SS 21

3. Blatt zur Vorlesung Funktionentheorie

Abgabe: bis 03.05.21, 23:59 Uhr auf Ilias

1. Aufgabe

- (a) Zeige mit Hilfe der Definition, dass die Funktion $z \mapsto \overline{z}$ in keiner offenen Menge in \mathbb{C} holomorph ist.
- (b) Beweise direkt die Kettenregel (ohne Benutzung der Kettenregel für reell-differenzierbaren Funktionen): Seien $D, G \subset \mathbb{C}$ offen. Sei $f: D \to G$ komplex-differenzierbar in $z_0 \in D$, und $g: G \to \mathbb{C}$ komplex-differenzierbar in $w_0 = f(z_0) \in G$. Dann ist $g \circ f$ komplex-differenzierbar in z_0 und es gilt

$$(g \circ f)'(z_0) = g'(f(z_0)) \cdot f'(z_0).$$

Insbesondere ist $g \circ f$ holomorph, wenn f und g holomorph sind.

2. Aufgabe (10 Punkte)

Sei $D \in \mathbb{C}^*$ ein Gebiet.

- (a) Sei $\ell:D\to\mathbb{C}$ eine Logarithmusfunktion. Die folgenden Aussagen über eine Funktion $\ell: D \to \mathbb{C}$ sind äquivalent:
 - (i) ℓ ist eine Logarithmusfunktion in D.
 - (ii) Es gibt $n \in \mathbb{Z}$ mit $\hat{\ell} = \ell + 2\pi i n$.
- (b) Die folgenden Aussagen über eine holomorphe Funktion $\ell:D\to\mathbb{C}$ sind äquivalent:
 - (i) ℓ ist eine Logarithmusfunktion.
 - (ii) Es gilt $\ell'(z) = \frac{1}{z}$ und es gibt $a \in D$ mit $\exp(\ell(a)) = a$.
- (c) Sei $\ell(z) = \sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{n} (z-1)^n$. Zeige dass ℓ eine Logarithmusfunktion in $B_1(1)$

ist, nämlich $\ell(z) = \log z$, $z \in B_1(1)$, wobei log den Hauptzweig des Logarithmus bezeichret.

(d) Zeige, dass auf \mathbb{C}^* keine Logarithmusfunktionen existieren.

3. Aufgabe

- (a) Zeige, dass $2i \sin z = e^{-iz}(e^{2iz} 1)$, $2\cos z = e^{i(\pi z)} \left(e^{2i(z \frac{1}{2}\pi)} 1\right)$ und $\sin z = e^{-iz}(e^{2iz} 1)$ $0 \Leftrightarrow z \in \pi \mathbb{Z}, \cos z = 0 \Leftrightarrow z \in \frac{\pi}{2} + \pi \mathbb{Z}.$
- (b) Definiere die Cotangens und Tangensfunktion durch $\cot z := \frac{\cos z}{\sin z}, z \in \mathbb{C} \setminus \pi\mathbb{Z}$ und $\sin z := \frac{\sin z}{\cos z}$, $z \in \mathbb{C} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$. Zeige, dass cot und tan holomorph sind und $\cot' z = -\frac{1}{\sin^2 z}$, $\tan' z = \frac{1}{\cos^2 z}$.

Bitte wenden

(c) Zeige, dass
$$\cot z = i \left(1 - \frac{2}{1 - e^{2iz}} \right)$$
, $\tan z = i \left(1 - \frac{2}{1 + e^{-2iz}} \right)$.

(d) Zeige, dass cot und tan periodisch von Minimalperiode π sind.

4. Aufgabe

Betrachte die Arcustangensreihe $a(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{2n+1}$.

- (a) Zeige, dass die Reihe a Konvergenzradius 1 hat. (b) Zeige, dass $a'(z) = \frac{1}{1+z^2}, z \in B_1(0) =: \mathbb{D}$.
- (c) Da $\tan 0 = 0$, ist die Funktion $a(\tan z)$ in einer Kreisscheibe $B_r(0)$ definiert und holomorph. Zeige, dass $a(\tan z) = z$ in $B_r(0)$.

Die Identität $a(\tan z) = z$ macht die Bezeichnung $a = \arctan$ (Arcustangens) verständlich.

(d) Zeige, dass $tan(\arctan z) = z$ für $z \in \mathbb{D}$.