac{1}{\frac{f(z_n) - f(z_0)}{z - z_0}} = \frac{1}{f'(z_0)}.$$

Die Folge (w_n) ist beliebig \Rightarrow Behauptung.

2.1.10. Beispiel. Sei $\ell:D\to\mathbb{C}$ eine Logarithmusfunktion. Dann ist ℓ holomorph und es gilt

$$\ell'(z) = \frac{1}{z} \; \text{ für alle } z \in D \; .$$

2.1.11. **Definition.** Eine Abbildung $f:D\to \widetilde{D}$ zwischen zwei offenen Mengen heißt **biholomorph**, falls f bijektiv ist und f, f^{-1} holomorph sind. Zwei offene Teilmengen $D,\widetilde{D}\subset \mathbb{C}$ heißen biholomorph, falls eine biholomorphe Abbildung $f:D\to \widetilde{D}$ existiert.