2.3.2. **Satz** (Cauchyscher Integralsatz für Sterngebiete). Sei $D \subset \mathbb{C}$ ein Sterngebiet und $f: D \to \mathbb{C}$ holomorph. Dann gilt $\int_{\gamma} f(z) \, dz = 0$ für alle geschlossenen stückweise \mathscr{C}^1 -Kurven in D. Insbesondere besitzt f eine Stammfunktion in D.

Beweis: Folgt aus 2.3.1 und 2.2.9.

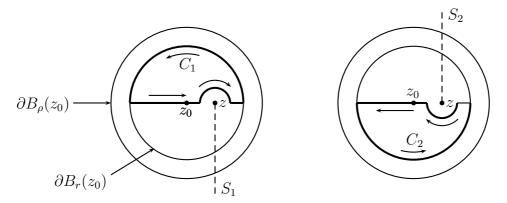
2.3.3. Satz (Cauchysche Integralformel). Sei $f:D\to\mathbb{C}$ holomorph in der offenen Menge D. Wenn

$$(2.10) \overline{B_r(z_0)} \subset D$$

ist, so gilt:

(2.11)
$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{\zeta - z} d\zeta, \quad \text{für } z \in B_r(z_0)$$

Beweis: Sei $z\in B_r(z_0)$ gegeben. Wegen (2.10) gibt es $\rho>r$ mit $B_\rho(z_0)\subset D$. Sei C_1 die durch Pfeile



angeordnete Kurve, wo der kleine Halbkreis um z den genügend kleinen Radius $\delta>0$ hat. Entsprechend ist C_2 konstruiert durch Spiegelung um $\overline{z_0z}$. Sind S_1, S_2 senkrechte Halbgeraden zu $\overline{z_0z}$ durch z, so sind $H_j=B_\rho(z_0)\setminus S_j$ Sterngebiete (j=1,2). Die Funktionen $H_j\ni \zeta\mapsto \frac{f(\zeta)}{\zeta-z}$ sind holomorph und $\int_{C_j}\frac{f(\zeta)}{\zeta-z}d\zeta=0$, j=1,2, nach 2.3.2 Wir addieren beide Integrale und dabei zer-

 $\int_{C_j} \frac{f(\zeta)}{\zeta - z} d\zeta = 0$, j = 1, 2, nach 2.3.2 Wir addieren beide Integrale und dabei zerlegen wir sie in Strecken- und Halbkreisintegrale. Die Anteile über die Strecken heben sich wegen der verschiedenen Orientierungen auf:

$$0 = \int_{C_1} \frac{f(\zeta)d\zeta}{\zeta - z} + \int_{C_2} \frac{f(\zeta)d\zeta}{\zeta - z} = \int_{\partial B_r(z_0)} \frac{f(\zeta)d\zeta}{\zeta - z} - \int_{\partial B_{\delta}(z)} \frac{f(\zeta)d\zeta}{\zeta - z} ,$$

$$\int_{\partial B_r(z_0)} \frac{f(\zeta)d\zeta}{\zeta - z} = \int_{\partial B_\delta(z)} \frac{f(\zeta)d\zeta}{\zeta - z} := \int_0^{2\pi} \frac{f(z + \delta e^{it})}{\delta e^{it}} i\delta e^{it} dt = i \int_0^{2\pi} f(z + \delta e^{it}) dt$$

$$= i \int_0^{2\pi} [f(z + \delta e^{it}) - f(z)] dt + i \int_0^{2\pi} f(z) dt ,$$

$$\xrightarrow{\to 0} (\delta \to 0) = 2\pi i f(z)$$

weil

$$\left| \int_0^{2\pi} [f(z + \delta e^{it}) - f(z)] dt \right| \le \max_{t \in [0, 2\pi]} |f(z + \delta e^{it}) - f(z)| \cdot 2\pi \longrightarrow 0, \quad \delta \to 0.$$

Sei γ eine geschlossene Kurve in $\mathbb C$ und $z\in\mathbb C\setminus|\gamma|$. Die Windungszahl (Umlaufzahl) ist

$$n(\gamma, z) := \frac{1}{2\pi i} \int_{\gamma} \frac{d\zeta}{\zeta - z}$$

und gibt an, wie oft die Kurve γ den Punkt z im positiven Sinn umläuft. Z.B.

$$\gamma: [0, 2\pi] \to \mathbb{C}, \ \gamma(t) = e^{ikt}, \ k \in \mathbb{Z} \quad \leadsto \quad n(\gamma, 0) = k.$$

Es gilt $n(\gamma, z) \in \mathbb{Z}$. Beweis: Zerlege $a = c_0 < c_1 < \ldots < c_m = b$, so dass $\gamma_k := \gamma|_{[c_{k-1}, c_k]} : [c_{k-1}, c_k] \to U_k$, wobei ein Zweig des Logarithmus $\ell_k : U_k \to \mathbb{C}$ auf U_k existiert. Dann gilt $\gamma = \gamma_1 * \ldots * \gamma_m$ und

$$2\pi i \cdot n(\gamma, z) = \sum_{k=1}^{m} \int_{\gamma_k} \frac{d\zeta}{\zeta - z} = \sum_{k=1}^{m} \left[\ell_k(\gamma(c_k)) - \ell_k(\gamma(c_{k-1})) \right]$$
$$= \underbrace{\ell_m(\gamma(c_m)) - \ell_1(\gamma(c_0))}_{\in 2\pi i \mathbb{Z}} + \sum_{k=1}^{m-1} \underbrace{\left[\ell_k(\gamma(c_k)) - \ell_{k+1}(\gamma(c_k)) \right]}_{\in 2\pi i \mathbb{Z}},$$

da für zwei Zweige ℓ_1, ℓ_2 des Logarithmus gilt $\ell_1(z), \ell_2(z) \in \log |z| + i \arg z + 2\pi i \mathbb{Z}$.

2.3.4. **Satz** (allgemeine Cauchy-Formel). Sei D ein Sterngebiet, $f: D \to \mathbb{C}$ holomorph. Sei γ eine geschlossene stückweise \mathscr{C}^1 -Kurve und $z \in D \setminus |\gamma|$. Dann gilt:

$$n(\gamma, z)f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Beweis: Schreibe

(*)
$$\int_{\gamma} \frac{f(\zeta)}{\zeta - z} = \int_{\gamma} \frac{f(\zeta) - f(z)}{\zeta - z} + \int_{\gamma} \frac{f(z)}{\zeta - z}.$$

Nach Definition ist $\int_{\gamma} \frac{f(z)}{\zeta - z} = 2\pi i \cdot n(\gamma, z)$. Definiere

$$g_z: D \to \mathbb{C}, \quad g_z(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z} &, & \zeta \neq z \\ f'(z) &, & \zeta = z \end{cases}$$

П

 g_z ist holomorph in $D \setminus \{z\}$ und stetig in D. Das Lemma von Goursat und der Cauchysche Integralsatz sind noch gültig (siehe Übungsblatt 4, 1a). Also

$$\int_{\gamma} g_z(\zeta) d\zeta = 0$$

und das erste Integral in (*) verschwindet.

Für $\gamma = \partial B_r(z_0)$ gilt

$$n(\gamma, z) = \begin{cases} 1 & , & z \in B_r(z_0) \\ 0 & , & z \notin \overline{B_r(z_0)} \end{cases},$$

also

$$\frac{1}{2\pi i} \int_{\partial B_r(a)} \frac{f(\zeta)}{\zeta - z} d\zeta = \begin{cases} f(z) &, & z \in B_r(z_0) \\ 0 &, & z \notin \overline{B_r(z_0)} \end{cases}.$$

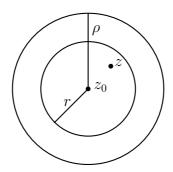
2.3.5. Satz (Potenzreihenentwicklungssatz). Sei $D \subset \mathbb{C}$ offen, $f: D \to \mathbb{C}$ holomorph. Sei $z_0 \in D$ und $\rho = d(z_0, \partial D) := \inf_{z \in \partial D} |z - z_0| > 0$. Dann gilt

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 für alle $z \in B_{\rho}(z_0)$,

wobei

(2.12)
$$a_n = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(z)}{(z - z_0)^{n+1}} dz \quad \text{für alle } r \in (0, \rho) \ .$$

Beweis: Sei $z \in B_{\rho}(z_0)$. Wähle $r \in (|z - z_0|, \rho)$.



Dann ist $\overline{B_r(z_0)} \subset B_{\rho}(z_0)$ und die Cauchysche Integralformel impliziert

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{\zeta - z} d\zeta.$$

Nun ist

$$\frac{f(\zeta)}{\zeta - z} = \frac{f(\zeta)}{\zeta - z_0 + z_0 - z} = \frac{f(\zeta)}{(\zeta - z_0) \left(1 - \frac{z - z_0}{\zeta - z_0}\right)}$$

und
$$|z-z_0| < r = |\zeta-z_0|$$
, also $\frac{z-z_0}{\zeta-z_0} < 1$. Somit gilt

$$\sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^n = \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}} .$$

Diese Funktionenreihe konvergiert normal und daher gleichmäßig für $\zeta \in \partial B_r(z_0)$, da

$$\sup_{\zeta\in\partial B_r(z_0)}\left|\frac{z-z_0}{\zeta-z_0}\right|=\frac{|z-z_0|}{r}\quad \text{ und } \quad \sum_{n=0}^{\infty}\left(\frac{|z-z_0|}{r}\right)^n<\infty\;.$$

Wir erhalten somit:

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{\zeta - z_0} \cdot \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^n d\zeta$$
$$= \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{\partial B_r(z_0)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \cdot (z - z_0)^n.$$

(Wir können Integral und Summe vertauschen wegen der gleichmäßigen Konvergenz der Reihe.) $\hfill\Box$