- 2.7.7. **Satz** (Satz von Casorati-Weierstrass). Sei $f \in \mathcal{O}(D)$ und z_0 eine isolierte Singularität von f. Äquivalent:
 - (i) z_0 ist eine wesentliche Singularität.
 - (ii) Für jede Umgebung U von z_0 mit $U \setminus \{z_0\} \subset D$ liegt $f(U \setminus \{z_0\})$ dicht in \mathbb{C} .
 - (iii) Es gibt eine Folge (z_n) in D mit $z_n \to z_0$, so dass $f(z_n)$ keinen Grenzwert in $\widehat{\mathbb{C}}$ hat.

Beweis:

Angenommen, es gäbe U, so dass $f(U \setminus \{z_0\})$ nicht dicht in \mathbb{C} liegt. Dann gibt es $B_r(a)$, r > 0, mit $f(U \setminus \{z_0\}) \cap B_r(a) = \emptyset$. Definiere

$$g: U \setminus \{z_0\} \to \mathbb{C}$$
 , $g(z) = \frac{1}{f(z) - a}$.

g ist holomorph und $|g(z)| = \frac{1}{|f(z)-a|} < \frac{1}{r}$.

Hebbarkeitssatz $\Rightarrow g$ ist holomorph fortsetzbar nach U. Es ist $f(z) = a + \frac{1}{g(z)}$, also

$$\lim_{z \to z_0} f(z) = \begin{cases} a + \frac{1}{g(z_0)} &, & \text{falls } g(z_0) \neq 0 \\ \infty &, & \text{falls } g(z_0) = 0 \end{cases}.$$

f hat also entweder eine hebbare Singularität (wenn $g(z_0) \neq 0$) oder einen Pol (wenn $g(z_0) = 0$). Widerspruch.

- 2.7.8. **Satz** (Großer Satz von Picard). Seien $f \in \mathcal{O}(D)$ und z_0 eine wesentliche isolierte Singularität von f. Dann sind für jede Umgebung U von z_0 nur zwei Fälle möglich:
 - (i) $f(U \setminus \{z_0\}) = \mathbb{C}$ oder
 - (ii) $f(U \setminus \{z_0\}) = \mathbb{C} \setminus \{Punkt\}.$
- 2.7.9. **Definition.** Sei $D \subset \mathbb{C}$ offen. Eine *meromorphe Funktion* auf D ist eine Funktion $f: D' \to \mathbb{C}$, so dass
 - (i) $D' \subset \mathbb{C}$ offen ist und $P(f) := D \setminus D'$ diskret ist,
 - (ii) $f \in \mathcal{O}(D')$ und f einen Pol in jedem Punkt von P(f) hat.

Wenn P(f) leer ist, so ist $f \in \mathcal{O}(D)$; jede holomorphe Funktion ist also meromorph. Die Menge der meromorphen Funktionen in D wird mit $\mathcal{M}(D)$ bezeichnet. Die **Ordnung der meromorphen Funktion** f in einem Punkt $z \in D'$ des Definitionsbereichs ist definiert wie in Definition 2.7.3 und in einem Pol $z \in P(f)$ wie in Definition 2.7.5.

Beachte: Eine meromorphe Funktion auf D ist keine Funktion $f:D\to\mathbb{C}$! Für $z\in P(f)$ gilt $\lim_{w\to z} f(w)=\infty$. Wir können deshalb die Funktion $\tilde{f}:D\to\widehat{\mathbb{C}}$,

$$\tilde{f}(z) = \begin{cases} f(z) &, z \in D' \\ \infty &, z \in P(f) \end{cases}$$

betrachten; $\widetilde{f}:D\to\widehat{\mathbb{C}}$ ist die stetige Fortsetzung von $f:D'\to\mathbb{C}$ in P(f). Wir identifizieren f mit \widetilde{f} . Eine Umformulierung der Def. 2.7.9 ist also:

$$f \text{ meromorph auf } D: \iff \begin{cases} f:D\to\widehat{\mathbb{C}} \text{ stetig} \\ P(f):=f^{-1}(\infty) \text{ abgeschlossen und diskret} \\ f\in\mathcal{O}(D\setminus P(f)) \end{cases}$$

Kurz gesagt: f heißt meromorph in D, wenn sie dort bis auf eine abgeschlossene diskrete Menge von Polen holomorph ist.

2.7.10. Beispiel.

- (1) Rationale Funktionen $R = \frac{P}{Q}$, $P, Q \in \mathbb{C}[z]$, sind meromorph in \mathbb{C} . Nach Kürzen der gemeinsamen Linearfaktoren von P und Q können wir annehmen, dass P, Q teilerfremd sind. Dann ist $R \in \mathcal{O}(\mathbb{C} \setminus N(Q))$ wobei $N(Q) = \{z \in \mathbb{C} : Q(z) = 0\}$ und R hat Pole in N(Q).
- (2) Sind $f, g \in \mathcal{O}(D)$, D Gebiet; $g \not\equiv 0$. Dann $\frac{f}{g} \in \mathcal{M}(D)$. Beweis:

Sei $N(g) = \{z \in D : g(z) = 0\}$. Aus dem Identitätssatz folgt, dass N(g) keinen Häufungspunkt in D hat, also N(g) ist abgeschlossen und diskret. Sei

$$N = \{z \in N(g) : \operatorname{ord}_z(f) \geqslant \operatorname{ord}_z(g)\}.$$

Dann sind die Punkte in N hebbare Singularitäten von f/g und werden zum Definitionsbereich hinzugenommen. An den Punkten von $N(g) \setminus N =: P(f/g)$ hat f/g Pole. Da P(f) als Teilmenge von N(g) keine Häufungspunkte hat, ist $f \in \mathcal{M}(D)$.

$$\frac{f}{g}: D \to \widehat{\mathbb{C}} \quad , \quad \left(\frac{f}{g}\right)(z) = \begin{cases} \frac{f^{(k)}(z)}{g^{(k)}(z)} & , & \operatorname{ord}_z f = \operatorname{ord}_z g = k \\ 0 & , & \operatorname{ord}_z f > \operatorname{ord}_z g \\ \infty & , & \operatorname{ord}_z f < \operatorname{ord}_z g \end{cases}.$$

Die Funktion $\tan=\frac{\sin}{\cos}$ ist meromorph auf $\mathbb C$ (mit Polen in $\pi(\mathbb Z+\frac12)$) aber nicht rational.

- (3) $\exp\left(\frac{1}{z}\right)$ ist keine meromorphe Funktion, da z=0 kein Pol ist.
- **2.7.11. Satz.** $\mathcal{M}(D)$ ist ein Ring bezüglich Addition und Multiplikation der Funktionen. Ist D ein Gebiet, so ist $\mathcal{M}(D)$ ein Körper.

Beachte: Ist D kein Gebiet, so ist

$$f: D \to \mathbb{C}$$
 , $f(z) = \begin{cases} 1 & , & z \in D_1 \\ 0 & , & z \in D \setminus D_1 \end{cases}$

(wobei D_1 eine Komponente von D ist) holomorph, aber $P(\frac{1}{f}) = D \setminus D_1$ ist offen, also nicht diskret, und $\frac{1}{f}$ definiert keine meromorphe Funktion.

Wir wollen nun holomorphe und meromorphe Funktionen in $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ betrachten.

2.7.12. Definition. Sei $D \subset \widehat{\mathbb{C}}$ offen mit $\infty \in D$ und r > 0 mit $\{z \in \mathbb{C} : |z| > r\} \subset D$. Eine Funktion $f: D \to \mathbb{C}$ heißt holomorph in D, falls:

- (i) f ist stetig in D.
- (ii) f ist holomorph in $D \setminus \{\infty\}$.

Eine Funktion $f: D \to \widehat{\mathbb{C}}$ heißt meromorph in D, falls:

- (i) f ist stetig in D.
- (ii) $P(f) := f^{-1}(\infty)$ ist abgeschlossen und diskret.
- (iii) $f \in \mathcal{O}(D \setminus P(f))$.

2.7.13. Beispiel.

(1)

$$f:\widehat{\mathbb{C}}\setminus\{0\}\to\mathbb{C}\quad,\quad f(z)=\begin{cases} \frac{1}{z^m} &,\quad z\neq\infty \quad (m\in\mathbb{N})\\ 0 &,\quad z=\infty \end{cases}$$

ist holomorph.

(2)

$$P: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}, \ P(z) = \begin{cases} z^m &, z \neq \infty & (m \in \mathbb{N}) \\ \infty &, z = \infty \end{cases}$$

ist meromorph mit einem Pol in ∞ .

(3) Seien $P,Q\in\mathbb{C}[z]$ mit P,Q teilerfremd. Die rationale Funktion $R:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$

$$R(z) = \begin{cases} \frac{P(z)}{Q(z)} &, & z \in \mathbb{C}, \ Q(z) \neq 0 \\ \infty &, & z \in \mathbb{C}, \ Q(z) = 0 \\ \lim_{z \to \infty} \frac{P(z)}{Q(z)} &, & z = \infty \end{cases}$$

ist meromorph in $\widehat{\mathbb{C}}$.