Riemann-Roch-Grothendieck theorem for families of curves with hyperbolic cusps and its applications to the moduli space of curves

Finski Siarhei Paris Diderot University

17 July 2019 Cologne, Germany 1 Riemann-Roch-Grothendieck theorem and curvature theorem

2 Motivation

- 3 Definition of Quillen metric for surfaces with cusps
- 4 Relative compact perturbation theorem
- 5 Anomaly formula
- 6 Curvature theorem for family of curves with cusps

Riemann-Roch-Grothendieck theorem and curvature theorem

$\pi: X \to S$ proper holomorphic submersion, relative dimension 1

 $\pi : X \to S$ proper holomorphic submersion, relative dimension 1 $\omega_{X/S} = (\Lambda^{\max} T^{*(1,0)}X) \otimes (\Lambda^{\max} T^{*(1,0)}S)^{-1}$ the relative canonical line bundle of π

$$t \in S, X_t = \pi^{-1}(t)$$

$\boldsymbol{\xi}$ a holomorphic vector bundle over \boldsymbol{X}

ξ a holomorphic vector bundle over X

$$\Omega^{i,j}(X_t,\xi) = \mathscr{C}^{\infty}(X_t, T^{*(i,j)}X_t\otimes\xi), \quad i,j=0,1$$

$\boldsymbol{\xi}$ a holomorphic vector bundle over \boldsymbol{X}

$$egin{aligned} \Omega^{i,j}(X_t,\xi) &= \mathscr{C}^\infty(X_t, T^{*(i,j)}X_t\otimes \xi), \quad i,j=0,1 \ 0 & o \Omega^{0,0}(X_t,\xi) \xrightarrow{\overline{\partial}} \Omega^{0,1}(X_t,\xi) o 0 \end{aligned}$$

$\boldsymbol{\xi}$ a holomorphic vector bundle over \boldsymbol{X}

$$\begin{split} \Omega^{i,j}(X_t,\xi) &= \mathscr{C}^{\infty}(X_t,T^{*(i,j)}X_t\otimes\xi), \quad i,j=0,1\\ 0 &\to \Omega^{0,0}(X_t,\xi) \xrightarrow{\overline{\partial}} \Omega^{0,1}(X_t,\xi) \to 0\\ H^0(X_t,\xi) &= \ker(\overline{\partial}), \qquad H^1(X_t,\xi) = \Omega^{0,1}(X_t,\xi) / \operatorname{Im}(\overline{\partial}) \end{split}$$

The determinant of the cohomology $\lambda(j^*\xi)_t = (\Lambda^{\max} H^0(X_t, \xi|_{X_t}))^{-1} \otimes \Lambda^{\max} H^1(X_t, \xi|_{X_t}), \quad t \in S$ family of complex lines over S The determinant of the cohomology $\lambda(j^*\xi)_t = (\Lambda^{\max} H^0(X_t, \xi|_{X_t}))^{-1} \otimes \Lambda^{\max} H^1(X_t, \xi|_{X_t}), \quad t \in S$ family of complex lines over S

Grothendieck-Knudsen-Mumford : $\lambda(j^*\xi)_t, t \in S$ form a holomorphic line bundle $\lambda(j^*\xi)$ over S Theorem. (Riemann-Roch-Grothendieck, 1957) The following identity holds in $H^{\bullet}(S, \mathbb{Q})$: $c_{1}(\lambda(j^{*}\xi)) = -\int_{\pi} \left[\mathrm{Td}(\omega_{X/S})\mathrm{ch}(\xi) \right]^{[4]}$

$$Td(\xi) = 1 + \frac{c_1(\xi)}{2} + \frac{c_1(\xi)^2 + c_2(\xi)}{12} + \dots$$
$$ch(\xi) = rk(\xi) + c_1(\xi) + \frac{c_1(\xi)^2 - 2c_2(\xi)}{2} + \dots$$

Y a complex manifold

Y a complex manifold

 (E, h^E) a holomorphic Hermitian vector bundle over Y

Y a complex manifold

 (E, h^E) a holomorphic Hermitian vector bundle over Y ∇^E the Chern connection on (E, h^E)

$$\blacksquare R^E = (\nabla^E)^2 \in \Omega^{1,1}(Y, \operatorname{End}(E))$$

$$R^{E} = (\nabla^{E})^{2} \in \Omega^{1,1}(Y, \operatorname{End}(E))$$
$$\operatorname{ch}(E, h^{E}) = \operatorname{Tr}\left[\exp\left(-\frac{R^{E}}{2\pi\sqrt{-1}}\right)\right] \in \bigoplus_{p \in \mathbb{N}} \Omega^{p,p}(Y)$$
$$\operatorname{Td}(E, h^{E}) = \det\left[\frac{R^{E}}{\exp(R^{E}) - 1}\right] \in \bigoplus_{p \in \mathbb{N}} \Omega^{p,p}(Y)$$

$$R^{E} = (\nabla^{E})^{2} \in \Omega^{1,1}(Y, \operatorname{End}(E))$$
$$\operatorname{ch}(E, h^{E}) = \operatorname{Tr}\left[\exp\left(-\frac{R^{E}}{2\pi\sqrt{-1}}\right)\right] \in \bigoplus_{p \in \mathbb{N}} \Omega^{p,p}(Y)$$
$$\operatorname{Td}(E, h^{E}) = \det\left[\frac{R^{E}}{\exp(R^{E}) - 1}\right] \in \bigoplus_{p \in \mathbb{N}} \Omega^{p,p}(Y)$$

■ $Td(E, h^E)$, $ch(E, h^E)$ are closed forms

$$R^{E} = (\nabla^{E})^{2} \in \Omega^{1,1}(Y, \operatorname{End}(E))$$
$$\operatorname{ch}(E, h^{E}) = \operatorname{Tr}\left[\exp\left(-\frac{R^{E}}{2\pi\sqrt{-1}}\right)\right] \in \bigoplus_{p \in \mathbb{N}} \Omega^{p,p}(Y)$$
$$\operatorname{Td}(E, h^{E}) = \det\left[\frac{R^{E}}{\exp(R^{E}) - 1}\right] \in \bigoplus_{p \in \mathbb{N}} \Omega^{p,p}(Y)$$

■ Td(*E*, *h^E*), ch(*E*, *h^E*) are closed forms
■ Chern-Weil :
$$[ch(E, h^E)]_{DR} = ch(E) \in \bigoplus_{p \in \mathbb{N}} H^{2p}(Y, \mathbb{R})$$

 $[Td(E, h^E)]_{DR} = Td(E) \in \bigoplus_{p \in \mathbb{N}} H^{2p}(Y, \mathbb{R})$

$\pi: X \to S$ proper holomorphic submersion, relative dimension 1

$\pi: X \to S$ proper holomorphic submersion, relative dimension 1 $\|\cdot\|_{X/S}^{\omega}$ a Hermitian norm on $\omega_{X/S}$

 $\pi: X \to S$ proper holomorphic submersion, relative dimension 1 $\|\cdot\|_{X/S}^{\omega}$ a Hermitian norm on $\omega_{X/S}$

 (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over X

 $\pi: X \to S$ proper holomorphic submersion, relative dimension 1 $\|\cdot\|_{X/S}^{\omega}$ a Hermitian norm on $\omega_{X/S}$

 (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over X

$$c_1(\lambda(j^*\xi), ?) = -\int_{\pi} \left[\mathrm{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega})^2) \mathrm{ch}(\xi, h^{\xi}) \right]^{[4]}$$

L^2 product and Hodge theory

• *L*²-Hermitian product. Let $\alpha, \alpha' \in \Omega^{0,\bullet}(X_t, \xi)$ $\langle \alpha, \alpha' \rangle_{L^2} = \int_{X_t} \langle \alpha(x), \alpha'(x) \rangle_h dv_{X_t}(x),$ $\langle \cdot, \cdot \rangle_h$ the pointwise Hermitian product induced by $h^{\xi}, \|\cdot\|_{X/S}^{\omega}$.

L² product and Hodge theory

~

•
$$L^2$$
-Hermitian product. Let $\alpha, \alpha' \in \Omega^{0,\bullet}(X_t, \xi)$
 $\langle \alpha, \alpha' \rangle_{L^2} = \int_{X_t} \langle \alpha(x), \alpha'(x) \rangle_h dv_{X_t}(x),$
 $\langle \cdot, \cdot \rangle_h$ the pointwise Hermitian product induced by $h^{\xi}, \|\cdot\|_{X/S}^{\omega}$.

$$\begin{array}{c} \bullet \quad 0 \rightarrow \Omega^{0,0}(X_t,\xi) \xrightarrow{\partial} \Omega^{0,1}(X_t,\xi) \rightarrow 0, \\ \Box_t^{\xi} = \overline{\partial} \, \overline{\partial}^* + \overline{\partial}^* \overline{\partial} \end{array} \end{array}$$

L² product and Hodge theory

~

•
$$L^2$$
-Hermitian product. Let $\alpha, \alpha' \in \Omega^{0,\bullet}(X_t, \xi)$
 $\langle \alpha, \alpha' \rangle_{L^2} = \int_{X_t} \langle \alpha(x), \alpha'(x) \rangle_h dv_{X_t}(x),$
 $\langle \cdot, \cdot \rangle_h$ the pointwise Hermitian product induced by $h^{\xi}, \|\cdot\|_{X/S}^{\omega}$.

$$\begin{array}{l} \bullet \quad 0 \to \Omega^{0,0}(X_t,\xi) \xrightarrow{\partial} \Omega^{0,1}(X_t,\xi) \to 0, \\ \Box_t^{\xi} = \overline{\partial} \,\overline{\partial}^* + \overline{\partial}^* \overline{\partial} \\ \bullet \quad \langle \Box_t^{\xi} \alpha, \alpha \rangle_{L^2} = \langle \overline{\partial} \alpha, \overline{\partial} \alpha \rangle + \langle \overline{\partial}^* \alpha, \overline{\partial}^* \alpha \rangle, \\ \ker(\Box^{\xi}|_{\Omega^{0,\bullet}(X_t,\xi)}) = \{ s \in \Omega^{0,\bullet}(X_t,\xi) \, | \, \overline{\partial} s = 0, \, \, \overline{\partial}^* s = 0 \} \end{array}$$

L² product and Hodge theory

$$\begin{array}{l} L^{2}\text{-Hermitian product. Let } \alpha, \alpha' \in \Omega^{0,\bullet}(X_{t},\xi) \\ \left\langle \alpha, \alpha' \right\rangle_{L^{2}} = \int_{X_{t}} \left\langle \alpha(x), \alpha'(x) \right\rangle_{h} dv_{X_{t}}(x), \\ \left\langle \cdot, \cdot \right\rangle_{h} \text{ the pointwise Hermitian product induced by } h^{\xi}, \|\cdot\|_{X/S}^{\omega}. \end{array} \\ \hline 0 \to \Omega^{0,0}(X_{t},\xi) \xrightarrow{\overline{\partial}} \Omega^{0,1}(X_{t},\xi) \to 0, \\ \Box_{t}^{\xi} = \overline{\partial} \overline{\partial}^{*} + \overline{\partial}^{*} \overline{\partial} \\ \hline \left\langle \Box_{t}^{\xi} \alpha, \alpha \right\rangle_{L^{2}} = \left\langle \overline{\partial} \alpha, \overline{\partial} \alpha \right\rangle + \left\langle \overline{\partial}^{*} \alpha, \overline{\partial}^{*} \alpha \right\rangle, \\ \ker(\Box^{\xi}|_{\Omega^{0,\bullet}(X_{t},\xi)}) = \{s \in \Omega^{0,\bullet}(X_{t},\xi) \mid \overline{\partial} s = 0, \ \overline{\partial}^{*} s = 0\} \\ \ker(\Box^{\xi}|_{\Omega^{0,\bullet}(X_{t},\xi)}) \to H^{\bullet}(X_{t},\xi) \end{array}$$

L^2 product and Hodge theory

• L^2 -Hermitian product. Let $\alpha, \alpha' \in \Omega^{0,\bullet}(X_t, \xi)$ $\langle \alpha, \alpha' \rangle_{L^2} = \int_{X_t} \langle \alpha(x), \alpha'(x) \rangle_h dv_{X_t}(x),$ $\langle \cdot, \cdot \rangle_h$ the pointwise Hermitian product induced by $h^{\xi}, \|\cdot\|_{X/S}^{\omega}$.

$$\begin{array}{l} \bullet \ 0 \to \Omega^{0,0}(X_t,\xi) \xrightarrow{\partial} \Omega^{0,1}(X_t,\xi) \to 0, \\ \Box_t^{\xi} = \overline{\partial} \,\overline{\partial}^* + \overline{\partial}^* \overline{\partial} \\ \bullet & \langle \Box_t^{\xi} \alpha, \alpha \rangle_{L^2} = \langle \overline{\partial} \alpha, \overline{\partial} \alpha \rangle + \langle \overline{\partial}^* \alpha, \overline{\partial}^* \alpha \rangle, \\ \ker(\Box^{\xi}|_{\Omega^{0,\bullet}(X_t,\xi)}) = \{ s \in \Omega^{0,\bullet}(X_t,\xi) \, | \, \overline{\partial} s = 0, \, \, \overline{\partial}^* s = 0 \} \\ \ker(\Box^{\xi}|_{\Omega^{0,\bullet}(X_t,\xi)}) \simeq H^{\bullet}(X_t,\xi) \\ \operatorname{Hodge theory} \end{array}$$

L^2 product and Hodge theory

- L^2 -Hermitian product. Let $\alpha, \alpha' \in \Omega^{0,\bullet}(X_t,\xi)$ $\langle \alpha, \alpha' \rangle_{L^2} = \int_{X_t} \langle \alpha(\mathbf{x}), \alpha'(\mathbf{x}) \rangle_h dv_{X_t}(\mathbf{x}),$ $\langle \cdot, \cdot \rangle_h$ the pointwise Hermitian product induced by $h^{\xi}, \|\cdot\|_{X/S}^{\omega}$. $\blacksquare 0 \to \Omega^{0,0}(X_t,\xi) \xrightarrow{\partial} \Omega^{0,1}(X_t,\xi) \to 0,$ $\Box^{\xi}_{t} = \overline{\partial} \, \overline{\partial}^{*} + \overline{\partial}^{*} \overline{\partial}$ $\ker(\Box^{\xi}|_{\Omega^{0,\bullet}(X_{t},\xi)}) = \{ s \in \Omega^{0,\bullet}(X_{t},\xi) \mid \overline{\partial}s = 0, \ \overline{\partial}^{*}s = 0 \}$ $\ker(\Box^{\xi}|_{\Omega^{0,\bullet}(X_{t},\xi)}) \simeq H^{\bullet}(X_{t},\xi)$ Hodae theory
- induces the L^2 -norm $\|\cdot\|_{L^2} (g^{TX_t}, h^{\xi})$ over $\lambda(j^*\xi)_t = (\Lambda^{\max} H^0(X_t, \xi|_{X_t}))^{-1} \otimes \Lambda^{\max} H^1(X_t, \xi|_{X_t})$

From now on $\Box_t^{\xi} := \Box^{\xi}|_{\Omega^{0,0}(X_t,\xi)}$

From now on
$$\Box_t^{\xi} := \Box^{\xi}|_{\Omega^{0,0}(X_t,\xi)}$$

 \Box_t^{ξ} essentially self-adjoint

From now on $\Box_t^{\xi} := \Box^{\xi}|_{\Omega^{0,0}(X_t,\xi)}$ \Box_t^{ξ} essentially self-adjoint $\operatorname{Spec}(\Box_t^{\xi}) = \{\lambda_{1,t}, \lambda_{2,t}, \ldots\}, \lambda_{i,t} \text{ non decreasing}, \ \lambda_{i,t} \to \infty$

From now on
$$\Box_t^{\xi} := \Box^{\xi}|_{\Omega^{0,0}(X_{t,\xi})}$$

 \Box_t^{ξ} essentially self-adjoint
 $\operatorname{Spec}(\Box_t^{\xi}) = \{\lambda_{1,t}, \lambda_{2,t}, \ldots\}, \lambda_{i,t} \text{ non decreasing}, \ \lambda_{i,t} \to \infty$

$$\det' \Box_t^{\xi} = \prod_{\lambda_{i,t} \neq 0}^{\infty} \lambda_{i,t}.$$

From now on
$$\Box_t^{\xi} := \Box^{\xi}|_{\Omega^{0,0}(X_t,\xi)}$$

 \Box_t^{ξ} essentially self-adjoint
 $\operatorname{Spec}(\Box_t^{\xi}) = \{\lambda_{1,t}, \lambda_{2,t}, \ldots\}, \lambda_{i,t} \text{ non decreasing}, \ \lambda_{i,t} \to \infty$

$$\det' \Box_t^{\xi} = \prod_{\lambda_{i,t} \neq 0}^{\infty} \lambda_{i,t}.$$

Problem : Need to make sense of the infinite product...

Weyl's law : $\lambda_{i,t}$ increase asymptotically linearly with *i*
Weyl's law : $\lambda_{i,t}$ increase asymptotically linearly with *i*

$$\zeta_{\xi,t}(s) = \sum_{\lambda_{i,t} \neq 0}^{\infty} \frac{1}{(\lambda_{i,t})^s}, \text{ for } \operatorname{Re}(s) > 1$$

Weyl's law : $\lambda_{i,t}$ increase asymptotically linearly with *i*

$$\zeta_{\xi,t}(s) = \sum_{\lambda_{i,t} \neq 0}^{\infty} \frac{1}{(\lambda_{i,t})^s}, \text{ for } \operatorname{Re}(s) > 1$$

Definition of the determinant. (Ray-Singer, 1973)

$$\det' \Box_t^{\xi} = \exp\left(-\zeta_{\xi,t}'(0)\right)$$

Quillen norm

Hermitian norm on $\lambda(j^*\xi)$, given by

$$\left\|\cdot\right\|^{Q}\left(g^{\mathsf{TX}_{t}},h^{\xi}\right)=\left(\det{'}\Box_{t}^{\xi}\right)^{1/2}\cdot\left\|\cdot\right\|_{L^{2}}\left(g^{\mathsf{TX}_{t}},h^{\xi}\right)$$

Quillen norm

Hermitian norm on $\lambda(j^*\xi)$, given by

$$\left\|\cdot\right\|^{Q}\left(g^{\mathsf{TX}_{t}},h^{\xi}\right)=\left(\det{'}\Box_{t}^{\xi}\right)^{1/2}\cdot\left\|\cdot\right\|_{L^{2}}\left(g^{\mathsf{TX}_{t}},h^{\xi}\right)$$

Curvature theorem. (Bismut-Gillet-Soulé, 1988)

Hermitian norm $\|\cdot\|^Q (g^{TX_t}, h^{\xi})$ is smooth over *S*

Quillen norm

Hermitian norm on $\lambda(j^*\xi)$, given by

$$\left\|\cdot\right\|^{Q}\left(g^{\mathsf{TX}_{t}},h^{\xi}\right)=\left(\det{'}\Box_{t}^{\xi}\right)^{1/2}\cdot\left\|\cdot\right\|_{L^{2}}\left(g^{\mathsf{TX}_{t}},h^{\xi}\right)$$

Curvature theorem. (Bismut-Gillet-Soulé, 1988)

Hermitian norm $\|\cdot\|^Q (g^{TX_t}, h^{\xi})$ is smooth over *S*

$$\begin{aligned} c_1 \left(\lambda(j^*\xi), \left(\left\| \cdot \right\|^Q \left(g^{TX_t}, h^{\xi} \right) \right)^2 \right) \\ &= -\int_{\pi} \left[\mathrm{Td}(\omega_{X/S}, \left(\left\| \cdot \right\|_{X/S}^{\omega} \right)^2 \right) \mathrm{ch}(\xi, h^{\xi}) \right]^{[4]} \end{aligned}$$

Motivation

 \overline{M} a compact Riemann surface $D_M = \{P_1, P_2, \dots, P_m\} \subset \overline{M}, M = \overline{M} \setminus D_M$

$$\overline{M} \text{ a compact Riemann surface} \\ D_M = \{P_1, P_2, \dots, P_m\} \subset \overline{M}, M = \overline{M} \setminus D_M \\ g^{TM} \text{ is a K\"ahler metric on } M \\ z_1, \dots, z_m \text{ local holomorphic coordinates, } z_i(0) = \{P_i\} \\ \text{Suppose } g^{TM} \text{ over } \{|z_i| < \epsilon\} \text{ is induced by} \\ \frac{\sqrt{-1}dz_i d\overline{z}_i}{|z_i \log |z_i||^2}.$$

$$\overline{M} \text{ a compact Riemann surface} \\ D_M = \{P_1, P_2, \dots, P_m\} \subset \overline{M}, M = \overline{M} \setminus D_M \\ g^{TM} \text{ is a K\"ahler metric on } M \\ z_1, \dots, z_m \text{ local holomorphic coordinates, } z_i(0) = \{P_i\} \\ \text{Suppose } g^{TM} \text{ over } \{|z_i| < \epsilon\} \text{ is induced by} \\ \frac{\sqrt{-1}dz_i d\overline{z}_i}{|z_i \log |z_i||^2}. \\ \text{We call } (\overline{M}, D_M, g^{TM}) \text{ a surface with cusps} \end{cases}$$

Suppose $2g(\overline{M}) - 2 + \#D_M > 0$, i.e. (\overline{M}, D_M) is stable

Suppose $2g(\overline{M}) - 2 + \#D_M > 0$, i.e. (\overline{M}, D_M) is stable

By uniformization theorem, there is exactly one csc -1 complete metric g_{hyp}^{TM} of finite volume on $M = \overline{M} \setminus D_M$

Suppose $2g(\overline{M}) - 2 + \#D_M > 0$, i.e. (\overline{M}, D_M) is stable

By uniformization theorem, there is exactly one csc -1 complete metric g_{hyp}^{TM} of finite volume on $M = \overline{M} \setminus D_M$

The triple $(\overline{M}, D_M, g_{hyp}^{TM})$ is a surface with cusps

Motivation

We want to extend the theory of Quillen metrics to surfaces with hyperbolic cusps and degenerating families with singular fibers

Why?

Motivation

We want to extend the theory of Quillen metrics to surfaces with hyperbolic cusps and degenerating families with singular fibers

Why?

Problem on its own.

Why?

- Problem on its own.
- Universal curve π : $\mathscr{C}_{g,m} \to \mathscr{M}_{g,m}$ with csc -1 metric $\|\cdot\|_{\chi/S}^{\omega,\mathrm{hyp}}$

Why?

Problem on its own. Universal curve $\pi : \mathscr{C}_{g,m} \to \mathscr{M}_{g,m}$ with $\csc -1$ metric $\|\cdot\|_{X/S}^{\omega, hyp}$ On $\mathscr{M}_{g,m}$, we have $\int_{\pi} \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega, hyp})^2) \right]^{[4]} =^* \omega_{WP}$.

Why?

Problem on its own.
 Universal curve π : C_{g,m} → M_{g,m} with csc -1 metric ||·||^{ω,hyp}_{X/S}
 On M_{g,m}, we have ∫_π [Td(ω_{X/S}, (||·||^{ω,hyp}_{X/S})²)]^[4] =* ω_{WP}.
 As we expect c₁(λ, (||·||^Q)²) = - ∫_π [Td(ω_{X/S}, (||·||^{ω,hyp}_{X/S})²)]^[4]

Why?

Problem on its own.
Universal curve $\pi : \mathscr{C}_{g,m} \to \mathscr{M}_{g,m}$ with $\csc -1$ metric $\|\cdot\|_{X/S}^{\omega,hyp}$ On $\mathscr{M}_{g,m}$, we have $\int_{\pi} \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega,hyp})^2) \right]^{[4]} =^* \omega_{WP}$.
As we expect $c_1(\lambda, (\|\cdot\|^Q)^2) = -\int_{\pi} \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega,hyp})^2) \right]^{[4]}$ Regularity of $\|\cdot\|^Q$ near $\partial \mathscr{M}_{g,m}$ \downarrow Regularity of ω_{WP} near $\partial \mathscr{M}_{g,m}$.

Why?

- Problem on its own.
 Universal curve $\pi : \mathscr{C}_{g,m} \to \mathscr{M}_{g,m}$ with $\csc -1$ metric $\|\cdot\|_{X/S}^{\omega,hyp}$ On $\mathscr{M}_{g,m}$, we have $\int_{\pi} \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega,hyp})^2) \right]^{[4]} =^* \omega_{WP}$.
 As we expect $c_1(\lambda, (\|\cdot\|^Q)^2) = -\int_{\pi} \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega,hyp})^2) \right]^{[4]}$ Regularity of $\|\cdot\|^Q$ near $\partial \mathscr{M}_{g,m}$ \downarrow Regularity of ω_{WP} near $\partial \mathscr{M}_{g,m}$.
- Curvature theorem of Takhtajan-Zograf (csc -1).

Why?

Problem on its own.
Universal curve $\pi : \mathscr{C}_{g,m} \to \mathscr{M}_{g,m}$ with $\csc -1$ metric $\|\cdot\|_{X/S}^{\omega,hyp}$ On $\mathscr{M}_{g,m}$, we have $\int_{\pi} \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega,hyp})^2) \right]^{[4]} =^* \omega_{WP}$.
As we expect $c_1(\lambda, (\|\cdot\|^Q)^2) = -\int_{\pi} \left[\operatorname{Td}(\omega_{X/S}, (\|\cdot\|_{X/S}^{\omega,hyp})^2) \right]^{[4]}$ Regularity of $\|\cdot\|^Q$ near $\partial \mathscr{M}_{g,m}$ \downarrow

Regularity of ω_{WP} near $\partial \mathcal{M}_{g,m}$.

Curvature theorem of Takhtajan-Zograf (csc -1).
 Arithmetic Riemann-Roch theorem for pointed stable curves

Definition of Quillen metric for surfaces with cusps

$\left\|\cdot\right\|^{Q} = \left(\det'\Box\right)^{1/2} \cdot \left\|\cdot\right\|_{L^{2}}$

■ Let $(\overline{M}, D_M, g^{TM})$ be a surface with cusps $\|\cdot\|_M^{\omega}$ the induced Hermitian norm on $\omega_{\overline{M}}$ over M

Let (*M*, *D_M*, *gTM*) be a surface with cusps
 ||·||^ω_M the induced Hermitian norm on ω_M over *M* ω_M(*D*) = ω_M ⊗ 𝒪_M(*D_M*) the twisted canonical line bundle

 Let (M, D_M, gTM) be a surface with cusps
 ||·||^ω_M the induced Hermitian norm on ω_M over M
 ω_M(D) = ω_M ⊗ 𝒪_M(D_M) the twisted canonical line bundle
 ω_M(D) ≃ ω_M, over M
 induces the Hermitian norm ||·||_M on ω_M(D) over M

■ Let $(\overline{M}, D_M, g^{TM})$ be a surface with cusps $\|\cdot\|_M^{\omega}$ the induced Hermitian norm on $\omega_{\overline{M}}$ over M■ $\omega_M(D) = \omega_{\overline{M}} \otimes \mathscr{O}_{\overline{M}}(D_M)$ the twisted canonical line bundle $\omega_M(D) \simeq \omega_{\overline{M}}, \quad \text{over } M$ induces the Hermitian norm $\|\cdot\|_M$ on $\omega_M(D)$ over M

This norm has log singularity $\|dz_i \otimes s_{D_M}/z_i\|_M = |\log |z_i||$

■ Let $(\overline{M}, D_M, g^{TM})$ be a surface with cusps $\|\cdot\|_M^{\omega}$ the induced Hermitian norm on $\omega_{\overline{M}}$ over M■ $\omega_M(D) = \omega_{\overline{M}} \otimes \mathscr{O}_{\overline{M}}(D_M)$ the twisted canonical line bundle $\omega_M(D) \simeq \omega_{\overline{M}}, \quad \text{over } M$ induces the Hermitian norm $\|\cdot\|_M$ on $\omega_M(D)$ over M

This norm has log singularity $\|dz_i \otimes s_{D_M}/z_i\|_M = |\log |z_i||$

• (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over \overline{M}

Let (*M*, *D_M*, *gTM*) be a surface with cusps
||·||^ω_M the induced Hermitian norm on ω_M over *M*ω_M(*D*) = ω_M ⊗ 𝒫_M(*D_M*) the twisted canonical line bundle ω_M(*D*) ≃ ω_M, over *M* induces the Hermitian norm ||·||_M on ω_M(*D*) over *M*

This norm has log singularity $\|dz_i \otimes s_{D_M}/z_i\|_M = |\log |z_i||$

• (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over \overline{M}

$$E_n^{\xi} = \xi \otimes \omega_M(D)^n, \qquad h^{\xi} \otimes (\|\cdot\|_M)^{2n}$$

Let (*M*, *D_M*, *gTM*) be a surface with cusps

||·||^ω_M the induced Hermitian norm on ω_M over *M*ω_M(*D*) = ω_M ⊗ 𝒫_M(*D_M*) the twisted canonical line bundle ω_M(*D*) ≃ ω_M, over *M*induces the Hermitian norm ||·||_M on ω_M(*D*) over *M*

This norm has log singularity $||dz_i \otimes s_{D_M}/z_i||_M = |\log |z_i||$

• (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over \overline{M}

$$E_n^{\xi} = \xi \otimes \omega_M(D)^n, \qquad h^{\xi} \otimes (\|\cdot\|_M)^{2n}$$

For
$$n \leq 0$$
, by Hodge theory*
 $\langle \cdot, \cdot \rangle_{L^2}$ induces the L^2 -norm $\|\cdot\|_{L^2}$ on
 $\lambda(E_n^{\xi}) = (\Lambda^{\max} H^0(\overline{M}, E_n^{\xi}))^{-1} \otimes \Lambda^{\max} H^1(\overline{M}, E_n^{\xi})$

$\left\|\cdot\right\|^{Q} = \left(\det'\Box\right)^{1/2} \cdot \left\|\cdot\right\|_{L^{2}}$

$\Box^{\boldsymbol{E}^{\boldsymbol{\xi}}_n}: \Omega^{0,0}(\boldsymbol{M},\boldsymbol{E}^{\boldsymbol{\xi}}_n) \to \Omega^{0,0}(\boldsymbol{M},\boldsymbol{E}^{\boldsymbol{\xi}}_n)$

$\Box^{E_n^{\xi}}: \Omega^{0,0}(M, E_n^{\xi}) \to \Omega^{0,0}(M, E_n^{\xi})$

It is again self-adjoint by the same reason

$\Box^{E_n^{\xi}}: \Omega^{0,0}(M, E_n^{\xi}) \to \Omega^{0,0}(M, E_n^{\xi})$

It is again self-adjoint by the same reason

As *M* is non-compact, in general Spec($\Box^{E_n^{\xi}}$) is not discrete
$$\Box^{\boldsymbol{E}^{\boldsymbol{\xi}}_n}: \Omega^{0,0}(\boldsymbol{M},\boldsymbol{E}^{\boldsymbol{\xi}}_n) \to \Omega^{0,0}(\boldsymbol{M},\boldsymbol{E}^{\boldsymbol{\xi}}_n)$$

It is again self-adjoint by the same reason

As *M* is non-compact, in general Spec($\Box^{E_n^{\xi}}$) is not discrete

$$\det' \Box^{E_n^{\xi}} \neq \prod_{\lambda_i \neq 0}^{\infty} \lambda_i.$$

{ Length of closed geodesics } \leftrightarrow Spec($\Box^{E_n^{\xi}}$)

{ Length of closed geodesics } \leftrightarrow Spec($\Box^{E_n^{\xi}}$)

Suppose (ξ, h^{ξ}) trivial, (M, D_M, g_{hyp}^{TM}) has csc -1

{ Length of closed geodesics } \leftrightarrow Spec($\Box^{\mathcal{E}_n^{\xi}}$)

Suppose (ξ, h^{ξ}) trivial, (M, D_M, g_{hyp}^{TM}) has csc -1 then the set of simple closed geodesics is discrete

{ Length of closed geodesics } \leftrightarrow Spec($\Box^{E_n^{\xi}}$)

Suppose (ξ, h^{ξ}) trivial, (M, D_M, g_{hyp}^{TM}) has csc -1 then the set of simple closed geodesics is discrete

$$Z_{(\overline{M},D_M)}(s) = \prod_{\gamma} \prod_{k=0}^{\infty} (1 - e^{-(s+k)l(\gamma)})$$

 γ simple closed geodesics on *M*; *I*(γ) is the length of γ .

$$\det'_{TZ} \Box^{E_n^{\xi}} = egin{cases} Z'_{(\overline{M},D_M)}(1), & ext{for } n=0, \ Z_{(\overline{M},D_M)}(-n+1), & ext{for } n<0. \end{cases}$$

$$\det{}_{TZ}'\square^{E_n^{\xi}} = \begin{cases} Z'_{(\overline{M},D_M)}(1), & \text{ for } n = 0, \\ Z_{(\overline{M},D_M)}(-n+1), & \text{ for } n < 0. \end{cases}$$

Motivated by a theorem of Phong-D'Hoker, 1986, which says that when m = 0, two sides of the previous equation coincide^{*}

$$\det'_{\mathcal{TZ}} \Box^{\mathcal{E}_n^{\xi}} = egin{cases} Z'_{(\overline{M}, D_M)}(1), & ext{for } n=0, \ Z_{(\overline{M}, D_M)}(-n+1), & ext{for } n<0. \end{cases}$$

Motivated by a theorem of Phong-D'Hoker, 1986, which says that when m = 0, two sides of the previous equation coincide^{*}

Limitations of this approach

$$\det{}_{TZ}'\square^{E_n^{\xi}} = \begin{cases} Z'_{(\overline{M},D_M)}(1), & \text{ for } n = 0, \\ Z_{(\overline{M},D_M)}(-n+1), & \text{ for } n < 0. \end{cases}$$

Motivated by a theorem of Phong-D'Hoker, 1986, which says that when m = 0, two sides of the previous equation coincide^{*}

Limitations of this approach

Restriction on the topology $2g(\overline{M}) - 2 + \#D_M > 0$.

$$\det{}_{TZ}'\square^{E_n^{\xi}} = \begin{cases} Z'_{(\overline{M},D_M)}(1), & \text{ for } n = 0, \\ Z_{(\overline{M},D_M)}(-n+1), & \text{ for } n < 0. \end{cases}$$

Motivated by a theorem of Phong-D'Hoker, 1986, which says that when m = 0, two sides of the previous equation coincide^{*}

Limitations of this approach

- Restriction on the topology $2g(\overline{M}) 2 + \#D_M > 0$.
- Complex structure predefines the Kähler metric.

$$\det'_{TZ} \Box^{E_n^{\xi}} = egin{cases} Z'_{(\overline{M},D_M)}(1), & ext{for } n=0, \ Z_{(\overline{M},D_M)}(-n+1), & ext{for } n<0. \end{cases}$$

Motivated by a theorem of Phong-D'Hoker, 1986, which says that when m = 0, two sides of the previous equation coincide^{*}

Limitations of this approach

- Restriction on the topology $2g(\overline{M}) 2 + \#D_M > 0$.
- Complex structure predefines the Kähler metric.
- No liberty in choosing (ξ, h^{ξ}) .

Analytic approach to the determinant

$$\lambda^{-s} = rac{1}{\Gamma(s)} \int_{0}^{+\infty} \exp(-\lambda t) t^{s-1} dt$$

$$\lambda^{-s} = \frac{1}{\Gamma(s)} \int_{0}^{+\infty} \exp(-\lambda t) t^{s-1} dt$$

If *M* is compact, i.e. $m = 0$

$$\zeta_{E_n^{\xi}}(s) = \sum_{\lambda \in \operatorname{Spec}(\Box^{E_n^{\xi}}) \setminus \{0\}} \lambda^{-s} \qquad (\star)$$

$$= \frac{1}{\Gamma(s)} \int_0^{+\infty} \operatorname{Tr}\left[\exp^{\perp}(-t \Box^{E_n^{\xi}})\right] t^{s-1} dt \qquad (\star\star)$$

$$\lambda^{-s} = \frac{1}{\Gamma(s)} \int_{0}^{+\infty} \exp(-\lambda t) t^{s-1} dt$$

If *M* is compact, i.e. $m = 0$

$$\zeta_{E_{n}^{\xi}}(s) = \sum_{\lambda \in \text{Spec}(\Box^{E_{n}^{\xi}}) \setminus \{0\}} \lambda^{-s} \qquad (\star)$$

$$= \frac{1}{\Gamma(s)} \int_{0}^{+\infty} \text{Tr}\Big[\exp^{\perp}(-t\Box^{E_{n}^{\xi}})\Big] t^{s-1} dt \qquad (\star\star)$$

For
$$m > 0$$
?
Idea : define $\zeta_{E_n^{\xi}}(s)$ for $m > 0$ using (**) and not (*)

 $-\overline{\Gamma(s)}\int_0$

$$\lambda^{-s} = \frac{1}{\Gamma(s)} \int_0^{+\infty} \exp(-\lambda t) t^{s-1} dt$$

If *M* is compact, i.e. m = 0

$$\begin{aligned} \zeta_{E_n^{\xi}}(s) &= \sum_{\lambda \in \operatorname{Spec}(\Box^{E_n^{\xi}}) \setminus \{0\}} \lambda^{-s} \qquad (\star) \\ &= \frac{1}{\Gamma(s)} \int_0^{+\infty} \operatorname{Tr}\Big[\exp^{\perp}(-t \Box^{E_n^{\xi}})\Big] t^{s-1} dt \qquad (\star\star) \end{aligned}$$

 For m > 0 ? Idea : define ζ_{E^ξ_n}(s) for m > 0 using (**) and not (*)
 Problem : exp[⊥](-t□^{E^ξ_n}) is not of trace class for m > 0

$A \in \operatorname{End}(\mathbb{C}^n), n \in \mathbb{N},$ self-adjoint

 $A \in \operatorname{End}(\mathbb{C}^n), n \in \mathbb{N},$ self-adjoint $\operatorname{Tr}[A] = \sum \lambda_i, \qquad (\lambda_i)_{i=0}^n$ eigenvalues $A \in \operatorname{End}(\mathbb{C}^{n}), n \in \mathbb{N}, \quad \text{self-adjoint}$ $\operatorname{Tr}\left[A\right] = \sum \lambda_{i}, \quad (\lambda_{i})_{i=0}^{n} \text{ eigenvalues}$ $A = (a_{kl})_{k,l=1}^{n}, \quad v = (b_{1}, \dots, b_{n})$ $Av = \left(\sum a_{1i}b_{i}, \sum a_{2i}b_{i}, \dots, \sum a_{ni}b_{i}\right)$

 $A \in \text{End}(\mathbb{C}^n), n \in \mathbb{N},$ self-adjoint $\operatorname{Tr} |\mathbf{A}| = \sum \lambda_i, \qquad (\lambda_i)_{i=0}^n$ eigenvalues $A = (a_{kl})_{k}^{n} = (b_1, \ldots, b_n)$ $Av = \left(\sum a_{1i}b_i, \sum a_{2i}b_i, \dots, \sum a_{ni}b_i\right)$ $\mathrm{Tr}[A] = \sum a_{ii}$

$$A \in \operatorname{End}(\mathbb{C}^{n}), n \in \mathbb{N}, \quad \text{self-adjoint}$$
$$\operatorname{Tr}\left[A\right] = \sum \lambda_{i}, \quad (\lambda_{i})_{i=0}^{n} \text{ eigenvalues}$$
$$A = (a_{kl})_{k,l=1}^{n}, \quad v = (b_{1}, \dots, b_{n})$$
$$Av = \left(\sum a_{1i}b_{i}, \sum a_{2i}b_{i}, \dots, \sum a_{ni}b_{i}\right)$$
$$\operatorname{Tr}\left[A\right] = \sum a_{ii}$$
Idea : if $\operatorname{Tr}\left[A\right] = +\infty$, we define $\operatorname{Tr}^{r}\left[A\right] = \sum_{a_{ii} \neq +\infty} a_{ii}$.

Regularizing trace, I

The operator $\exp(-t\Box^{E_n^{\xi}})$ has a smooth Schwartz kernel $\exp(-t\Box^{E_n^{\xi}})(x, y) \in (E_n^{\xi})_x \otimes (E_n^{\xi})_y^*, \quad x, y \in M$ $\exp(-t\Box^{E_n^{\xi}})s = \int_M \left\langle \exp(-t\Box^{E_n^{\xi}})(x, y), s(y) \right\rangle dv_M(y).$

Regularizing trace, I

The operator
$$\exp(-t\Box^{E_n^{\xi}})$$
 has a smooth Schwartz kernel
$$\exp(-t\Box^{E_n^{\xi}})(x,y) \in (E_n^{\xi})_x \otimes (E_n^{\xi})_y^*, \quad x,y \in M$$

$$\exp(-t\Box^{E_n^{\xi}})s = \int_M \left\langle \exp(-t\Box^{E_n^{\xi}})(x,y), s(y) \right\rangle dv_M(y).$$
If $m = 0$, $\operatorname{Tr}\left[\exp(-t\Box^{E_n^{\xi}})\right] = \int_{\overline{M}} \operatorname{Tr}\left[\exp(-t\Box^{E_n^{\xi}})(x,x)\right] dv_M(x).$

Regularizing trace, I

as $r \rightarrow 0$, where M_r is the non-striped region

$${m P}={\Bbb C}{m P}^1\setminus\{0,1,\infty\},$$
 $g^{T\!P}$ hyperbolic metric csc -1 over ${m P}$

$$P = \mathbb{C}P^{1} \setminus \{0, 1, \infty\},$$

$$g^{TP} \text{ hyperbolic metric csc } -1 \text{ over } P$$
We fix $n \le 0$

$$g_{n}(r, t) = \frac{1}{3} \int_{P_{r}} \exp(-t \Box^{\omega_{P}(D)^{n}})(x, x) dv_{P}(x), \qquad (4.1)$$

where P_r is the non-striped region

Theorem. (-, 2018)

For any
$$(\overline{M}, D_M, g^{TM})$$
, (ξ, h^{ξ}) , $t > 0$, the function
 $\mathbb{R}_{>0} \ni r \mapsto \int_{M_r} \operatorname{Tr} \Big[\exp(-t \Box^{E_n^{\xi}})(x, x) \Big] dv_M(x) - \operatorname{rk}(\xi) \cdot m \cdot g_n(r, t)$
extends continuously over $r = 0$.

Regularized heat trace

$$\operatorname{Tr}^{r}\left[\exp(-t\Box^{E_{n}^{\xi}})\right] = \lim_{r \to 0} \left(\int_{M_{r}} \operatorname{Tr}\left[\exp(-t\Box^{E_{n}^{\xi}})(x,x)\right] dv_{M}(x) - \operatorname{rk}(\xi) \cdot m \cdot g_{n}(r,t)\right).$$

Regularized zeta function

$$\zeta_{E_n^{\xi}}(s) = \frac{1}{\Gamma(s)} \int_0^{+\infty} \operatorname{Tr}' \Big[\exp^{\perp}(-t \Box^{E_n^{\xi}}) \Big] t^{s-1} dt.$$

Regularized zeta function

$$\zeta_{E_n^{\varepsilon}}(s) = \frac{1}{\Gamma(s)} \int_0^{+\infty} \operatorname{Tr}^{r} \Big[\exp^{\perp}(-t \Box^{E_n^{\varepsilon}}) \Big] t^{s-1} dt.$$

Theorem. (-, 2018)

 $\zeta_{E_n^{\xi}}(s)$ is well-defined and extends meromorphically to $\mathbb C$

• 0 $\in \mathbb{C}$ is a holomorphic point of $\zeta_{E_n^{\xi}}(s)$

Definition of the determinant

$$\det' \Box^{E_n^{\xi}} = \exp\Big(-\zeta'_{E_n^{\xi}}(\mathbf{0})\Big).$$

Theorem. (-, 2019)

Suppose (M, D_M, g_{hyp}^{TM}) has csc -1, (ξ, h^{ξ}) trivial. Then for any $m \ge 0$, $n \le 0$, we have

$$\det' \Box^{E_n^{\xi}} =^* \det'_{\mathcal{TZ}} \Box^{E_n^{\xi}}.$$

=* means up to some computed universal constant

Theorem. (-, 2019)

Suppose (M, D_M, g_{hyp}^{TM}) has csc -1, (ξ, h^{ξ}) trivial. Then for any $m \ge 0$, $n \le 0$, we have

$$\det' \Box^{E_n^{\xi}} =^* \det'_{TZ} \Box^{E_n^{\xi}}.$$

=* means up to some computed universal constant

Quillen norm

Hermitian norm on $\lambda(E_n^{\xi})$, given by

$$\left\|\cdot\right\|^{Q}\left(g^{\textit{TM}},h^{\textit{E}_{n}^{\xi}}\right)=\left(\det^{\prime}\Box^{\textit{E}_{n}^{\xi}}\right)^{1/2}\cdot\left\|\cdot\right\|_{\textit{L}^{2}}\left(g^{\textit{TM}},h^{\textit{E}_{n}^{\xi}}\right)$$

How to compute the Quillen norm?

Relative compact perturbation theorem

Let $(\overline{M}, D_M, g^{TM})$ be a surface with cusps, (ξ, h^{ξ}) Hermitian vector bundle over \overline{M}

Let $(\overline{M}, D_M, g^{TM})$ be a surface with cusps, (ξ, h^{ξ}) Hermitian vector bundle over \overline{M} $g_{f}^{TM}, \|\cdot\|_{M}^{f}$ the flattenings of $g^{TM}, \|\cdot\|_{M}$ Let $(\overline{M}, D_M, g^{TM})$ be a surface with cusps, (ξ, h^{ξ}) Hermitian vector bundle over \overline{M} $g_{\mathrm{f}}^{TM}, \|\cdot\|_M^{\mathrm{f}}$ the flattenings of $g^{TM}, \|\cdot\|_M$

We want to understand how to calculate

$$\frac{\left\|\cdot\right\|_{Q}\left(g^{\textit{TM}},h^{\xi}\otimes\left\|\cdot\right\|_{M}^{2n}\right)}{\left\|\cdot\right\|_{Q}\left(g^{\textit{TM}}_{\mathrm{f}},h^{\xi}\otimes\left(\left\|\cdot\right\|_{M}^{\mathrm{f}}\right)^{2n}\right)}$$

Let $(\overline{M}, D_M, g^{TM})$ be a surface with cusps, (ξ, h^{ξ}) Hermitian vector bundle over \overline{M} $g_{\mathrm{f}}^{TM}, \|\cdot\|_M^{\mathrm{f}}$ the flattenings of $g^{TM}, \|\cdot\|_M$

We want to understand how to calculate

$$\frac{\|\cdot\|_{Q}\left(g^{\textit{TM}},h^{\xi}\otimes\|\cdot\|_{M}^{2n}\right)}{\|\cdot\|_{Q}\left(g^{\textit{TM}}_{\mathrm{f}},h^{\xi}\otimes(\|\cdot\|_{M}^{\mathrm{f}})^{2n}\right)}$$

In other words : How Quillen metric changes under compact perturbation?

Two flattenings $g_{\rm f}^{\rm TM}, g_{\rm f}^{\rm TN}$ of $g^{\rm TM}, g^{\rm TN}$ are called compatible if

 $(\overline{M}, D_M, g^{TM}), (\overline{N}, D_N, g^{TN})$ surfaces with cusps, $\#D_M = \#D_N$

 $(\overline{M}, D_M, g^{TM}), (\overline{N}, D_N, g^{TN})$ surfaces with cusps, $\#D_M = \#D_N$ (ξ, h^{ξ}) Hermitian vector bundle over \overline{M} $(\overline{M}, D_M, g^{TM}), (\overline{N}, D_N, g^{TN})$ surfaces with cusps, $\#D_M = \#D_N$ (ξ, h^{ξ}) Hermitian vector bundle over \overline{M} $g_f^{TM}, g_f^{TN}, \|\cdot\|_M^f, \|\cdot\|_N^f$ compatible flattenings of $g^{TM}, g^{TN}, \|\cdot\|_M \|\cdot\|_N$ $(\overline{M}, D_M, g^{TM}), (\overline{N}, D_N, g^{TN})$ surfaces with cusps, $\#D_M = \#D_N$ (ξ, h^{ξ}) Hermitian vector bundle over \overline{M}

 $g_{\mathrm{f}}^{\mathit{TM}}, g_{\mathrm{f}}^{\mathit{TN}}, \|\cdot\|_{\mathit{M}}^{\mathrm{f}}, \|\cdot\|_{\mathit{N}}^{\mathrm{f}}$ compatible flattenings of $g^{\mathit{TM}}, g^{\mathit{TN}}, \|\cdot\|_{\mathit{M}} \|\cdot\|_{\mathit{N}}$

Theorem. (-, 2018)

For simplicity, suppose (ξ, h^{ξ}) is trivial

$$\frac{\left\|\cdot\right\|_{Q}\left(g^{TM},h^{\xi}\otimes\left\|\cdot\right\|_{M}^{2n}\right)}{\left|\cdot\right\|_{Q}\left(g^{TM}_{\mathrm{f}},h^{\xi}\otimes\left(\left\|\cdot\right\|_{M}^{\mathrm{f}}\right)^{2n}\right)}=\left(\frac{\left\|\cdot\right\|_{Q}\left(g^{TN},\left\|\cdot\right\|_{N}^{2n}\right)}{\left\|\cdot\right\|_{Q}\left(g^{TN}_{\mathrm{f}},\left(\left\|\cdot\right\|_{N}^{\mathrm{f}}\right)^{2n}\right)}\right)^{\mathrm{rk}(\xi)}$$

 $(\overline{M}, D_M, g^{TM}), (\overline{N}, D_N, g^{TN})$ surfaces with cusps, $\#D_M = \#D_N$ (ξ, h^{ξ}) Hermitian vector bundle over \overline{M} $g_f^{TM}, g_f^{TN}, \|\cdot\|_M^f, \|\cdot\|_N^f$ compatible flattenings of $g^{TM}, g^{TN}, \|\cdot\|_M \|\cdot\|_N$

Theorem. (-, 2018)

$$\frac{\|\cdot\|_{Q}\left(g^{TM},h^{\xi}\otimes\|\cdot\|_{M}^{2n}\right)}{\|\cdot\|_{Q}\left(g^{TM}_{\mathrm{f}},h^{\xi}\otimes(\|\cdot\|_{M}^{\mathrm{f}})^{2n}\right)} = \left(\frac{\|\cdot\|_{Q}\left(g^{TN},\|\cdot\|_{N}^{2n}\right)}{\|\cdot\|_{Q}\left(g^{TN}_{\mathrm{f}},(\|\cdot\|_{N}^{\mathrm{f}})^{2n}\right)}\right)^{\mathrm{rk}(\xi)}$$
$$\cdot \exp\left(\frac{1}{2}\int_{M}c_{1}(\xi,h^{\xi})\left(2n\ln(\|\cdot\|_{M}^{\mathrm{f}}/\|\cdot\|_{M})+\ln(g^{TM}_{\mathrm{f}}/g^{TM})\right)\right)$$

Anomaly formula

$(\overline{M}, D_M, g^{TM}), D_M = \{P_1, \dots, P_m\}$ surface with cusps

 $(\overline{M}, D_M, g^{TM}), D_M = \{P_1, \dots, P_m\}$ surface with cusps z_1, \dots, z_m local holomorphic coordinates, $z_i(0) = \{P_i\}$ g^{TM} over $\{|z_i| < \epsilon\}$ is induced by

$$\frac{\sqrt{-1}dz_i d\overline{z}_i}{\left|z_i \log |z_i|\right|^2}$$

 $(\overline{M}, D_M, g^{TM}), D_M = \{P_1, \dots, P_m\}$ surface with cusps z_1, \dots, z_m local holomorphic coordinates, $z_i(0) = \{P_i\}$ g^{TM} over $\{|z_i| < \epsilon\}$ is induced by

$$\frac{\sqrt{-1}dz_i d\overline{z}_i}{\left|z_i \log |z_i|\right|^2}$$

Wolpert norm $\|\cdot\|^{W}$ on $\otimes_{i=1}^{m} \omega_{\overline{M}}|_{P_{i}}$ is defined by $\|\otimes_{i} dz_{i}|_{P_{i}}\|^{W} = 1.$

 $(\overline{M}, D_M, g^{TM}), D_M = \{P_1, \dots, P_m\}$ surface with cusps z_1, \dots, z_m local holomorphic coordinates, $z_i(0) = \{P_i\}$ g^{TM} over $\{|z_i| < \epsilon\}$ is induced by

 $\frac{\sqrt{-1}dz_id\overline{z}_i}{\left|z_i\log|z_i|\right|^2}$

Wolpert norm $\|\cdot\|^{W} \text{ on } \otimes_{i=1}^{m} \omega_{\overline{M}}|_{P_{i}} \text{ is defined by} \\ \| \otimes_{i} dz_{i}|_{P_{i}} \|^{W} = 1.$ on $D^{*} \quad \frac{\sqrt{-1}dzd\overline{z}}{|z\log|z||^{2}} \quad \rightsquigarrow \quad \|dz|_{0}\|^{W} = 1$

 $(\overline{M}, D_M, g^{TM}), D_M = \{P_1, \dots, P_m\}$ surface with cusps z_1, \dots, z_m local holomorphic coordinates, $z_i(0) = \{P_i\}$ g^{TM} over $\{|z_i| < \epsilon\}$ is induced by

 $\frac{\sqrt{-1}dz_id\overline{z}_i}{\left|z_i\log|z_i|\right|^2}$

Wolpert norm $\|\cdot\|^{W} \text{ on } \otimes_{i=1}^{m} \omega_{\overline{M}}|_{P_{i}} \text{ is defined by}$ $\|\otimes_{i} dz_{i}|_{P_{i}}\|^{W} = 1.$ on $D^{*} = \frac{\sqrt{-1}dzd\overline{z}}{|z \log |2z||^{2}} \quad \rightsquigarrow \quad \|dz|_{0}\|^{W} = \frac{1}{2}$

 $(\overline{M}, D_M, g^{TM}), D_M = \{P_1, \dots, P_m\}$ surface with cusps z_1, \dots, z_m local holomorphic coordinates, $z_i(0) = \{P_i\}$ g^{TM} over $\{|z_i| < \epsilon\}$ is induced by

 $\frac{\sqrt{-1}dz_id\overline{z}_i}{\left|z_i\log|z_i|\right|^2}$

Wolpert norm $\|\cdot\|^{W}$ on $\otimes_{i=1}^{m} \omega_{\overline{M}}|_{P_{i}}$ is defined by $\|\otimes_{i} dz_{i}|_{P_{i}}\|^{W} = 1.$

on
$$D^*$$
 $\frac{\sqrt{-1} dz d\overline{z}}{|z \log |2z||^2}$ \rightarrow $||dz|_0||^W = \frac{1}{2}$
Wolpert norm is related to the "constant term"

of the conformal transformation at cusp

Finski Siarhei Paris Diderot University

(\overline{M}, D_M) a pointed Riemann surface g^{TM}, g_0^{TM} metrics with cusps at D_M

 (\overline{M}, D_M) a pointed Riemann surface g^{TM}, g_0^{TM} metrics with cusps at D_M

 $\|\cdot\|_{M}, \|\cdot\|_{M}^{0}$ the norms induced by g^{TM}, g_{0}^{TM} on $\omega_{M}(D)$

 $\|\cdot\|^{W}, \|\cdot\|_{0}^{W}$ the associated Wolpert norms on $\otimes_{P \in D_{M}} \omega_{\overline{M}}|_{P}$

 (\overline{M}, D_M) a pointed Riemann surface g^{TM}, g_0^{TM} metrics with cusps at D_M

 $\|\cdot\|_{M}, \|\cdot\|_{M}^{0}$ the norms induced by g^{TM}, g_{0}^{TM} on $\omega_{M}(D)$

 $\|\cdot\|^{W}, \|\cdot\|_{0}^{W}$ the associated Wolpert norms on $\otimes_{P \in D_{M}} \omega_{\overline{M}}|_{P}$

 ξ holomorphic vector bundle on \overline{M} h^{ξ} , h_0^{ξ} Hermitian metrics on ξ over \overline{M}

Theorem. (-, 2018)

$$\begin{split} 2\log \Big(\|\cdot\|_Q \left(g_0^{TM}, h_0^{\xi} \otimes (\|\cdot\|_M^0)^{2n} \right) \Big/ \|\cdot\|_Q \left(g^{TM}, h^{\xi} \otimes \|\cdot\|_M^{2n} \right) \Big) \\ &= \int_M \Big[\text{Bott-Chern terms, analogic to the anomaly} \\ & \text{for compact manifolds of Bismut-Gillet-Soulé} \Big] \\ &- \frac{\text{rk}(\xi)}{6} \log \left(\|\cdot\|^W / \|\cdot\|_0^W \right) + \sum \log \Big(\det(h^{\xi}/h_0^{\xi})|_{P_i} \Big). \end{split}$$

What is a family of curves with cusps?

■ π :*X* → *S* proper holomorphic of relative dimension 1, $t \in S$, $X_t = \pi^{-1}(t)$ has at most double-point singularities (i.e. those of the form $\{z_0z_1 = 0\}$) ■ π :*X* → *S* proper holomorphic of relative dimension 1, $t \in S$, $X_t = \pi^{-1}(t)$ has at most double-point singularities (i.e. those of the form $\{z_0z_1 = 0\}$)

 $\Sigma_{X/S}$ singular points of the fibers, $\Delta = \pi_*(\Sigma_{X/S})$

Family of curves with cusps

■ π :*X* → *S* proper holomorphic of relative dimension 1, $t \in S$, $X_t = \pi^{-1}(t)$ has at most double-point singularities (i.e. those of the form $\{z_0z_1 = 0\}$)

 $\Sigma_{X/S}$ singular points of the fibers, $\Delta = \pi_*(\Sigma_{X/S})$

• $\sigma_1, \ldots, \sigma_m : S \to X \setminus \Sigma_{X/S}$ hol. non intersect. sections $D_{X/S} = \operatorname{Im}(\sigma_1) + \cdots + \operatorname{Im}(\sigma_m)$

Family of curves with cusps

■ π :*X* → *S* proper holomorphic of relative dimension 1, $t \in S$, $X_t = \pi^{-1}(t)$ has at most double-point singularities (i.e. those of the form $\{z_0z_1 = 0\}$)

 $\Sigma_{X/S}$ singular points of the fibers, $\Delta = \pi_*(\Sigma_{X/S})$

- $\sigma_1, \ldots, \sigma_m : S \to X \setminus \Sigma_{X/S}$ hol. non intersect. sections $D_{X/S} = \operatorname{Im}(\sigma_1) + \cdots + \operatorname{Im}(\sigma_m)$
- $\|\cdot\|_{X/S}^{\omega} \text{ Herm. norm on } \omega_{X/S} \text{ over } X \setminus (|D_{X/S}| \cup \pi^{-1}(|\Delta|)) \\ \|\cdot\|_{X/S}^{\omega}|_{X_t} \text{ induces metric } g^{TX_t} \text{ on } X_t \setminus |D_{X/S}|, t \in S \setminus |\Delta| \\ \text{ So that } (X_t, \{\sigma_1(t), \ldots, \sigma_m(t)\}, g^{TX_t}) \text{ is a surface with cusps}$

■ π :*X* → *S* proper holomorphic of relative dimension 1, $t \in S$, $X_t = \pi^{-1}(t)$ has at most double-point singularities (i.e. those of the form $\{z_0z_1 = 0\}$)

 $\Sigma_{X/S}$ singular points of the fibers, $\Delta = \pi_*(\Sigma_{X/S})$

- $\sigma_1, \ldots, \sigma_m : S \to X \setminus \Sigma_{X/S}$ hol. non intersect. sections $D_{X/S} = \operatorname{Im}(\sigma_1) + \cdots + \operatorname{Im}(\sigma_m)$
- $\|\cdot\|_{X/S}^{\omega} \text{ Herm. norm on } \omega_{X/S} \text{ over } X \setminus (|D_{X/S}| \cup \pi^{-1}(|\Delta|)) \\ \|\cdot\|_{X/S}^{\omega}|_{X_t} \text{ induces metric } g^{TX_t} \text{ on } X_t \setminus |D_{X/S}|, t \in S \setminus |\Delta| \\ \text{ So that } (X_t, \{\sigma_1(t), \ldots, \sigma_m(t)\}, g^{TX_t}) \text{ is a surface with cusps}$

 $(\pi: X o S, D_{X/S}, \|\cdot\|_{X/S}^{\omega})$ a family of curves with cusps

Curvature theorem for family of curves with cusps

 $(\pi : X \to S, D_{X/S}, \|\cdot\|_{X/S}^{\omega})$ a family of curves with cusps $\omega_{X/S}(D) = \omega_{X/S} \otimes \mathscr{O}_X(D_{X/S}), \qquad \|\cdot\|_{X/S}$ twisted relative canonical line bundle on X $\begin{array}{l} (\pi: X \to S, D_{X/S}, \|\cdot\|_{X/S}^{\omega}) \text{ a family of curves with cusps} \\ \omega_{X/S}(D) = \omega_{X/S} \otimes \mathscr{O}_X(D_{X/S}), \\ \text{twisted relative canonical line bundle on } X \end{array}$

 (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over X

 $\begin{array}{l} (\pi: X \to S, D_{X/S}, \|\cdot\|_{X/S}^{\omega}) \text{ a family of curves with cusps} \\ \omega_{X/S}(D) = \omega_{X/S} \otimes \mathscr{O}_X(D_{X/S}), \qquad \|\cdot\|_{X/S} \\ \text{twisted relative canonical line bundle on } X \end{array}$

 (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over X

$$E_n^{\xi} = \xi \otimes \omega_{X/S}(D)^n$$
$$\lambda(j^* E_n^{\xi})_t = (\Lambda^{\max} H^0(X_t, E_n^{\xi}|_{X_t}))^{-1} \otimes \Lambda^{\max} H^1(X_t, E_n^{\xi}|_{X_t})$$

 $\begin{array}{l} (\pi: X \to S, D_{X/S}, \|\cdot\|_{X/S}^{\omega}) \text{ a family of curves with cusps} \\ \omega_{X/S}(D) = \omega_{X/S} \otimes \mathscr{O}_X(D_{X/S}), \qquad \|\cdot\|_{X/S} \\ \text{twisted relative canonical line bundle on } X \end{array}$

 (ξ, h^{ξ}) a holomorphic Hermitian vector bundle over X

$$E_n^{\xi} = \xi \otimes \omega_{X/S}(D)^n$$
$$\lambda(j^* E_n^{\xi})_t = (\Lambda^{\max} H^0(X_t, E_n^{\xi}|_{X_t}))^{-1} \otimes \Lambda^{\max} H^1(X_t, E_n^{\xi}|_{X_t})$$

Grothendieck-Knudsen-Mumford $\lambda(j^* E_n^{\xi})_t, t \in S$ form a holomorphic line bundle $\lambda(j^* E_n^{\xi})$ over *S*
Quillen norm

We define the Quillen norm on $\lambda(\xi \otimes \omega_{X/S}(D)^n)$ by

$$\begin{split} \left\|\cdot\right\|^{Q}\left(g^{\mathcal{T}X_{t}},h^{\xi}\otimes\left\|\cdot\right\|_{X/S}^{2n}\right) \\ &=\left(\det'\Box_{t}^{E_{n}^{\xi}}\right)^{1/2}\cdot\left\|\cdot\right\|_{L^{2}}\left(g^{\mathcal{T}X_{t}},h^{\xi}\otimes\left\|\cdot\right\|_{X/S}^{2n}\right). \end{split}$$

Wolpert norm

We define the Wolpert norm $\|\cdot\|^W$ on $\otimes_i \sigma_i^*(\omega_{X/S})$ over *S* by gluing the Wolpert norms $\|\cdot\|_t^W$ on $\otimes_i \omega_{X/S}|_{\sigma_i(t)}$ induced by g^{TX_t} .

We are in the non-compact setting !

Notion defied by Burgos Gil-Kramer-Kühn, 2005 It is less restrictive than "good" condition of Mumford, 1977

Notion defied by Burgos Gil-Kramer-Kühn, 2005 It is less restrictive than "good" condition of Mumford, 1977 If $\{z = 0\}$ is a local equation for $\pi^{-1}(|\Delta|) \cup D_{X/S}$ around a smooth point

$$\log(\|v\|_{X/S}) = O((\log|\log|z||)^N)$$
$$\partial \log(\|v\|_{X/S}) = O\left((\log|\log|z||)^N \frac{dz}{z \log|z|}\right)$$
$$\partial \overline{\partial} \log(\|v\|_{X/S}) = O\left((\log|\log|z||)^N \frac{dz d\overline{z}}{|z \log|z||^2}\right)$$

Notion defied by Burgos Gil-Kramer-Kühn, 2005 It is less restrictive than "good" condition of Mumford, 1977 If $\{z = 0\}$ is a local equation for $\pi^{-1}(|\Delta|) \cup D_{X/S}$ around a smooth point

$$\log(\|v\|_{X/S}) = O((\log|\log|z||)^N)$$
$$\partial \log(\|v\|_{X/S}) = O\left((\log|\log|z||)^N \frac{dz}{z \log|z|}\right)$$
$$\partial \overline{\partial} \log(\|v\|_{X/S}) = O\left((\log|\log|z||)^N \frac{dzd\overline{z}}{|z \log|z||^2}\right)$$

Wolpert, 1990, (compact case) and Freixas, 2007, (pointed case) proved : the metric of csc -1 on the relative twisted canonical line bundle of universal curve is good

Finski Siarhei Paris Diderot University

RRG theorem

Riemann-Roch-Grothendieck theorem in the presence of cusps

$$\mathscr{L}_n = \lambda (j^* E_n^{\xi})^{12} \otimes (\otimes_i \sigma_i^* \omega_{X/S})^{-\mathrm{rk}(\xi)} \otimes \mathscr{O}_S(\Delta)^{\mathrm{rk}(\xi)} \otimes (\otimes_i \sigma_i^* \det \xi)^6$$

$$\mathscr{L}_n = \lambda (j^* E_n^{\xi})^{12} \otimes (\otimes_i \sigma_i^* \omega_{X/S})^{-\mathrm{rk}(\xi)} \otimes \mathscr{O}_S(\Delta)^{\mathrm{rk}(\xi)} \otimes (\otimes_i \sigma_i^* \det \xi)^6$$

 s_{Δ} the canonical holomorphic section of $\mathscr{O}_{S}(\Delta)$ $\|\cdot\|_{\Delta}^{\operatorname{div}}$ on $\mathscr{O}_{S}(\Delta)$ is defined by $\|s_{\Delta}\|_{\Delta}^{\operatorname{div}}(x) = 1, \quad x \in S \setminus |\Delta|$

$$\mathscr{L}_n = \lambda (j^* E_n^{\xi})^{12} \otimes (\otimes_i \sigma_i^* \omega_{X/S})^{-\mathrm{rk}(\xi)} \otimes \mathscr{O}_S(\Delta)^{\mathrm{rk}(\xi)} \otimes (\otimes_i \sigma_i^* \det \xi)^6$$

 s_{Δ} the canonical holomorphic section of $\mathscr{O}_{\mathcal{S}}(\Delta)$ $\|\cdot\|_{\Delta}^{\operatorname{div}}$ on $\mathscr{O}_{\mathcal{S}}(\Delta)$ is defined by $\|s_{\Delta}\|_{\Delta}^{\operatorname{div}}(x) = 1, \quad x \in \mathcal{S} \setminus |\Delta|$

$$\begin{split} \|\cdot\|^{\mathscr{L}_n} &= \left(\|\cdot\|^Q \left(g^{\mathsf{TX}_t}, h^{\xi} \otimes \|\cdot\|^{2n}_{X/S}\right)\right)^{12} \otimes \left(\|\cdot\|^W\right)^{-\mathrm{rk}(\xi)} \\ &\otimes (\|\cdot\|^{\mathrm{div}}_{\Delta})^{\mathrm{rk}(\xi)} \otimes (\otimes_i \sigma^*_i h^{\det \xi})^3 \end{split}$$

$$\mathscr{L}_n = \lambda (j^* E_n^{\xi})^{12} \otimes (\otimes_i \sigma_i^* \omega_{X/S})^{-\mathrm{rk}(\xi)} \otimes \mathscr{O}_S(\Delta)^{\mathrm{rk}(\xi)} \otimes (\otimes_i \sigma_i^* \det \xi)^6$$

 s_{Δ} the canonical holomorphic section of $\mathscr{O}_{S}(\Delta)$ $\|\cdot\|_{\Delta}^{\operatorname{div}}$ on $\mathscr{O}_{S}(\Delta)$ is defined by $\|s_{\Delta}\|_{\Delta}^{\operatorname{div}}(x) = 1, \quad x \in S \setminus |\Delta|$

$$\begin{split} \|\cdot\|^{\mathscr{L}_n} &= \left(\|\cdot\|^Q \left(g^{TX_t}, h^{\xi} \otimes \|\cdot\|^{2n}_{X/S}\right)\right)^{12} \otimes \left(\|\cdot\|^W\right)^{-\mathrm{rk}(\xi)} \\ &\otimes (\|\cdot\|^{\mathrm{div}}_{\Delta})^{\mathrm{rk}(\xi)} \otimes (\otimes_i \sigma^*_i h^{\det \xi})^3 \end{split}$$

Theorem. (-, 2018)

 $\|\cdot\|^{\mathscr{L}_n}$ extends continuously* over $|\Delta|$, smooth* over $S\setminus |\Delta|$

$$\mathscr{L}_n = \lambda (j^* E_n^{\xi})^{12} \otimes (\otimes_i \sigma_i^* \omega_{X/S})^{-\mathrm{rk}(\xi)} \otimes \mathscr{O}_S(\Delta)^{\mathrm{rk}(\xi)} \otimes (\otimes_i \sigma_i^* \det \xi)^6$$

 $\begin{array}{ll} s_\Delta \text{ the canonical holomorphic section of } \mathscr{O}_{\mathcal{S}}(\Delta) \\ \|\cdot\|_\Delta^{\operatorname{div}} \text{ on } \mathscr{O}_{\mathcal{S}}(\Delta) \text{ is defined by } \|s_\Delta\|_\Delta^{\operatorname{div}}(x) = 1, \qquad x \in \mathcal{S} \setminus |\Delta| \end{array}$

$$\begin{split} \|\cdot\|^{\mathscr{L}_n} &= \left(\|\cdot\|^{Q}\left(g^{\mathsf{T}X_t}, h^{\xi}\otimes\|\cdot\|^{2n}_{X/S}\right)\right)^{12}\otimes \left(\|\cdot\|^{W}\right)^{-\mathrm{rk}(\xi)} \\ &\otimes (\|\cdot\|^{\mathrm{div}}_{\Delta})^{\mathrm{rk}(\xi)}\otimes (\otimes_i\sigma^*_i h^{\det\xi})^3 \end{split}$$

Theorem. (-, 2018)

 $\|\cdot\|^{\mathscr{L}_n}$ extends continuously* over $|\Delta|$, smooth* over $S\setminus |\Delta|$, and on the level of currents over S:

$$c_1\left(\mathscr{L}_n, (\|\cdot\|^{\mathscr{L}_n})^2\right) = -12 \int_{\pi} \left[\mathrm{Td}(\omega_{X/S}(D), \|\cdot\|_{X/S}^2) \mathrm{ch}(\xi, h^{\xi}) \mathrm{ch}(\omega_{X/S}(D), \|\cdot\|_{X/S}^{2n}) \right]^{[4]}$$

Thank you !