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Caveat Lector. These notes have been written in a hurry, which has had
two undesirable side effects. Firstly, I make no claim that the formulae are
correct. Signs, factors of 2π and of i may be wrong. But I believe the con-
tents to be true in spirit!. Secondly I have not had time to go through and
add the extensive bibliography that the subjects covered deserve. There
is, at the moment, not one single direct citation in the whole set of notes.
Where the result is significant enough to accredit and I have been able to
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1 Brief review of Kähler basics

1.1 Chern connections and Chern classes

Definition 1.1. Let X be a complex manifold and E → X a holomorphic
vector bundle. A connection ∇ in E is said to be compatible with the
holomorphic structure in E if π0,1(∇s) = ∂̄s for all sections s of E.

Proposition 1.2. Let E be a Hermitian holomorphic vector bundle. Then there
is a unique connection in E compatible with both the Hermitian and holomorphic
structures.

Definition 1.3. The distinguished connection in the previous result is called
the Chern connection.

We prove this for a line bundle L → X. (The proof for vector bundles
of higher rank is left as an exercise.) In a local holomorphic triviali-
sation, connections compatible with the holomorphic structure have the
form ∇A = d + A where A is a (1, 0)-form. Meanwhile, the Hermitian
structure h is given in the trivialisation by a smooth real-valued positive
function, which we continue to denote h. The condition ∇Ah = 0 amounts
to Ah + hĀ = dh which, when combined with the fact that A is of type
(1, 0), gives A = ∂ log h. It follows that there is a unique choice of A
such that ∇A is compatible with both structures. We can do this in each
local trivialisation of L; by uniqueness the a priori locally defined Chern
connections all agree over intersections and so give a globally defined con-
nection.

Notice that the curvature of L in the local trivialisation is given by dA =
∂̄∂ log h. Write h′ = e f h for a second Hermitian metric in L, where f is
any smooth function X → R. The corresponding curvatures are related by
Fh′ = Fh + ∂̄∂ f . It follows that the cohomology class [Fh] is independent of
the choice of metric h and depends only on the holomorphic line bundle
L.

Definition 1.4. We write c1(L) = i
2π [Fh] ∈ H2(X, R) where h is any Her-

mitian metric in L. This is called the first Chern class of L.

What is not apparent from our brief discussion is that

• The class c1(L) ∈ H2(X, R) is actually the image of a class in H2(X, Z).
This lift is what is more normally known as the first Chern class of
L. (Notice that the de Rham class will vanish if the integral class is
torsion, so the integral class carries strictly more information.)
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• In fact, one can use the same definition for any unitary connection
in L with respect to any Hermitian metric, not just one compatible
with the holomorphic structure.

• It follows that the first Chern class depends only on the topological
isomorphism class of L → X (and not its holomorphic structure).
These classes can be defined for line bundles over any sufficiently
nice topological space (e.g., CW complexes)

• We also remark that one can define higher Chern classes for holo-
morphic vector bundles of higher rank vector bundles in a similar
fashion by constructing differential forms out of their curvature ten-
sors. Again, this gives an image in de Rham cohomology of the
genuine topological invariants which live in integral cohomology.

We will not pursue these matters here.

We have seen that when L → X is a holomorphic Hermitian line bundle,
its curvature gives a real (1, 1)-form i

2π F representing c1(L).

Question 1.5. Given a (1, 1)-form Φ ∈ −2πic1(L) is there a Hermitian
metric h in L with Fh = Φ?

Fix a reference metric h0. Then h = e f h0 is the metric we seek if and only
if f solves

∂̄∂ f = Φ − Fh0
.

This question is the basic prototype of more difficult questions which we
will encounter later.

Of course, for this discussion to be of interest, one must have some holo-
morphic line bundles in the first place. There is always one holomorphic
line bundle you are guaranteed to have to hand:

Definition 1.6. Let X be a complex manifold. The holomorphic line bun-
dle K = Λn(T∗X) is called the canonical line bundle and its dual K∗ the
anti-canonical line bundle. The first Chern class of X is defined by c1(X) =
c1(K∗) = −c1(K).

Exercises 1.1.

1. Prove Proposition 1.2 by following the same proof as was given
above for line bundles.

2. Let L → Cn be the trivial bundle with Hermitian metric h = e−|z|2 .
Compute the curvature of the corresponding Chern connection.
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3. Let L → C be the trivial bundle with Hermitian metric h = 1 + |z|2.
Compute the curvature F of the corresponding Chern connection.

Calculate
∫

C
F.

4. Given line bundles L1, L2, prove that c1(L1 ⊗ L2) = c1(L1) + c1(L2).

5. Given a vector bundle E, we can define c1(E) = c1(det E) where
det E is the top exterior power of E.

(a) Prove for vector bundles E1, E2 that c1(E1 ⊕ E2) = c1(E1) +
c1(E2).

(b) Prove that if L is a line bundle and E a vector bundle of rank r
then c1(L ⊗ E) = rc1(L) + c1(E).

1.2 Definitions and examples of Kähler manifolds

Let X be a complex manifold and write J : TX → TX for the endomor-
phism of the tangent bundle given by multiplication by i.

Definition 1.7. A Riemannian metric g on X is called Hermitian if g(Ju, Jv) =
g(u, v) for all u, v ∈ TX.

Note that this is equivalent to saying that the bilinear form ω(u, v) =
g(Ju, v) is skew and of type (1, 1). The fact that g is positive definite
implies that ω is positive on all complex lines.

Definition 1.8. A real (1, 1)-form is called positive if it is positive on all
complex lines.

Notice that g can be recovered from ω and J via g(u, v) = ω(u, Jv). This
means that specifying a Hermitian metric g on X is the same thing as
specifying a positive (1, 1)-form ω.

Definition 1.9. Given a Hermitian metric g, we call ω the associated (1, 1)-
form of g.

A Kähler manifold is a complex manifold with a Hermitian metric which
also satisfies a differential compatibility condition.

Proposition 1.10. Let (X, J, g) be a Hermitian manifold. The following are
equivalent:

1. The complex structure J is parallel with respect to the Levi-Civita connec-
tion, i.e., ∇J = 0.
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2. The Chern connection and Levi-Civita connection on TX are the same.

3. The associated (1, 1)-form ω is parallel: ∇ω = 0.

4. The associated (1, 1)-form ω is closed: dω = 0.

5. Locally, one can write ω = i∂̄∂φ for a real valued function φ, called a local
Kähler potential.

6. There exist holomorphic coordinates z1, . . . , zn in which the metric is Eu-
clidean to second order: g = ∑ dzi ⊗ dz̄i + O(|z|2).

Definition 1.11. When one, and hence all, of the above conditions are met
we call (X, J, g) a Kähler manifold.

Examples 1.12.

1. Let (X, J) be a Riemann surface and let g be a Hermitian metric with
associated (1, 1)-form ω. Since there are no 3-forms on a surface,
dω = 0 and (X, J, g) is Kähler.

2. Let (X, g) be an oriented surface (real dim 2) with a Riemannian met-
ric. Define J : TX → TX as a positive rotation by π/2. Isothermal
coordinates for X are coordinates in which the metric has the form
g = f (x, y)(dx2 + dy2). It is an important fact that such coordinates
always exist. Notice that the transition maps between isothermal co-
ordinate charts are exactly those which are holomorphic with respect
to the variable z = x + iy. This tells us that J is in fact induced by
a holomorphic atlas on X. So J is a genuine complex structure, g is
Hermitian with respect to J and so (X, J, g) is Kähler as above.

3. Let (X, J, ω) be Kähler and Y ⊂ X a complex submanifold. The
restriction of the Kähler metric to Y has associated (1, 1)-form given
by the restriction of ω. Since ω is closed, so too is its restriction.
Hence the induced metric on Y his again Kähler.

4. The Fubini–Study metric on CPn is Kähler. There are various ways
to see this. One can either compute in a local unitary chart, to see
that dω = 0, or use symmetry arguments to see that ∇J = 0.

5. The previous two observations combine to give a plethora of exam-
ples: any complex submanifold of CPn inherits a Kähler metric. To find
many such submanifolds, one can look at sets locally cut out as the
common zeros of homogeneous polynomials in n variables.

Exercises 1.2.
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1. Prove the equivalence of the various definitions of Kähler by proving
the chain of implications 1 ⇒ 2 ⇒ 3 ⇒ 4 ⇒ 5 ⇒ 6 ⇒ 1 in Propo-
sition 1.10. Hint: to prove 4 ⇒ 5 you might like to use the Poincaré
lemma which states that if α is a d-closed p-form then locally one
can write α = dβ for a (p − 1)-form, together with analogous results
for ∂ and ∂̄.

2. Consider the hyperbolic metric on the unit disc D = {|z| < 1} given
by

g =
dx+dy2

(1 − x2 − y2)2

Find a global function φ : D → R so that the associated (1, 1)-form
of g is given by ω = i∂̄∂φ.

3. Let U ⊂ CPn be an open set and f : U → Cn+1 \ 0 a local section of
the projection map. Prove that the (1, 1)-form ωU, f = −i∂̄∂ log | f | is
positive and that in fact it doesn’t depend on the choice of section f .

Deduce that there is a U(n + 1)-invariant Kähler metric on CPn

which agrees with each ωU, f .

(This is the Fubini–Study metric.)

4. Prove that there is a unique Riemannian metric on CPn, up to scale,
which is invariant with respect to the action of U(n + 1).

5. Prove that for both of the line bundle metrics from Exercises 1.1(2)
and (3), the curvatures are of the form F = −2πiω where ω is a
positive (1, 1)-form.

1.3 The Kähler identities

Just as on a Riemannian manifold one can define the L2-adjoint d∗ of the
exterior derivative in terms of the Hodge star d∗ = ± ∗ d∗, one can do
similarly for ∂∗ and ∂̄∗ on a Hermitian manifold. One of the fundamental
facts for Kähler manifolds is the interaction of these operators and the
map L : Λp → Λp+2 given by taking the wedge-product with the Kähler
form ω.

Proposition 1.13 (The Kähler identities). On a Kähler manifold, the following
hold

[∂̄∗, L] = i∂, [∂∗, L] = −i∂̄.
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To prove these identities, note first that they only see first order derivatives
of the Kähler structure. This means that by part 6 of Proposition 1.10 that
it suffices to prove them for the flat metric on Cn.

On a Riemannian manifold, we can define the Laplacian on forms:

∆d = d∗d + dd∗

On a Hermitian manifold, we can do similarly with ∂ and ∂̄:

∆∂ = ∂∗∂ + ∂∂∗, ∆∂̄ = ∂̄∗∂̄ + ∂̄∂̄∗

In general these Laplacians have little to do with each other, but on a Kähler
manifold it is a corollary of the Kähler identities that they are all essentially
one and the same:

Corollary 1.14. On a Kähler manifold,

∆∂ = ∆∂̄ =
1

2
∆d

Moreover, denoting this common operator by ∆, we have the formula

∆ f ωn = n i∂̄∂ f ∧ ωn−1

Or, equivalently, ∆ f = 〈i∂̄∂ f , ω〉.

Notice that our convention is that ∆ is one-half of the usual Riemannian Lapla-
cian!

This result has profound implications for the cohomology of compact
Kähler manifolds, called the Hodge theorem. We do not, unfortunately,
have time to go into the details here.

Exercises 1.3.

1. Prove the Kähler identities on Cn and hence on any Kähler manifold.

2. Prove the formulae in Corollary 1.14.

3. Let X be a compact Kähler manifold. Let θ be a (0, 1)-form with
∂̄θ = 0. Prove that there is a function u such that ∂̄∗θ = ∂̄∗∂̄u and
hence that θ − ∂̄u is d- and ∂-closed and coclosed.

1.4 The ∂̄∂-lemma and curvature of line bundles

Definition 1.15. Given a Kähler manifold (X, J, ω), the cohomology class
[ω] ∈ H2(X, R) is called the Kähler class.
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Lemma 1.16 (The ∂̄∂-lemma). Let (X, J, ω) be a compact Kähler manifold and
let α1, α2 be cohomologous real (1, 1)-forms. Then there exists φ : X → R such
that α1 = α2 + i∂̄∂φ. Such a function φ is unique up to the addition of a constant.

Corollary 1.17.

1. Given a holomorphic line bundle L → X and a real (1, 1)-form Φ ∈
−2πic1(L) there is a unique Hermitian metric h, up to constant scale,
with Fh = Φ.

2. If ω1, ω2 are two Kähler metrics in the same cohomology class then there
exists a smooth function φ, unique up to addition of a constant, such that
ω1 = ω2 + i∂̄∂φ.

Definition 1.18. Given two cohomologous Kähler metrics ω1, ω2 a function
φ satisfying ω1 = ω2 + i∂̄∂φ is called the Kähler potential of ω1 relative
to ω2.

If one has locally, ω = i∂̄∂φ, then φ is called a local Kähler potential for ω.

This is one of the most important reasons why Kähler metrics are more tractable
than general Riemannian metrics: the metric is determined by a single scalar
function, rather than a matrix valued function.

Given a cohomology class κ which contains a Kähler metric, we write H
for the space of all Kähler metrics in κ. The above discussion shows that
fixing a reference ω ∈ H identifies H with an open set in the space of
functions modulo constants.

We write κ > 0 to mean that κ contains Kähler metrics.

If κ = c1(L) for some holomorphic line bundle, we can instead look at
the set M of Hermitian metrics h in L for which i

2π Fh is a Kähler metric.
Fixing a reference h ∈ M identifies M with an open set in the space of all
functions. Sending a Hermitian metric to its curvature gives a surjection
M → H with fibres copies of R, coming from the freedom to choose the
scale of h given Fh.

Definition 1.19. If a holomorphic line bundle L → X has the property that
c1(L) contains Kähler metrics, we call L a positive line bundle. This is often
written in shorthand as c1(L) > 0.

A metric h ∈ M is called a positively curved metric.

Example 1.20. There is a tautological line bundle O(−1) → CPn over
projective space, which inherits a natural Hermitian metric from the map
O(−1) → Cn+1. This induces a Hermitian structure on its dual O(1). One
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can check that the curvature of this metric gives exactly the Fubini–Study
metric on CPn. Hence O(1) is a positive line bundle.

Recall that a complex submanifold X ⊂ CPn inherits a Kähler metric by
restriction of the Fubini–Study metric. The same reasoning shows that the
restriction of O(1) to X is a positive line bundle.

The converse to this result is a famous theorem due to Kodaira. We will
sketch the proof of this later on.

Theorem 1.21 (Kodaira). Let L → X be a positive holomorphic line bundle
over a compact complex manifold. Then there exists a holomorhpic embedding
f : X → CPn and an isomorphism f ∗O(1) ∼= L.

Exercises 1.4.

1. Prove the ∂̄∂-lemma as follows.

Let α = dβ be a real (1, 1)-form. By applying the results of Exercise
1.3(3) to θ = β0,1, prove that ∂β = −∂̄∂u for some (complex-valued)
function u. Deduce that α = i∂̄∂φ for a real-valued function φ.

Prove moreover that φ is unique up to the addition of a constant.

2. Verify the claims of Example 1.20. You might find it helpful to revisit
Exercise 1.2(3).

3. Fix a reference ω ∈ H and use Kähler potentials to identify H with
an open set in C∞(X, R)/R. Prove that H is convex with respect to
the natural affine structure on the vector space C∞(X, R)/R.

1.5 The volume and Ricci curvature of a Kähler manifold

The volume form of a Kähler manifold has a particularly nice description.

Lemma 1.22. The volume form of a Kähler (or even just Hermitian) metric is
ωn/n!.

There is an alternative way to think of the volume form of a Kähler man-
ifold which is particularly important. Recall that K = Λn(T∗X) denotes
the canonical bundle of X, a holomorphic line bundle. A Hermitian met-
ric on the anti-canonical bundle K∗ is a nowhere vanishing section of
K ⊗ K̄ = Λn,n which is precisely the bundle where volume forms live.

Lemma 1.23. Given a Hermitian metric on a complex manifold, the induced
metric on K∗ is given by the volume form ωn

n! ∈ K ⊗ K̄.
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Given our above obsession with curvatures of line bundles, it is a natu-
ral question to wonder what the curvature of K∗ is with this Hermitian
structure. We will see shortly it is essentially the Ricci curvature of the
metric.

First, a few words about the whole curvature tensor of a Kähler metric.
Since ∇J = 0, the curvature tensor satisfies certain algebraic constraints.
For a general metric, one can think of the curvature tensor as a skew
section R of Λ2 ⊗Λ2. For a Kähler metric however R is constrained further
to lie in Λ1,1 ⊗ Λ1,1.

This has implications for the Ricci curvature. The Ricci curvature can be
thought of as a symmetric bilinear form Ric ∈ S2(T∗). The additional
symmetries alluded to above in the Kähler setting, mean that Ric is J-
invariant, i.e., Ric(Ju, Jv) = Ric(u, v). This means that one can build a
(1, 1)-form ρ from Ric, just as ω is defined via g: ρ(u, v) = Ric(Ju, v).

Definition 1.24. The form ρ is called the Ricci form of the Kähler manifold.

Proposition 1.25. The curvature of the the anti-canonical bundle (with its in-
duced Hermitian metric) is given by F = −iρ. In particular, the Ricci form is
closed and its cohomology class is fixed by J and independent of the Kähler metric:
[ρ] = 2πc1(X).

This fact has an extremely important consequence: the Ricci curvature of a
Kähler metric is determined by its volume form. More precisely if ω1 and ω2

are two Kähler metrics, we can define a function f by

e f =
ωn

1

ωn
2

The corresponding metrics on K are related by h1 = e f h2. It follows that
the Ricci forms differ by ρ1 = ρ2 + i∂̄∂ f .

Prescribing the Ricci curvature of a Kähler manifold is the same as prescribing its
volume. In particular, this is zeroth order in the metric, and second order in the
Kähler potential!

Exercises 1.5.

1. Prove Lemma 1.22.

Deduce that if X ⊂ CPn is a complex submanifold then its volume
is a positive integer.

2. Prove Lemma 1.23.

3. Prove Proposition 1.25.
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4. Compute the Ricci form of the Fubini–Study metric on CPn.

5. Compute the Ricci form of the hyperbolic disk (Exercise 1.2(2)).

2 The Calabi conjecture and Kähler–Einstein metrics

2.1 The Calabi–Yau theorem

In a series of papers (the first dating from the 1950s, the second from the
1980s) Calabi posed questions which have subsequently driven a large part
of research in Kähler geometry. The first such question was the following
conjecture, since proved by S.-T. Yau (a result which won him the Fields
medal).

Theorem 2.1 (The Calabi–Yau theorem). Let X be a Kähler manifold and κ a
Kähler class on X. Given any real (1, 1)-form ρ representing 2πc1(X), there is a
unique Kähler metric in κ with Ricci form ρ.

Equivalently, if V is any volume form with total volume equal to 〈κn, [X]〉/n!
then there is a unique Kähler metric ω ∈ κ with volume form ωn/n! = V.

Corollary 2.2. Suppose X is a compact Kähler manifold with c1(X) = 0. Then
each Kähler class on X contains a unique Ricci flat Kähler metric.

A Kähler manifold with c1(X) = 0 is called a Calabi–Yau manifold, in ref-
erence to this result. (Although be warned there are other, more stringent,
versions of the definition of Calabi–Yau manifolds.)

The first step in the proof is to express the problem as a Monge–Ampère
equation.

Definition 2.3. Let ω ∈ κ be a reference metric. Given a Kähler potential
φ, write ωφ = ω + i∂̄∂φ. The map M : H → C∞(X, R) defined by

M(ωφ) =
ωn

φ

ωn

is called the Monge–Ampère operator. We will often just write M(φ) =
M(ωφ) when we think of M as acting on functions.

Now define a function f by V = e f ωn/n!. We seek φ such that M(φ) = e f .
In this language, the Calabi–Yau theorem amounts to the following:

Theorem 2.4 (Yau). Let (X, ω) be a compact Kähler manifold. Define the
Monge–Ampère operator as above (with reference to ω). Then given any f with
∫

e f ωn =
∫

ωn, there is a solution φ, unique modulo additive constants, to the
equation M(φ) = e f . Moreover, ωφ is a positive (1, 1)-form
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We will discuss some (but not all!) of the steps in the proof of this in the
exercises in this and the subsequent section.

Exercises 2.1.

1. (a) Suppose that φ ∈ C2. Prove that at a maximum of φ, M(φ) ≥ 1,
whilst at a minimum of φ, M(φ) ≤ 1.

(Hint one can find holomorphic coordinates at a point p in
which the metric is Euclidean at p and in which the complex
Hessian i∂̄∂φ of φ is diagonal at p.)

(b) Prove that if φ is C2 and M(φ) > 0 then ωφ is a positive (1, 1)-
form. (Hint: show that if ωφ vanishes on a complex line then
M(φ) = 0.)

2. Let ω ∈ H and V be a volume form with total volume equal to that
of ω. Let {φt : t ∈ [0, 1]} denote a path of Kähler potentials with
φ0 = 0, giving a path of Kähler metrics ωt = ωφt . Define

E =
∫ 1

0

[

∫

X

∂φ

∂t

(

ωn
t

n!
− V

)]

dt

(a) Prove that E depends only on ω1 and not on the path of Kähler
potentials joining it to ω, hence it defines a function E : H → R

by setting E(ω1) equal to the above integral for any choice of
path φt.

(b) Prove that ω1 ∈ H is a critical point of E if and only if ω1 has
volume form ωn

1 /n! = V.

(c) Let ψ ∈ C∞(X, R) be a non-constant function and consider the
corresponding linear path ωs = ωsψ in H. Prove that E(ωs) is
strictly convex in s.

Deduce that if a solution to the Calabi conjecture exists, it must
be unique.

2.2 Kähler–Einstein metrics

In order to admit a Ricci flat Kähler metric, a Kähler manifold X must have
c1(X) = 0. The Calabi–Yau theorem tells us this is also sufficient. One can
also of course consider other types of Einstein metric.

Definition 2.5. A Riemannian metric is called Einstein if Ric = λg where
λ is a constant, called the Einstein constant.
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Example 2.6. A Kähler metric on a Riemann surface is Einstein if and only
if it has constant curvature. Every Riemann surface carries such a metric
which is unique except in the case of CP1, where there is a 3 dimensional
family of round metrics.

In higher dimensions, Einstein metrics are difficult to find. But in Kähler
geometry they are, as we will see, especially abundant.

First we point out that there is an “obvious” necessary condition. A Kähler
metric is Einstein precisely when its Kähler and Ricci forms are propor-
tional: ρ = λω. Recall that [ρ] = 2πc1(X). So if λ > 0 it is necessary that
c1(X) > 0, i.e., that the anti-canonical bundle be positive, whilst if λ < 0
it is necessary that c1(X) < 0, i.e., that the canonical bundle be positive.

(Warning, the notation here is misleading: there are certainly times when
none of c1(X) > 0, c1(X) > 0 or c1(X) = 0 is true!)

Definition 2.7. A complex manifold with c1(X) > 0—i.e., with positive
anti-canonical bundle—is called a Fano manifold.

(Such manifolds are rare. Indeed it is know that in each dimension there
is a finite number of deformation classes of Fano manifolds. In complex
dimension 2, they are the so-called Del Pezzo surfaces, blow-ups of CP2 at
at most 8 points in sufficiently general position. In complex dimension 3
there are 105 different deformation types of Fanos.)

We will see that when c1(X) ≤ 0, this necessary condition is also sufficient
for the existence of a Kähler–Einstein metric. However, when c1(X) > 0
there are obstructions to existence and the whole question is far more
subtle (and as yet currently unresolved).

We saw above how to write a Ricci flat Kähler metric as a Monge–Ampère
equation. We will now do the same for non-zero Einstein constants.

By scaling we can reduce to the case λ = ±1. Assume that λc1(X) > 0,
which is the necessary condition for existence of a Kähler–Einstein metric.
Let ω be a reference metric with 2πc1(X) = λ[ω] and write ρ for the
Ricci form of ω. Write also ρφ for the Ricci form of ωφ. We want to solve
ρφ = λωφ, an equation for the potential φ which we now rewrite in terms
of the Monge–Ampère operator M.

Recall that M : H → C∞(X, R) is defined by M(ωφ) = ωn
φ/ωn. The Ricci

forms ρφ and ρ are then related by

ρφ = ρ + i∂̄∂ log M(φ)

Since ρ and λω are in the same cohomology class we also know, by the ∂̄∂-
lemma, that there is a function f such that ρ = λω + i∂̄∂ f . (This function
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f is often called the Ricci potential of ω.) Meanwhile ωφ = ω + i∂̄∂φ. So
ρφ = λωφ becomes

i∂̄∂( f + log M(φ)) = iλ∂̄∂φ

In other words, we want to find φ : X → R such that

M(φ) = e f+λφ.

This is again a Monge–Ampère equation.

As mentioned above, Yau proved the existence of a solution in the case
λ = 0. When λ = −1, existence was proved independently by Aubin and
Yau.

Theorem 2.8 (Aubin, Yau). Let (X, ω) be a compact Kähler manifold. Given
any smooth function f : X → R, the equation M(φ) = e f−φ has a unique solu-
tion (where M is the Monge–Ampère operator as defined above, with reference to
the metric ω).

It follows that if c1(X) < 0, there is a unique Kähler–Einstein metric on X, up to
scale (whose Einstein constant is necessarily negative).

The proof of this is outlined in the exercises. A key step involves a C0 es-
timate on a solution of M(φ) = e f+λφ in terms of f . This is fairly straight-
forward when λ < 0. When λ = 0 (the case of the Calabi conjecture) the
proof is much more involved.

When λ > 0 the hoped-for bound is known to be false and things are
very different. There are obstructions to the existence of Kähler–Einstein
metrics on Fano manifolds, some of which we will see later. The full
question of deciding when such a metric exists is still an open problem.
We will state a famous conjecture of Donaldson, Tian and Yau about this
later on.

Warning! Our conventions differ from those often used in the literature, where
you will find, for example, the Monge–Ampère operator defined via the equation
M(φ) = (ω − i∂̄∂φ)n/ωn. Changing from our notation to this just amounts to
swapping the sign of φ, but this can have the disconcerting effect of seeming to
send λ to −λ in the Monge–Ampère equation!

Exercises 2.2. The goal of these exercises is to sketch the proof of The-
orem 2.8. The idea is to prove that the set of functions f for which
M(φ) = e f−φ has a solution is both open and closed. Then, by connected-
ness, it will be solvable for all f . This is often referred to as the continuity
method.

1. Write U ⊂ C5,α for the set of φ ∈ C5,α for which ωφ is a positive
(1, 1)-form.
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Prove that the map F defined on smooth Kähler potentials given by

F(φ) = log M(φ) + φ

extends to a map U → C3,α.

Write S ⊂ C3,α for the image of F. We will show S is both open and
closed.

2. Prove that the derivative of F at φ is given by DFφ(ψ) = ∆φ(ψ) + ψ,
where ∆φ is the Laplacian of ωφ.

Deduce that S is open.

3. Let fn be a sequence in S which converges to f in C3,α and let φn ∈ U
solve F(φn) = fn. To prove S is closed we will show that a subse-
quence of the φn converges to a solution of F(φ) = f . There are
several steps.

(a) Step 1, C0 bound.

Prove that if φ ∈ C2, then ‖φ‖C0 ≤ ‖F(φ)‖C0 .

(Hint: go back to Exercise 2.1(1).)

(b) Step 2, C2,α bound given the C0 bound.

For this you can quote the following result (or if you’re brave
try and prove it yourself!)

Proposition. Let W be a set of C5 Kähler potentials, which are uni-
formly bounded in C0. If the set {F(φ) : φ ∈ W} is bounded in C3

then W is bounded in C2,α for any 0 < α < 1.

(This part also holds for λ ≥ 0)

(c) Step 3, regularity.

Prove that if φ ∈ C2 and F(φ) ∈ Cr,α then φ ∈ Cr+2,α.

(This part also holds for λ ≥ 0)

(d) Deduce that S is closed and hence complete the proof of Theo-
rem 2.8.

3 Extremal Kähler metrics

3.1 Calabi energy

There is an old question (going back at least as far as Berger?) to find a
“best Riemannian metric” on a given manifold. In the Kähler setting this
vague question can be made extremely precise.
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If one supposes that c1(X) is either zero or definite then Kähler–Einstein
metrics provide ideal candidates for “best metrics” on the manifold. Cal-
abi’s next contribution was to define a notion of “best” which works for
any Kähler class.

Calabi’s idea is to try and minimise the function C : H → R which is
defined by

C(ω) =
∫

X
S(ω)2 ωn

n!

where S(ω) is the scalar curvature of ω.

Lemma 3.1. For Kähler metrics in a fixed cohomology class, the following quan-
tities differ by topological constants, i.e., constants depending only on X and [ω]:

∫

X
S(ω)2 ωn

n!
,

∫

X
|Ric(ω)|2

ωn

n!
,

∫

X
|R(ω)|2

ωn

n!
.

(Here the pointwise norms of tensors are taken with respect to the metric ω; R is
the full curvature tensor of ω.)

Because of this, minimising C amounts to minimising the L2-norm of cur-
vature over H. So a minimum (if it exists!) can be thought of as the “least
curved” metric in a given cohomology class.

Definition 3.2. The quantity C(ω) is called the Calabi energy of ω.

To compute the Euler–Lagrange equations of Calabi energy, one needs the
following formulae for the variation of scalar curvature.

Lemma 3.3. Given φ ∈ C∞(X, R) and ω ∈ H, write ωt = ω + ti∂̄∂φ. Then,
at t = 0,

d

dt
S(ωt) = ∆2φ − 〈ρ, i∂̄∂φ〉

where all geometric quantities are computed with respect to ω.

It turns out that infinitesimal changes in scalar curvature are intimately
related to deformations of the data (X, J, ω) to explain this relation, we
need some notation.

Definition 3.4. Let D : C∞(X, R) → Ω0,1(TX) be the operator defined by

D( f ) = ∂̄(ξ f )

where ξ f is the Hamiltonian vector field corresponding to f . I.e., for any
other vector field v, ω(ξ f , v) = v · f .
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So D( f ) measures the failure of the Hamiltonian flow of f to be holo-
morphic. Since the Hamiltonian flow of f automatically preserves ω, and
the flow of a holomorphic vector preserves J, when f ∈ kerD, ξ f is and
infinitesimal automorphisms of (X, J, ω). In fact, when b1(X) = 0, all
symplectic vector fields on X are Hamiltonian and so kerD is exactly the
infinitesimal automorphisms of (X, J, ω) plus constants.

Lemma 3.5.

D∗D(φ) = ∆2φ − 〈ρ, i∂̄∂φ〉+
1

2
〈∇S,∇φ〉

where D∗ is the L2 adjoint of D.

Proposition 3.6. Given φ ∈ C∞(X, R) and ω ∈ H, write ωt = ω + it∂̄∂φ.
Then, at t = 0,

d

dt
C(ωt) =

∫

X
φD∗DS(ω)

ωn

n!

Hence ω is a critical point of C : H → R if and only if the Hamiltonian flow of
S(ω) is holomorphic.

Definition 3.7. A Kähler metric for which DS = 0 is called extremal.

Note that if X admits no non-zero holomorphic vector fields, then an ex-
tremal metric automatically has constant scalar curvature.

Lemma 3.8. Let ω be a Kähler metric of constant scalar curvature and suppose
that λ[ω] = 2πc1(X) for some λ. Then ω is in fact Kähler–Einstein: ρ = λω.

So constant scalar curvature metrics are a generalisation of Kähler–Einstein
metrics which can be looked for in any Kähler class.

Lemma 3.9. The mean value of the scalar curvature of ω ∈ H does not depend
on the choice of ω, only on X and [ω].

Proof.
∫

X S ωn =
∫

nρ∧ωn−1 = 2πn〈c1(X) · [ω]n−1, [X]〉 which is indepen-
dent of the choice of metric in the class [ω].

This means that when looking for a constant scalar curvature metric one
at least knows what constant to aim for!

Exercises 3.1.

1. Given a real (1, 1)-form ρ, derive a formula for |ρ|2ωn in terms of
ρ ∧ ρ ∧ ωn−2 and (Λρ)2ωn.

Deduce that
∫

X |Ric |2ωn and
∫

X Sωn differ by a constant which de-
pends only on X and the Kähler class [ω] but not on the metric ω
itself.
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2. By differentiating the formula Sωn = nρ ∧ ωn−1, prove Lemma 3.3.

Can you prove Lemma 3.5?

3. Prove Proposition 3.6.

4. Using the Kähler identities, prove that a metric has constant scalar
curvature if and only if its Ricci form is harmonic.

Deduce Lemma 3.8

3.2 Some examples of extremal metrics

Calabi’s first examples. In the paper introducing extremal metrics, Cal-
abi also provided the first non-trivial examples (i.e., with non-constant
scalar curvature). He considered metrics on the projective completion Xk

of O(k) → CPn−1 which are invariant under the action of U(n). The
generic orbits of this action have codimension 1 and so the partial differ-
ential equation ∂̄∇S = 0 becomes an ordinary differential equation which
one can solve.

More explicitly, the complement of the zero and infinity sections of Mk →
CPn−1 is covered by a single chart with image Cn \ 0, in which the U(n)-
action is standard. One then considers Kähler potentials which depend
only on the U(n)-invariant variable t = log ∑ |zj|2. So one puts

φ(z, z̄) = u(t)

where u : R → R must satisfy certain conditions as t → ±∞ to correspond
to a Kähler potential of a metric on Cn \ 0 which extends to the whole of
Xk.

One then converts the extremal metric equation into an ODE for u which
can then be shown to have a solution with the required boundary condi-
tions.

The theorems of Hong and Brönnle. The next theorems we mention also
concern ruled manifolds, i.e., of the form P(E) where E → Y is a holo-
morhpic vector bundle. To state these we will need the definition of a
Hermitian–Einstein connection.

Definition 3.10. Given a holomorphic vector bundle E → Y over a Kähler
manifold (Y, θ), a Hermitian metric in E is called Hermitian–Einstein if the
curvature F ∈ Ω1,1(u(E)) of the Chern connection satisfies the equation

〈F, θ〉 = c · Id

for a constant c.
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The constant here is topological (just as for the mean value S̄ of the scalar
curvature). It is determined by the slope of E:

µ(E) =
〈c1(E) ∧ θn−1, [X]〉

rank E

If E admits a Hermitian–Einstein connection then

c =
2πµ(E)
(n − 1)!V

where V is the volume of Y.

The theorems of Hong and Brönnle concern so-called adiabatic Kähler
classes on P(E). First, note that the fibrewise tautological bundles fit to-
gether to give a line bundle over P(E). We denote the dual of this bundle
by L → P(E). Note that on each fibre, L is the hyperplane bundle of that
projective space. The classes that Hong and Brönnle consider are of the
form κr = c1(L) + rπ∗κ for r large, where π : P(E) → Y is the projection
and κ is a Kähler class on the base.

Theorem 3.11 (Hong). Let E → Y be a simple holomorphic vector bundle over
a Kähler manifold. Assume that the class κ admits a constant scalar curvature
metric θ and that E admits a Hermitian–Einstein metric with respect to this θ.
Finally assume that Y has no holomorphic vector fields. Then for all large r, the
class κr on P(E) admits a constant scalar curvature metric.

Theorem 3.12 (Brönnle). Let (Y, θ) be a compact Kähler manifold with constant
scalar curvature and no holomorphic vector fields. Let V → Y be a holomorphic
vector bundle which splits as a direct sum V = E1 ⊕ · · · ⊕ Er, where each Ej is
as in Hong’s theorem. Suppose moreover that all of the Ej have different slopes.
Then for all large r, the class κr on P(V) admits an extremal Kähler metric.

3.3 Futaki’s invariant

We next discuss an obstruction to the existence of constant scalar curvature
Kähler metrics (and in particular Kähler–Einstein metrics) introduced by
Futaki. Given a Kähler class κ, the Futaki invariant associates to each
holomorphic vector field v on X a complex number F(v).

Throughout this section we use “holomorphic vector field” to mean a section v
of TX for which Lv J = 0. Given such a vector field, v1,0 is then a holomorphic
section of TX1,0 in the usual sense. Conversely, given a holomorphic section of
TX1,0, its real part v has the property that LvJ = 0.

To begin with, we will assume that κ = c1(L) and that the vector field v
lifts to a vector field v̂ on L which preserves the fibrewise linear structure.
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To define F(v) we will also pick a Hermitian metric h in L whose curvature
F = −2πiω defines a Kähler metric on X.

We can split v̂ into vertical and horizontal pieces using the Chern connec-
tion A in L:

v̂ = v! + f ξ

where v! is the horizontal lift of v via A, ξ is the generator of the S1-
action on L and f : X → C is a complex valued function giving the vertical
component of v̂. Note that f is determined up to an overall constant by the
fact that ∂̄ f = (ιvω)0,1, which follows from the fact that v̂ is holomorphic.
We now define

F(h, v) =
∫

X
(S − S̄) f

ωn

n!

where

S̄ =
1

V

∫

X
S(ω)

ωn

n!

is the average value of the scalar curvature of Kähler metrics in H.

It may seem at first sight that this quantity depends on our choice of Her-
mitian metric h in L, but one can show by differentiating the formula with
respect to h that this is not actually the case.

There is an alternative formula for F involving the Greens operator G (the
inverse of the Laplacian on functions). Set g = G(S − S̄), then one can
check that

F(ω, v) =
∫

X
v1,0 · g

ωn

n!

agrees with the previous definition of F. The second version has the ad-
vantage that it makes sense for arbitrary Kähler classes and holomorphic
vector fields. To define g one needs to select ω ∈ H, as the notation indi-
cates, but again the dependence on ω is illusory.

Theorem 3.13 (Futaki). The quantity F(ω, v) above does not depend on the
choice of ω ∈ H.

Write h(X) for the space of all holomorphic vector fields on X.

Definition 3.14. The map F : h(X) → C defined by F(v) = F(ω, v) for
some ω ∈ H is called the Futaki invariant of H.

The following is immediate.

Lemma 3.15. If there is a constant scalar curvature metric in H, then F = 0.

The proofs of the next two Lemmas are exercises.
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Lemma 3.16. If F = 0 then any extremal metric in H actually has constant
scalar curvature.

Lemma 3.17. If u, v ∈ h(X) then F([u, v]) = 0. In other words, F : h(X) → C

is a character.

Exercises 3.2.

1. Prove Theorem 3.13 in the case that v lifts to a holomorphic vector
field v̂ on L. To do this, let h0 be a positively curved metric in L and
consider the path ht = e2πtφh0, where φ ∈ C∞(X, R). Now prove that
the derivative of F(ht, v) with respect to t is zero.

2. Prove Lemma 3.16 by considering the Futaki invariant of the holo-
morphic vector field ∇S = JξS.

3. The aim of this question is to prove Lemma 3.17. Let u, v ∈ h(X) be
holomorphic vector fields and let ω be a Kähler metric.

Let ft : L → L be the one-parameter group of biholomorphisms gen-
erated by u. Show firstly that f ∗t ω is Kähler for all t.

Next, prove that
d

dt
F( f ∗t ω, v) = F(ω, [u, v]).

3.4 A localisation formula for F(v)

The Futaki invariant can be quite awkward to calculate directly. We now
state (but give no proof of) a way to compute it as a sum of local contribu-
tions from the fixed loci of v.

Definition 3.18. A holomorphic vector field v on a complex manifold X
is called non-degenerate if the zero set of v is a disjoint union of connected
complex submanifolds {Zj} of X. Moreover, we require that at each z ∈ Zj,
the linear map

Dv : TzX → TzX

descends to an isomorphism TzX/TzZj.

In the presence of a Kähler metric, we can identify the quotient Qz =
TzX/TzZj with the normal Nz = (TzZj)⊥ and then the map induced by Dv
is the projection (∇v)⊥ of ∇v to N.

In the simplest case, where v has an isolated zero, we can write in coor-
dinates v = ∑ vj

∂
∂zj

where vj(0) = 0. This zero is then non-degenerate
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precisely when the following matrix is invertible:

(

∂vi

∂zj

)

i,j=1,...,n

On a component of the zero locus, Dv descends to a an isomorphism Lj of
the bundle Q = TX/TZj. Since Lj is holomorphic, its trace tj = Tr(Lj) is
constant.

We will also need another constant associated to each component Zj. For
this we suppose as before that v lifts to a vector field v̂ on the positive
line bundle L → X. Choosing a positively curved metric in L we obtain a
splitting

v̂ = v! + f ξ

for a complex valued function f which is uniquely determined by v up to
the addition of a constant (corresponding to the different lifts of v to L).
We know that ∂̄ f = (ιvω)0,1 and so f restricts to a holomorphic function
on each component Zj of the zero locus, which implies in fact that f is
constant on each Zj. We write fj for the value of f on Zj.

Finally, we note that the normal bundle Nj = (TZj)⊥ and the quotient
bundle Qj = TX/TZj are canonically isomorphic and so the holomorphic
bundle Qj inherits a Hermitian structure. We write Fj ∈ Ω1,1(u(Qj)) for
the curvature form of this metric.

With the definitions of Lj, tj, fj and Fj in hand, we can now state the local-
isation formula.

Theorem 3.19. If v is a non-degenerate holomorphic vector field with zero locus
{Zj}, then

F(v) = ∑
j

∫

Zj

(

tj + c1(X)
) (

π fj + [ω]
)n

− nS̄
(n+1)π

(

π fj + [ω]
)n+1

det
(

Lj +
i

2π Fj

)

A word or two is in order about how to interpret this expression. The
numerator and denominator of the integrand can be expanded as series
whose coefficients are differential forms, so the integrand as a whole is ex-
pressible as a series whose coefficients are differential forms. To compute
the integral over Zj we simply keep the part which is of degree equal to
the dimension of Zj. Whilst this is somewhat cumbersome to explain in
words, it is straightforward to carry out in practice.

Exercises 3.3.
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1. Suppose that [ω] = 2πc1(X) and that the positive line bundle we are
considering is K∗, the anti-canonical bundle.

(a) Prove that there is a natural lift of any holomorphic vector field
v to a field v̂ on K∗ preserving the fibrewise linear structure.

(b) Prove that in this case if v is non-degenerate then on each com-
ponent of its fixed locus, fj = tj.

Deduce that for the case of the anti-canonical bundle,

F(v) =
πn

n + 1 ∑
j

∫

Zj

(

tj + c1(X)
)n+1

det
(

Lj +
i

2π Fj

)

2. Prove that if all of the zeros of v are isolated points z1, . . . , zk, then

F(v) = πn ∑
j

(

tj −
nS̄

n+1 fj

)

f n
j

det Lj

3. Let X be a complex surface, [ω] = 2πc1(X). Let v be a non-degenerate
holomorphic vector field and write the zero locus of v as a collection
of points {zj : j ∈ J} and curves {Zk : k ∈ K}. Prove that

F(v) =
π3

3 ∑
j∈J

t3
j

det Lj
+

π3

3 ∑
k∈K

Lk

(

2〈c1(X), [Zk]〉+ 2 − 2g(Zk)
)

(Here, g(Zk) is the genus of Zk and we note that on Zk, Lk is a holo-
morphic isomorphism of a rank 1 bundle, hence multiplication by a
constant, which we also denote by Lk.)

4. Let X denote the blow-up of CP2 in the point [1, 0, 0].

(a) Show that the C∗-action on CP2 induced by the action (x, y, z) 3→
(x, λy, λz) lifts to X.

(b) Copmute the Futaki invariant of the generator of this action
with respect to the anti-canonical bundle and deduce that X
does not admit a Kähler–Einstein metric.

5. Let X denote the blow-up of CP2 in the points [1, 0, 0] and [0, 1, 0].

(a) Show that the C∗-action on CP2 induced by the action (x, y, z) 3→
(x, λy, λz) lifts to X.

(b) Copmute the Futaki invariant of the generator of this action
with respect to the anti-canonical bundle and deduce that X
does not admit a Kähler–Einstein metric.
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3.5 An algebro-geometric formula for F(v)

There is another way to compute Futaki invariants using a result from
algebraic geometry called the Hirzebruch–Riemann–Roch formula. In this
instance it is essential that we assume the holomorphic vector field v on
X lifts to a holomorphic vector field v̂ = v! + f ξ on L where it generates
a C∗-action. We now consider the vector spaces Vk = H0(X, Lk) for all
values of k. The first application of Hirzebruch–Riemman–Roch that we
need is a formula for the dimension of Vk.

Proposition 3.20. For all large values of k, the dimension dk of Vk is given by a
polynomial q(k) in k. Explicitly,

q(k) = Ckn + Dkn−1 + · · ·

where n = dim X, C =
∫

X
ωn

n! and D =
∫

X
ρ∧ωn−1

(n−1)! .

The next quantity we will apply Hirzerbuch–Riemann–Roch to is the weight
of the C∗-action on Vk. Since C∗ acts on L it also acts on sections of Lk and
hence on Vk and so on the complex line Λdk Vk. Any action of C∗ on a
complex line is determined by an integer w, called the weight with λ ∈ C∗

acting as multiplication by λw. In our case we obtain for each Λdk Vk a
weight wk.

Proposition 3.21. For all large values of k, the weight wk of the action of C∗ on
λdk Vk is given by a polynomial p(k). Explicitly,

p(k) = Akn+1 + Bkn + · · ·

where n = dim X, A =
∫

X f ωn

n! and B =
∫

X f S(ω) ωn

n! .

Corollary 3.22. For large k there is an expansion

wk

kdk
=

A

C
−

F(v)
C

k−1 + · · ·

where F(v) is the Futaki invariant.

The fact that the Futaki invariant can be read off as the coefficient of k−1 in
this expansion has two consequences. Firstly, it is often possible to com-
pute wk and dk directly, without recourse to the Hirzebruch–Riemann–
Roch formulae; this then gives an alternative way to compute F(v). Sec-
ondly, and perhaps more importantly, this formulation makes sense for
C∗-actions on singular manifolds with positive line bundles. This will be
of paramount importance in what follows.
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4 The Yau–Tian–Donaldson conjecture with a broad

brush

4.1 The Riemannian geometry of M

Recall that M denotes the space of positive Hermitian metrics in a fixed
holomorphic line bundle. Fixing a reference metric h0 any other metric is
of the form h = e2πφh0 for some function φ, which satisfies the inequality
that i

2π Fh0
+ i∂̄∂φ > 0. Thus we can identify M with an open set in an

affine space modelled on C∞(X, R). This affine structure is well adapted to
the Calabi conjecture as we saw in Exercise 2.1(2). However, for the study
of constant scalar curvature or more generally extremal Kähler metrics,
there is another geometry in M which is better suited. (Almost everything
we say in this section applies to the more general case of Kähler metric in
an arbitrary Kähler class, where M should be taken to mean the space of
Kähler potentials with respect to some reference metric.)

There is a natural Riemannian metric on M, which was discovered in-
dependently by Donaldson, Mabuchi and Semmes, which has some re-
markable properties. To define the metric, note that there is a natural
identification ThM ∼= C∞(X, R)

〈φ, ψ〉h =
∫

X
φψ

ωn
h

n!

where ωh = i
2π Fh is the Kähler form associated to h. This innerproduct

depends on h and so gives a curved metric on M, not directly compatible
with the affine structure.

To describe the Levi-Civita connection, we take a path ht = e2πφt h0 in M
and a path of tangent vectors along ht , which amounts to a function ψ on
X × [0, 1]. A connection on TM is determined by the derivative Dtψ of ψ
along ht.

Lemma 4.1. In the above set-up, the covariant derivative of ψ along ht is

Dtψ =
∂ψ

∂t
+

1

2

(

∇ψ,∇
∂φ

∂t

)

ωht

where the innerproduct on the right hand side is pointwise between vector fields
on X, using the metric ωht

defined by ht.

To verify this, one must simply check that the connection is both metric
and torsion free. (In infinite dimensions the Levi-Civita connection is not
guaranteed to exist, but when it does it is unique.) With this definition in
hand, the follow facts are the result of calculations.
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Proposition 4.2.

1. The curvature tensor of R is given by

R(φ, ψ)(χ) = −
1

4
{{φ, ψ}h, χ}h

where {·, ·}h is the Poisson bracket of ωh.

2. The curvature tensor R is covariant constant: ∇R = 0.

3. The sectional curvatures of M are non-positive. More precisely, at h ∈ M,

R(φ, ψ, φ, ψ) = −
1

4
‖{φ, ψ}h‖

2
h

where ‖ · ‖ is the L2-norm on functions associated to ωh.

What is remarkable is that these are identical to the formulae for the cur-
vature of certain symmetric spaces. Let K be a compact Lie group andG
its complexification. A choice of bi-invariant Riemannian metric on K
makes it a positively curved symmetric space, but one can also construct
from here the so-called negatively curved dual. The bi-invariant form on
k endows G/K with a Riemannian metric which is invariant under the
action of G by left multiplication. Given x ∈ ik, we write x also for the
induced vector field on G/K. Then the curvature tensor of G/K is given
by R(x, y)(z) = −[[x, y], z].

Because of this, heuristically at least M can be thought of as the negatively
curved symmetric space dual to the group whose Lie algebra is C∞(X, R)
endowed with the Poisson bracket of some symplectic form ω. When
ω = i

2π FA for some unitary connection A in a line bundle L, there is just
such a group, namely the group of maps L → L, taking fibres isometrically
to fibres and which also preserve A. This group should play the rôle of K
in the above story. At this point, however, the analogy breaks down: there
is no complexification of K.

Despite this, traces of the “phantom group” are still to be found. For ex-
ample, 1-parameter subgroups C∗ ⊂ G descend to G/K to give geodesics,
so one can think of the geodesics of M in this way. The following lemma
gives describes the geodesic equation.

Lemma 4.3. A function φ : X × R → R corresponds to a geodesic t 3→ e2πφt h
in M if and only if

φ̈ +
1

2
|∇φ̇|2ht

= 0.
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Note that a general geodesic involves solving a PDE and so existence is
not guaranteed as it is in the finite dimensional case (where geodesics
are solutions of ODEs). There is one situation in which some geodesics
are easy to describe. Suppose that the holomorphic isometry group K of
(X, ω, J) has positive dimension. The complexification G of K acts on X
preserving J, but not necessarily ω. This defines a map G/K → H, by
pull-back. It is now an exercise to check that geodesics in G/K map to
geodesics in H.

It is possible to express the geodesic equation as a degenerate Monge–
Ampère equation. Given a function φ : X × R → R we extend it to a
rotationally invariant function Φ : X × C∗ by Φ(x, teiθ) = φ(x, t). Write Ω0

for the pull-back of a Kähler metric ω0 on X to the product X × C∗ and
write Ω = Ω0 + i∂̄∂Φ. The following is a calculation.

Lemma 4.4. d The function φ a geodesic in M if and only if the form Ω satisfies
the degenerate Monge–Ampère equation Ωn+1 = 0.

Exercises 4.1.

1. Prove Lemma 4.1.

2. Prove Proposition 4.2.

3. Prove Lemmas 4.3 and 4.4.

4.2 Mabuchi energy

We next explain how the question of whether or not M contains a constant
scalar curvature metric is encoded in a special function, called Mabuchi
energy E. To define E, we choose a path ht = e f rm−epiφt h0 of metrics in
M, where φt ∈ C∞(X, R) is a smooth path of Kähler potentials. In the
following we write ωt = i

2π Fht

Lemma 4.5. The quantity

E(ω0; ω1) =
∫ 1

0

∫

X
(S(ωt)− S̄) φ̇

ωn
t

n!

depends only on the end points ω0 and ω1 and not on the path ht joining h0 to h1.

Definition 4.6. The quantity E(ω0; ω1) is called the Mabuchi energy of ω1

relative to ω0.

Fixing a reference metric ω0, the function E : H → R defined by E(ω) =
E(ω0; ω1) is simply called Mabuchi energy. Note that E depends on the
choice of ω0. Changing the reference metric will change E by a constant.
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We also use the same notation for the function E : M → R defined by
pulling back Mabuchi energy from H → R via the map M → H which
sends h 3→ i

2π Fh.

Mabuchi energy has the following important properties.

Proposition 4.7.

1. The critical points of E : M → R are precisely those h for which ωh has
constant scalar curvature.

2. The Hessian of E at h is given by

D∗D : C∞(X, R) → C∞(X, R)

where the operator D and its adjoint are computed with respect to ωh.

It follows that E is convex along geodesics. Moreover, if there are no holo-
morphic vector fields on X which lift to L then E is strictly convex along
geodesics, except for those which correspond to scaling h by a constant.

3. Let v be a holomorphic vector field with lift v̂ to L and write ft : L → L for
the flow of v̂. Put ht = f ∗t h. Then

d

dt
E(ht) = F(v)

One thing that is immediately suggested by this result is that, at least when
there are no infinitesimal automorphisms of L → X outside of the scalars,
there is at most one constant scalar curvature metric in c1(L) is unique.

To see why this should be the case, assume there were two such metrics
ω0, ω1 ∈ H. In finite dimensions, any two points in a negatively curved
symmetric space are joined by a unique geodesic. In infinite dimensions
this is no longer automatic—geodesics are the solutions to PDEs rather
than ODEs and so their existence is more subtle. However, assuming for
the moment that ω0 and ω1 are joined by a geodesic, the restriction of E
to this geodesic is both strictly convex and has critical points at each ωi.
Hence we arrive at a contradiction unless ω0 = ω1. The hard part to mak-
ing this argument rigorous is proving the existence of the geodesic. This
has been done by X.-X. Chen, with sufficient regularity to carry through
the above outline of a proof.

Exercises 4.2.

1. Prove Lemma 4.5.

2. Prove Proposition 4.7.
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4.3 From geodesics to test configurations

The next thing that this result suggests is that it should be possible to
ascertain whether or not there is a constant scalar curvature metric in c1(L)
by looking at the behaviour of E at infinity. At least in finite dimensions,
a convex function has a minimum if and only if it is proper, i.e., it tends
to infinity at infinity. To investigate the behaviour of E at infinity, imagine
picking a base point h ∈ M and a geodesic γ : [0, ∞) → R starting at h
and heading in the direction u ∈ ThM. Restricting E to the geodesic gives
a convex function fu = E ◦ γ : [0, ∞) → R which tends to infinity precisely
when lim f ′u > 0 as t → ∞. In this way one is lead to the idea that the
existence of a constant scalar curvature Kähler metric in c1(L) should be
equivalent to lim f ′u > 0 for all u ∈ ThM. (The problem with taking such a
statement literally is that it presupposes the existence of geodesics leaving
h in all directions and existing for all times, something which is known
not to be true.)

The Yau–Tian–Donaldson conjecture has at heart the idea that the limits
lim f ′u have a purely algebro-geometric interpretation, related to the Futaki
invariant. To understand this, we first need to explain how to convert a
path of Kähler metrics ωt on a fixed complex manifold (X, J) to a path of
complex structures Jt on a fixed symplectic manifold (X, ω). The key to
this is the following lemma.

Lemma 4.8. Given a function ψ : X → R on a Kähler manifold (X, ω, J),

i∂̄∂ψ = L∇ψω

Because of this, given a path of Kähler metrics ωt = ω0 + i∂̄∂φ, we can
define a path of vector fields, vt by

vt = ∇ωt φ̇

and integrate this to a path ft : X → X of diffeomorphisms. By construc-
tion, ωt = f ∗t ω0 and so we can think of the path of metrics as being defined
by a fixed symplectic form ω0 and a path Jt = ( f−1

t )∗ J of complex struc-
tures. The point here is that whilst for each finite t the complex structures
Jt and J0 are equivalent (they are related by the diffeomorphism ft) in the
limit, this need no longer be the case. One should imagine that, in the case
ωt is a geodesic, the complex manifolds (X, Jt) undergo a degeneration of
some sort in the limit t → ∞, whose behaviour encodes the derivative of
E in this direction, in a sense to be made precise.

Recall above we interpreted a geodesic in M as a family of metrics on
X parametrised by C∗, (with trivial S1-dependence). Switching point of
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view, we can think instead of a family X ′ → C∗ of complex manifolds.
Moreover, the path of diffeomorphisms generated by vt = ∇ωt φ̇ gives
a C∗-action on X ′ covering the action by multiplication on the base C∗.
Changing coordinate z 3→ 1/z in C∗, so that t → ∞ corresponds to z → 0,
we see that our hoped for degeneration amounts to filling in the family
X ′ → C∗ to a family X → C.

One situation in which this can be done explicitly is when the geodesic
in M comes from a geodesic in G/K, where K is the isometry group of
(X, J, ω). Such a geodesic corresponds to a 1-parameter subgroup C∗ ⊂ G
and hence a holomorphic vector field v on X. Tracing through the details,
one finds that the family is holomorphically trivial X = X × C, but with
a non-trivial action, generated by v + z∂z. Notice that in this case lim f ′u is
precisely the Futaki invariant of v, i.e., of the C∗-action on the central fibre
of X .

Returning to the general discussion, we suppose family X ′ → C∗ can be
filled in to X → C in such a way that the C∗-action extends to to X (just
as happened for a geodesic arising from a holomorphic vector field on X).
Then the action will necessarily fix the central fibre X0 over 0 ∈ C. This
means that one can take the Futaki invariant F of the action on X0 and it is
this which should correspond to lim f ′u, just as was the case for a geodesic
defined by a holomorphic vector field. (Note that in general the central
fibre can be singular and so here we need to use the generalised Futaki
invariant, which makes sense for C∗-actions on polarised schemes. This
also requires that the action lifts to the polarisation L → X, which we have
ignored in our above discussion.)

The above discussion is meant to be taken with a pinch of salt. It’s main
point is to motivate the following definitions.

Definition 4.9. Let L → X be a positive line bundle over a compact com-
plex manifold. A test configuration for L → X is the following data:

1. A scheme X , the total space of a flat family π : X → C, together with
a C∗-action on X , making π equivariant with respect to the action
by multiplication on C.

2. A polarisation L → X together with a lift of the C∗-action to a linear
action on L.

3. An isomorphism between the fibre L1 → X1 of L → X over 1 ∈ C

and Lr → X, where r is a positive integer, called the exponent of the
test configuration.
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A product configuration is one of the form L × C → X × C with a product
C∗-action, namely one generated by v+ z∂z, where v generates a C∗-action
on (L, X).

Definition 4.10. TheFutaki invariant of a test configuration (L,X ), is the
Futaki invariant of the C∗-action on the central fibre L0 → X0 of X over
0 ∈ C.

Definition 4.11. A polarised complex manifold L → X is called K-stable
if the Futaki invariant of every test configuration is non-negative and is
equal to zero if and only if the configuration is a product.

For a while it was believed that K-stability was a necessary and sufficient
condition for the existence of a constant scalar curvature metric in c1(L).
Indeed this conjecture went by the name of the Yau–Tian–Donaldson con-
jecture. (Yau first suggested the existence of a Kähler–Einstein metric on
a Fano manifold should be equivalent to “some notion of stability in the
sense of geometric invariant theory”. This was later refined to a precise
statement by Tian, for Kähler–Einstein metrics and then Donaldson for
metrics of constant scalar curvature.) However, recent developments have
led to the realisation that for this to be true, the definition of K-stability
given immediately above must be modified slightly.

The first development was an example found by Apostolov–Calderbank–
Gauduchon–Tønnensen-Friedman, of a manifold which does not admit a
constant scalar curvature metric and yet for which the obvious attempt to
build a destabilising test configuration leads to a limit of test configura-
tions in which one must take successively higher and higher exponents.
Intuitively, one might think that the test configurations as described above
probe a dense subset of the directions at infinity in M, but to obtain in-
formation about all the directions, one should take limits of test configu-
rations too. The second development was the discovery by Li and Xu that
it is possible to build test configurations which are “trivial in codimen-
sion 2” but not products, which none-the-less have zero Futaki invariant.
One should also adjust the definition to disregard these test configura-
tions. An approach to both of these problems has been recently suggested
by Székelyhidi. He embeds the space of test configurations in a larger
ambient space—filtrations on the ring

⊕

H0(X, Lk)—where one can take
limits. Filtrations have a natural norm and includes this norm together
with the Futaki invariant in the definition of K-stability. This also seems to
deal with the problem of Li and Xu’s test configurations which have norm
zero and so are automatically disregarded by the theory. Unfortunately we
do not have the time here to go into the details of Székelyhidi’s approach.
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In one direction, and under certain hypotheses, the Yau–Tian–Donaldson
conjecture is known to be true. Stoppa, building on substantial work by
Tian and Donaldson, proved that when X admits no holomorphic vector
fields and c1(L) contains a constant scalar curvature Kähler metric, then
(X, L) is K-stable with respect to all test configurations which are non-
trivial up to codimension 2. The converse direction is completely open
(although Donaldson together with collaborators X.-X. Chen and S. Song
have made a lot of progress recently in the Kähler–Einstein case, their plan
of attack founded on earlier work of Tian).

5 Projective embeddings and the theorems of Kodaira

and Tian

We now change subject and leave behind for a while the problem of find-
ing canonical Kähler metrics. Instead we focus on one of the main sources
of examples of Kähler metrics, namely projective geometry, and the com-
plex submanifolds X ⊂ CPN. A natural question to ask is if a given Kähler
manifold can be realised as a projective submanifold. If so, a second ques-
tion is to ask how many Kähler metrics can be got via such embeddings
and the restriction of the ambient Fubini–Study metric. We will address
both these questions in this section.

5.1 Line bundles and maps to projective spaces

To construct a map from X to projective space we begin with a holomor-
phic line bundle L → X and a linear subspace V ⊂ H0(X, L) of holomor-
phic sections (which in later uses we will typically take to be the whole
space). Such a V determines a map to projective space in the following
way.

Let s0, . . . , sd be a basis of V and define the map f : X → CPd by

f (x) = [s0(x) : · · · : sd(x)]

There are two things to mention here. Firstly, the sj(x) are not, as the
notation here suggests, genuine complex numbers, rather they are all el-
ements in the same complex line Lx, the fibre of L over x ∈ X. In order
to make sense of the above expression, one must first choose an isomor-
phism Lx

∼= C, under which the sj(x) ∈ Lx are now identified with com-
plex numbers s′j(x) ∈ C say. The point is that if one chooses a different
isomorphism between Lx and C, the sj(x) become identified with different
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elements s′′j (x) ∈ C but since the two different identifications of Lx with
C differ simply by multiplication by some α ∈ C \ 0, these new elements
are related to the old ones by s′′j (x) = αs′j(x) for all j and hence the corre-
sponding point in projective space is unchanged. This is what is meant by
the above map.

The second thing to say is that it is possible that f is not defined at all
points of X, namely if all sections in V vanish at some x, then f will not
be defined there.

Definition 5.1. Given a holomorphic line bundle L → X and a subspace
V ⊂ H0(X, L), the set B of common zeros of sections of V is called the base
locus of V. Given a basis of sections of V, s0, . . . , sd, there is a well defined
map f : X \ B → CPd, called the map corresponding to the linear system V.

When B = ∅, one says that V is base point free.

Finally, when V is the whole space of sections, one calls V the complete
linear system of L.

There is a more invariant way of defining the map f which does not in-
volve the choice of a basis. To see this, notice that evaluation at a point
x ∈ X defines a linear map evx : V → Lx. Picking an identification Lx

∼= C

we identify evx with an element in V∗. Changing the identification Lx
∼= C

scales this element of V∗ by a non-zero constant and so, at least assuming
evx is not identically zero, we obtain a well-defined element of P(V∗).

Definition 5.2. Given a holomorphic line bundle L → X and a subspace
V ⊂ H0(X, L) there is a canonically defined map, f : X \ B → P(V∗),
called the map corresponding to the linear system V.

When L is base point free, so that the map f is defined on all of X, one
can recover the line bundle L from the map.

Lemma 5.3. Given a line bundle L → X which is base point free, with corre-
sponding map f : X → P(H0(X, L)∗), there is a natural identification between
L and the pullback f ∗O(1) of the hyperplane bundle.

(Recall that the hyperplane bundle O(1) → CPd is defined as the dual of
the tautological bundle O(−1).)

Examples 5.4.

1. We begin with a tautological example. Recall that an element of
O(−1) is a line in Cd+1 together with a point on that line. From here
it is easy to write down sections of O(1): any element s of the dual
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vector space (Cd+1)∗ restricts to a linear map on each line in Cd+1 and
hence each fibre of O(−1), giving a holomorphic section of O(1). It
is not too difficult to check that all holomorphic sections of O(1)
arise this way. The map corresponding to the complete linear system
CPd → P((Cd+1)∗)∗) just amounts to the natural identification of
the double dual with the original vector space.

2. More interesting examples are provided by taking powers O(1)⊗k =
O(k) of the hyperplane bundle. A holomorphic section of O(1) was
just seen to be an element of (Cd+1)∗, i.e., a homogeneous linear
polynomial in n + 1 variables. In a similar way, a holomorphic sec-
tion of O(k) is a homogeneous polynomial of degree k in d + 1 vari-
ables. It can be checked that space of such polynomials has dimen-

sion Nk,d = (k+d)!
k!d! . Since there is no point of Cd+1 at which all such

polynomials vanish, the base locus of the complete linear system is
empty and we get a map CPd → CPNk,d−1, called the Veronese embed-
ding. It is not difficult to check that this is indeed an embedding.

Exercises 5.1.

1. Prove Lemma 5.3.

2. You will need to know the Riemann–Roch theorem on curves to do
this question.

(a) Prove that for a compact curve of genus at least 2, the com-
plete linear system of the canonical bundle is base point free. In
other words, there is no point at which all holomorphic 1-forms
vanish.

(b) From the previous part, we see that every compact curve Σ of
genus at least 2 comes with a canonically defined map Σ →
CPg−1. Prove that one of two things happens. Either this map
is an embedding, or it factors through a double cover Σ → CP1

composed with the Veronese embedding CP1 → CPg−1.

5.2 Kodaira’s theorem on projective embeddings

Heuristically at least, the more holomorphic sections one has, the better
the chances of the base locus vanishing or, even better, the corresponding
map being an embedding. One way to increase the number of sections is
to take powers of L. Every section s of L defines a section sk of Lk, but in
general one might hope that there are more sections of Lk than just these.
We have just seen an example of this for O(1) and O(k).
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Definition 5.5. A holomorphic line bundle L → X is called very ample
if the complete linear system H0(X, L) defines an embedding of X into
projective space.

A line bundle L is called ample if Lk is very ample for all large k.

Theorem 5.6 (Kodaira). A line bundle is ample if and only if it is positive.

Recall that L is positive if it admits a positive Hermitian metric, i.e., one
for which i

2π F is a Kähler form. In one direction Kodaira’s theorem is
obvious: if f : X → CPd is a projective embedding, the pull back of the
Fubini–Study metric on f ∗O(1) is positively curved. So if L is ample, Lk

is positive for some large k, and the kth root of that positive metric is a
positive metric in L. The hard part of the theorem is the converse, that
positivity implies ampleness. We now sketch a proof of this.

The rough idea is that given x ∈ X, as k becomes large we can find holo-
morphic sections of Lk which are more and more concentrated at x. This
means, in particular, there is a section which is non-zero there. More-
over, the sections concentrated near x and near y suffice to distinguish the
images of x and y under the map to projective space.

More precisely we will sketch a proof of the following fact.

Theorem 5.7 (Existence of peaked sections). Let x ∈ X and write Vx ⊂
H0(X, Lk) for the subspace of all sections vanishing at x.

1. For all large k, Vx has codimension 1.

2. Write sk,x for a generator of the L2-orthogonal complement of Vx, with unit
length in L2. Then

(a) |sk,x(x)|2 = kn + O(kn−1)

(b) for y 6= x, |sk,x(y)| = O(k−∞)

(Here O(k−∞) means a quantity f (k) which decays quicker than any poly-
nomial).

Before outlining the proof of Theorem 5.7 let us sketch why this proves
Kodaira’s theorem. Firstly, the fact that Vx has codimension 1 is equivalent
to saying that the base locus of Lk is empty, so we have a well defined map
X → P(H0(X, Lk)∗). We next need to check that this is an embedding.
We will settle for seeing that is an injection, namely that if x, y are distinct
then there is a section which vanishes at x but not at y. To do this consider
sk,x and sk,y. Since sk,x(x) 6= 0, we can find a ∈ C such that ask,x + sk,y

vanishes at x. But this section can’t vanish at y since |sy,k|2(y) = O(kn)
whilst |sk,x(y)| = O(k−∞).
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5.3 Existence of peaked sections

We now focus on the proof of Theorem 5.7. We will first produce a section
s′k,x of Lk which has the properties listed in part 2. This will in particular
imply part 1. The properties of part 2 essentially imply that s′k,x converges
to sk,x in C∞ as k → ∞ from which it follows that this section also enjoys
all the properties of part 2. We will thus concentrate just on producing
a section s′k,x which satisfies the conclusions of part 2. (In fact, this is
enough to prove Kodaira’s theorem, we will only need the part about L2-
orthogonality later.)

We begin by considering the Euclidean case. We take for L the trivial
bundle C × Cn together with the metric h(z) = e−π|z|2 . This has curvature
Fh = −π∂̄∂|z|2 = π ∑ dzj ∧ dz̄j. The corresponding real (1, 1)-form is
ω = i

2π Fh = ∑ dxj ∧ dyj, which is of course the standard flat metric on Cn.

Now we consider Lk which is again, of course, trivial, but inherits the
metric hk = e−kπ|z|2 . In other words, the “constant” section, i.e., the section
which takes the value 1 in the trivialisation of Lk, has length e−kπ|z|2 . We
normalise this section by scaling it to have unit L2-norm (with respect to
the standard flat metric on Cn). This gives, for each k, a section sk of Lk

whose point-wise norm is

|sk(z)|
2 = kne−kπ|z|2 .

As k → ∞, these Gaussian distributions converge to a Dirac delta cen-
tred at the origin. Notice that sk certainly satisfies the conclusions of the
theorem concerning peaked sections.

Next, return to the general case of a positively curved line bundle L → X.
Pick a point x and a small ball B containing it over which L is trivial. Over
B, the geometry of (X, Lk, hk, kω) becomes closer and closer to the flat
model (the metric kω is close to flat when k is large). With this in mind
we try to glue in the model peaked section from the above discussion. To
do this we use a cut-off function in Cn and the resulting section s̃k,x of
Lk is no longer holomorphic: it is holomorphic in the middle of B, zero
outside of B and ∂s̃k,x is supported in an annulus in B. Moreover, because
the Euclidean model agrees very closely with the geometry of Lk → X the
“error” ∂̄s̃k,x is small, in say L2.

We now need to know how to correct this error and adjust s̃k,x to a gen-
uine holomorphic section without destroying its “peaked” nature. We will
solve

∂̄ fk = −∂̄s̃k,x

and then set sk,x = s̃k,x + fk. But of course we want fk to be as small as
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possible (certainly not, for example just −s̃k,x which would leave us with
the zero section!).

To do this we use something called “Hörmander’s technique” which cen-
tres on the Bochner identity which we explain next. Recall that we defined
the ∂- and ∂̄-Laplacians on a Hermitian manifold and saw that when the
metric was Kähler they were equal. We can do the same for forms with
values in a holomorphic Hermitian vector bundle (E, h). The Chern con-
nection ∇ splits as ∂ = π1,0 ◦ ∇ and ∂̄ = π0,1 ◦ ∇. (This second of course
does not depend on the choice of metric h, but the first operator does.) We
write Λ : Ωp,q → Ωp−1,q−1 for the adjoint to wedge product with ω.

Theorem 5.8 (Bochner, Kodaira, Nakano). Let E → X be a holomorphic Her-
mitian vector bundle over a Kähler manifold. Then the ∂- and ∂̄-Laplacians on
E-valued forms are related by

∆∂̄ = ∆∂ + [iF, Λ]

where F is the curvature of the Chern connection in E.

This is proved via twisted versions of the Kähler identities, just as in the
case of the two Laplacians acting on functions. At some point in the proof,
one needs to commute two derivatives which explains the presence of the
curvature F in the formula.

We will ultimately be interested in (0, q)-forms with values in Lk (such
as ∂̄s̃k), but to get there via the Bochner–Kodaira–Nakano identity stated
above we will use a trick and consider instead the line bundle K∗ ⊗ Lk.
The point is that an (n, q)-form with values in K∗ ⊗ Lk is the same thing as
a q-form with values in Lk.

Now K∗ ⊗ Lk has curvature

F = −2πikω − iρ

where ρ is the Ricci form of X. On (p, q)-forms, one checks directly that

[ω, Λ] = p + q − n

where n = dim X. It follows that on (n, q)-forms with values in K∗ ⊗ Lk,
or equivalently, on (0, q)-forms with values in Lk,

∆∂̄ = ∆∂ + 2πqk + [ρ, Λ].

Now ∆∂ is semi-positive and [ρ, Λ] is independent of k. Hence there is a
constant C such that for all f ∈ Ω0,q(X, Lk),

〈∆∂̄ f , f 〉L2 ≥ (2πqk − C) ‖ f‖2
L2
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This is the fundamental inequality with the following immediate conse-
quences

Theorem 5.9 (Kodaira vanishing and the spectral gap). Let L → X be a
positive line bundle. There is a constant C such that for all q > 0 and all suf-
ficiently large k, the lowest eigenvalue ν of ∆∂̄ acting on Ω0,q(X, Lk) satisfies
ν ≥ 2πqk − C.

In particular ∆∂̄ is invertible for large k and hence Hq(X, Lk) = 0 for all q > 0.
(This is known as Kodaira’s vanishing theorem.)

Moreover, the first non-zero eigenvalue µ of the operator ∆∂̄ acting on sections of
Lk satisfies µ ≥ 2πk − C.

The bound on ν follows from that on µ since if ∆∂̄ f = λ f for λ 6= 0
and f ∈ Ω0(X, Lk), then ∂̄ f ∈ Ω0,1(X, Lk) is non-zero and so again an
eigenvector of ∆∂̄ with eigenvalue λ.

From here we can deduce Hörmander’s estimates for solutions of the ∂̄-
equation:

Theorem 5.10 (Hörmander’s estimate). For all large k, given g ∈ Ω0,1(X, Lk)
with ∂̄g = 0 then there is a section f ∈ Ω0(X, Lk) such that

∂̄ f = g

Moreover there is a constant C, independent of g such that the above solution
satisfies ‖ f‖L2 ≤ Ck−1‖g‖L2 .

To see this note that ∂̄∗g is automatically orthogonal to ker ∂ which is
precisely where we can invert ∆∂̄. Set f = ∆−1

∂̄
(∂̄∗g). Then ∂̄ f = g since

∂̄g = 0 implies that ∆∂̄g = ∂̄∂̄∗g. Finally the estimate on ‖ f‖L2 follows
from the lower bound on the first non-zero eigenvalue of ∆∂̄ on sections
proved above.

Return now to our goal of producing a section s′k,x of Lk peaked at a
point x, in the sense that it has all the properties listed in part 2 of
Theorem5.7. Recall that we began by gluing in a peaked section using
the Euclidean model to obtain a section s̃k,x with ‖∂̄s̃k,x‖L2 = O(1). Now
apply Hörmander’s estimate to obtain a solution to ∂̄ fk = −∂̄s̃k,x with
‖ fk‖L2 ≤ Ck−1. Setting s′k,x = s̃k,x + fk we obtain a holomorphic section of

Lk which is very close to the glued in Gaussian when k is large, at least
initially L2. To get better control of the adjustment in fk one needs to use
standard elliptic estimates for ∆∂̄ to pass from L2 to Ck. We do not give
the details here.

Now s′k,x is non-zero at x (it is of order kn even) and so the subspace

Vx ⊂ H0(X, Lk) of sections vanishing at x is indeed of codimension 1.
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Moreover, whilst s′k,x is not quite L2-orthogonal to Vx it is asymptotically
so as k → ∞, because it’s mass in L2 is localised at x. From here one can
finish the proof of Theorem 5.7 by projecting s′k,x to V⊥

x .

Exercises 5.2.

1. Let E → X be a Hermitian holomorphic vector bundle over a Kähler
manifold. We write ∂E and ∂̄E for the (1, 0) and (0, 1)-components
respectively of the Chern connection on E. We also write L(α) =
ω ∧ α for the operation of wedging with the Kähler form.

Prove the twisted Kähler identities:

[∂∗E, L] = −i∂̄E, [∂̄∗E, L] = i∂E

2. Starting from the twisted Kähler identities, prove the Bochner–Kodaira–
Nakano identity, Theorem 5.8 above.

3. Recall L : Ωp,q → Ωp+1,q+1 is the operation of wedging with ω, whilst
Λ : Ωp,q → Ωp−1,q−1 is its adjoint.

Prove that on (p, q)-forms [L, Λ] = p + q − n.

4. Prove that if L is a positive line bundle and p+ q > n then Hp,q(X, L) =
0. (This is called Nakano’s vanishing theorem.)

5.4 Tian’s theorem on projective embeddings

Let L → X be a positive line bundle. We are interested in the space H of
all Kähler metrics in c1(L). By Kodaira’s theorem, high powers Lk give rise
to embeddings into projective spaces P(H0(X, Lk)∗). If we choose a basis
of H0(X, Lk) we can identify with a “standard” projective space CPdk and
pull the Fubini–Study metric. This gives a metric 1

k f ∗ωFS ∈ c1(L). (The
rescaling is necessary since the unscaled metric lies in c1(Lk) = kc1(L)).

Varying the basis will, in general, give different metrics. The linear group
GL(dk + 1, C) acts transitively on the set of all bases and two choices de-
termine the same metric if and only if they are related by an element of
U(dk + 1). It follows that using embeddings via Lk to produce metrics in
yields a subset Bk ⊂ H,

Bk
∼= GL(dk + 1, C)/ U(dk + 1)

where dk + 1 = dim H0(X, Lk).

Definition 5.11. The subset Bk ⊂ H is called the kth Bergman space and
its element are called Bergman metrics at level k.
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A natural question is whether or not the Bergman spaces fill out all of H
in the limit as k → ∞. This is part of the content of Tian’s theorem, which
we will state shortly. In fact the theorem says more, given ω ∈ H, it gives a
systematic way to construct a sequence ωk ∈ Bk of Bergman metrics which
converge to ω as k → ∞.

To construct ωk, first let h be a Hermitian metric in L with curvature F =
−2πiω. (This determines h up to multiplication by a constant, which will
not change the end result.) Each space of sections H0(X, Lk) comes with
an L2-innerproduct. Choosing an orthonormal basis gives a projective
embedding and hence a metric ωk got by rescaling the restriction of the
Fubini–Study metric. Choosing a different orthonormal basis corresponds
to a unitary transformation of projective space which doesn’t change the
resulting metric.

So there is a canonical sequence ωk ∈ Bk associated to any point ω ∈ H.

Theorem 5.12 (Tian). Given any ω ∈ H, ωk → ω as k → ∞.

To prove this we first introduce something called the Bergman function,
βk : X → R. For each k, let s0, . . . sdk

be an orthonormal basis for H0(X, Lk).
Then set

βk(x) =
dk

∑
j=0

|sj(x)|2

One checks that this function does not depend on the choice of scale for h
nor on the choice of orthonormal basis. It depends solely on ω and k. It
can be thought of as a measure of how spread out the sections of Lk are
over the manifold. The interest for us is that βk determines the difference
of ω and ωk:

Lemma 5.13. ωk = ω + i
k ∂̄∂ log βk

This is a simple calculation based on the definition of the Fubini–Study
metric. From here we see that Tian’s theorem amounts to the statement
that βk is asymptotically constant. But in fact, we have (more-or-less!)
proved this already during our discussion of Kodaira’s theorem.

Theorem 5.14 (Tian). The function βk has the property that

βk(x) = kn +O(kn−1)

as k → ∞. More precisely, for any r there is a constant C such that

‖1 − k−nβk‖Cr ≤ Ck−1

for all large k.
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To see why this should be true, pick x ∈ X and let the first element s0

in the basis be the section peaked at x provided by Theorem 5.7. Since
the L2-orthogonal space to s0 consists of sections vanishing at x, we have
that βk(x) = |s0(x)|2 = kn +O(kn−1). (We admittedly haven’t been precise
enough in our discussion above to see that this holds in Cr.)

Now log βk = n log k + log(k−nβk) and so ‖ log βk − n log k‖Cr ≤ Ck−1 for
some constant C. From here it follows that

‖ωk − ω‖Cr−2 ≤ Ck−2

which implies Tian’s theorem.

Exercises 5.3.

1. Prove Lemma 5.13.

6 Balanced embeddings and Luo–Zhang’s theorem

In this section we will discuss “best” projective embeddings which are
projectively equivalent to a given one X ⊂ CPd. We will approach this in
such a way as to highlight as much as possible the analogies with Calabi’s
suggestion of extremal metrics being best representatives of a given Kähler
class.

6.1 Balanced embeddings and balancing energy

Throughout this and subsequent sections we will make use of an embed-
ding µ : CPd → Herm(d + 1) of projective space into the Euclidean space
of Hermitian (d + 1) × (d1) matrices. We think of Herm(d + 1) as a Eu-
clidean vector space via the inner-product (A, B) = Tr(AB). To define µ
we send a point p ∈ CPn to the endomorphism of Cn+1 which is orthog-
onal projection onto the line corresponding to p. It is straightforward to
check that this is equivariant with respect to U(d + 1). This means that
the Euclidean metric on Herm(d + 1) restricts to give a U(d + 1)-invariant
metric on CPd and this is one way of defining the Fubini–Study metric.
In fact, if we identify i Herm(d + 1) and u(d + 1)∗ via the inner-product it
is not hard to see that the map µ is essentially the moment map for the
action of U(n + 1) on CPd, embedding it as a coadjoint orbit.

Now, given a complex submanifold X ⊂ CPd we can think of X as a subset
of Herm(d + 1) and ask for its centre of mass. We set

µ̄(X) =
∫

X
µ

ωn
FS

n!
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