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Plan of the talk

1 Riemann-Roch-Grothendieck theorem and curvature theorem

2 Motivation

3 Definition of Quillen metric for surfaces with cusps

4 Relative compact perturbation theorem

5 Anomaly formula

6 Curvature theorem for family of curves with cusps
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Riemann-Roch-Grothendieck theorem and curvature
theorem
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Family setting

π :X → S proper holomorphic submersion, relative dimension 1

ωX/S = (ΛmaxT ∗(1,0)X )⊗ (ΛmaxT ∗(1,0)S)−1

the relative canonical line bundle of π

t ∈ S,Xt = π−1(t)
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A picture

S

X
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Dolbeaut complex

ξ a holomorphic vector bundle over X

Ωi,j(Xt , ξ) = C∞(Xt ,T ∗(i,j)Xt ⊗ ξ), i , j = 0,1

0 −→ Ω0,0(Xt , ξ)
∂−→ Ω0,1(Xt , ξ) −→ 0

H0(Xt , ξ) = ker(∂), H1(Xt , ξ) = Ω0,1(Xt , ξ)/ Im(∂)
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Grothendieck-Knudsen-Mumford construction

The determinant of the cohomology

λ(j∗ξ)t = (ΛmaxH0(Xt , ξ|Xt ))−1 ⊗ ΛmaxH1(Xt , ξ|Xt ), t ∈ S

family of complex lines over S

Grothendieck-Knudsen-Mumford :
λ(j∗ξ)t , t ∈ S form a holomorphic line bundle λ(j∗ξ) over S
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Theorem of Riemann-Roch-Grothendieck

Theorem. (Riemann-Roch-Grothendieck, 1957)

The following identity holds in H•(S,Q) :

c1(λ(j∗ξ)) = −
∫
π

[
Td(ωX/S)ch(ξ)

][4]

Td(ξ) = 1 +
c1(ξ)

2
+

c1(ξ)2 + c2(ξ)

12
+ . . .

ch(ξ) = rk(ξ) + c1(ξ) +
c1(ξ)2 − 2c2(ξ)

2
+ . . .
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Chern-Weil theory

Y a complex manifold

(E ,hE ) a holomorphic Hermitian vector bundle over Y
∇E the Chern connection on (E ,hE )

RE = (∇E )2 ∈ Ω1,1(Y ,End(E))

ch(E ,hE ) = Tr
[

exp
(
− RE

2π
√
−1

)]
∈ ⊕p∈NΩp,p(Y )

Td(E ,hE ) = det
[

RE

exp(RE )− 1

]
∈ ⊕p∈NΩp,p(Y )

Td(E ,hE ), ch(E ,hE ) are closed forms

Chern-Weil :
[
ch(E ,hE )

]
DR

= ch(E) ∈ ⊕p∈NH2p(Y ,R)[
Td(E ,hE )

]
DR

= Td(E) ∈ ⊕p∈NH2p(Y ,R)
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A natural question

π :X → S proper holomorphic submersion, relative dimension 1

‖·‖ωX/S a Hermitian norm on ωX/S

(ξ,hξ) a holomorphic Hermitian vector bundle over X

c1(λ(j∗ξ), ?) = −
∫
π

[
Td(ωX/S, (‖·‖ωX/S)2)ch(ξ,hξ)

][4]
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L2 product and Hodge theory

L2-Hermitian product. Let α, α′ ∈ Ω0,•(Xt , ξ)〈
α, α′

〉
L2 =

∫
Xt

〈
α(x), α′(x)

〉
hdvXt (x),

〈·, ·〉h the pointwise Hermitian product induced by hξ,‖·‖ωX/S.

0 −→ Ω0,0(Xt , ξ)
∂−→ Ω0,1(Xt , ξ) −→ 0,

�ξt = ∂ ∂
∗

+ ∂
∗
∂〈

�ξt α, α
〉

L2 =
〈
∂α, ∂α

〉
+
〈
∂
∗
α, ∂

∗
α
〉
,

ker(�ξ|Ω0,•(Xt ,ξ)) = {s ∈ Ω0,•(Xt , ξ) | ∂s = 0, ∂∗s = 0}

induces the L2-norm‖·‖L2

(
gTXt ,hξ

)
over

λ(j∗ξ)t = (ΛmaxH0(Xt , ξ|Xt ))−1 ⊗ ΛmaxH1(Xt , ξ|Xt )
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Infinite product

From now on �ξt : = �ξ|Ω0,0(Xt ,ξ)

�ξt essentially self-adjoint

Spec(�ξt ) = {λ1,t , λ2,t , . . .}, λi,t non decreasing, λi,t →∞

det ′�ξt =
∞∏

λi,t 6=0

λi,t .

Problem : Need to make sense of the infinite product...
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Zeta renormalisation

Weyl’s law : λi,t increase asymptotically linearly with i

ζξ,t (s) =
∞∑

λi,t 6=0

1
(λi,t )s , for Re(s) > 1

Definition of the determinant. (Ray-Singer, 1973)

det ′�ξt = exp
(
− ζ ′ξ,t (0)

)
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Refinement of Riemann-Roch-Grothendieck theorem

Quillen norm
Hermitian norm on λ(j∗ξ), given by

‖·‖Q
(
gTXt ,hξ

)
=
(

det ′�ξt
)1/2 ·‖·‖L2

(
gTXt ,hξ

)

Curvature theorem. (Bismut-Gillet-Soulé, 1988)

Hermitian norm‖·‖Q
(
gTXt ,hξ

)
is smooth over S

c1

(
λ(j∗ξ),

(
‖·‖Q

(
gTXt ,hξ

))2
)

= −
∫
π

[
Td(ωX/S, (‖·‖ωX/S)2)ch(ξ,hξ)

][4]
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Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers
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What is a surface with hyperbolic cusps ?

M a compact Riemann surface
DM = {P1,P2, . . . ,Pm} ⊂ M, M = M \ DM

gTM is a Kähler metric on M
z1, . . . , zm local holomorphic coordinates, zi(0) = {Pi}

Suppose gTM over {|zi | < ε} is induced by
√
−1dzidz i∣∣zi log |zi |

∣∣2 .
We call (M,DM ,gTM) a surface with cusps
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An important example

Suppose 2g(M)− 2 + #DM > 0, i.e. (M,DM) is stable

By uniformization theorem, there is exactly one csc −1
complete metric gTM

hyp of finite volume on M = M \ DM

The triple (M,DM ,gTM
hyp ) is a surface with cusps
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Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers

Why ?

Problem on its own.
Universal curve π :Cg,m →Mg,m with csc −1 metric‖·‖ω,hyp

X/S

On Mg,m, we have
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]
=∗ ωWP .

As we expect c1(λ, (‖·‖Q)2) = −
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]

Regularity of‖·‖Q near ∂Mg,m

⇓
Regularity of ωWP near ∂Mg,m.

Curvature theorem of Takhtajan-Zograf (csc -1).
Arithmetic Riemann-Roch theorem for pointed stable curves

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 19 / 58



Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers

Why ?

Problem on its own.
Universal curve π :Cg,m →Mg,m with csc −1 metric‖·‖ω,hyp

X/S

On Mg,m, we have
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]
=∗ ωWP .

As we expect c1(λ, (‖·‖Q)2) = −
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]

Regularity of‖·‖Q near ∂Mg,m

⇓
Regularity of ωWP near ∂Mg,m.

Curvature theorem of Takhtajan-Zograf (csc -1).
Arithmetic Riemann-Roch theorem for pointed stable curves

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 19 / 58



Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers

Why ?

Problem on its own.

Universal curve π :Cg,m →Mg,m with csc −1 metric‖·‖ω,hyp
X/S

On Mg,m, we have
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]
=∗ ωWP .

As we expect c1(λ, (‖·‖Q)2) = −
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]

Regularity of‖·‖Q near ∂Mg,m

⇓
Regularity of ωWP near ∂Mg,m.

Curvature theorem of Takhtajan-Zograf (csc -1).
Arithmetic Riemann-Roch theorem for pointed stable curves

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 19 / 58



Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers

Why ?

Problem on its own.
Universal curve π :Cg,m →Mg,m with csc −1 metric‖·‖ω,hyp

X/S

On Mg,m, we have
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]
=∗ ωWP .

As we expect c1(λ, (‖·‖Q)2) = −
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]

Regularity of‖·‖Q near ∂Mg,m

⇓
Regularity of ωWP near ∂Mg,m.

Curvature theorem of Takhtajan-Zograf (csc -1).
Arithmetic Riemann-Roch theorem for pointed stable curves

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 19 / 58



Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers

Why ?

Problem on its own.
Universal curve π :Cg,m →Mg,m with csc −1 metric‖·‖ω,hyp

X/S

On Mg,m, we have
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]
=∗ ωWP .

As we expect c1(λ, (‖·‖Q)2) = −
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]

Regularity of‖·‖Q near ∂Mg,m

⇓
Regularity of ωWP near ∂Mg,m.

Curvature theorem of Takhtajan-Zograf (csc -1).
Arithmetic Riemann-Roch theorem for pointed stable curves

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 19 / 58



Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers

Why ?

Problem on its own.
Universal curve π :Cg,m →Mg,m with csc −1 metric‖·‖ω,hyp

X/S

On Mg,m, we have
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]
=∗ ωWP .

As we expect c1(λ, (‖·‖Q)2) = −
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]

Regularity of‖·‖Q near ∂Mg,m

⇓
Regularity of ωWP near ∂Mg,m.

Curvature theorem of Takhtajan-Zograf (csc -1).
Arithmetic Riemann-Roch theorem for pointed stable curves

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 19 / 58



Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers

Why ?

Problem on its own.
Universal curve π :Cg,m →Mg,m with csc −1 metric‖·‖ω,hyp

X/S

On Mg,m, we have
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]
=∗ ωWP .

As we expect c1(λ, (‖·‖Q)2) = −
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]

Regularity of‖·‖Q near ∂Mg,m

⇓
Regularity of ωWP near ∂Mg,m.

Curvature theorem of Takhtajan-Zograf (csc -1).
Arithmetic Riemann-Roch theorem for pointed stable curves

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 19 / 58



Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers

Why ?

Problem on its own.
Universal curve π :Cg,m →Mg,m with csc −1 metric‖·‖ω,hyp

X/S

On Mg,m, we have
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]
=∗ ωWP .

As we expect c1(λ, (‖·‖Q)2) = −
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]

Regularity of‖·‖Q near ∂Mg,m

⇓
Regularity of ωWP near ∂Mg,m.

Curvature theorem of Takhtajan-Zograf (csc -1).

Arithmetic Riemann-Roch theorem for pointed stable curves

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 19 / 58



Motivation

We want to extend the theory of Quillen metrics to surfaces with
hyperbolic cusps and degenerating families with singular fibers

Why ?

Problem on its own.
Universal curve π :Cg,m →Mg,m with csc −1 metric‖·‖ω,hyp

X/S

On Mg,m, we have
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]
=∗ ωWP .

As we expect c1(λ, (‖·‖Q)2) = −
∫
π

[
Td(ωX/S, (‖·‖

ω,hyp
X/S )2)

][4]

Regularity of‖·‖Q near ∂Mg,m

⇓
Regularity of ωWP near ∂Mg,m.

Curvature theorem of Takhtajan-Zograf (csc -1).
Arithmetic Riemann-Roch theorem for pointed stable curves

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 19 / 58



Definition of Quillen metric for surfaces with cusps
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The L2-norm

‖·‖Q =
(

det ′�
)1/2 ·‖·‖L2

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 21 / 58



The L2-norm

Let (M,DM ,gTM) be a surface with cusps
‖·‖ωM the induced Hermitian norm on ωM over M

ωM(D) = ωM ⊗ OM(DM) the twisted canonical line bundle
ωM(D) ' ωM , over M
induces the Hermitian norm‖·‖M on ωM(D) over M

This norm has log singularity
∥∥dzi ⊗ sDM/zi

∥∥
M = | log |zi ||

(ξ,hξ) a holomorphic Hermitian vector bundle over M

Eξ
n = ξ ⊗ ωM(D)n, hξ ⊗ (‖·‖M)2n

For n ≤ 0, by Hodge theory∗〈
·, ·
〉

L2 induces the L2-norm‖·‖L2 on
λ(Eξ

n) = (ΛmaxH0(M,Eξ
n))−1 ⊗ ΛmaxH1(M,Eξ

n)
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The determinant

‖·‖Q =
(

det ′�
)1/2 ·‖·‖L2
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Problem with the determinant

�Eξn :Ω0,0(M,Eξ
n)→ Ω0,0(M,Eξ

n)

It is again self-adjoint by the same reason

As M is non-compact, in general Spec(�Eξn ) is not discrete

det ′�Eξn 6=
∞∏
λi 6=0

λi .
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Takhtajan-Zograf approach

{ Length of closed geodesics } ↔ Spec(�Eξn )

Suppose (ξ,hξ) trivial, (M,DM ,gTM
hyp ) has csc −1

then the set of simple closed geodesics is discrete

Z(M,DM )(s) =
∏
γ

∞∏
k=0

(1− e−(s+k)l(γ))

γ simple closed geodesics on M ; l(γ) is the length of γ.
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Takhtajan-Zograf approach

Takhtajan-Zograf definition using Selberg zeta-function, 1991

det ′TZ�
Eξn =

Z ′
(M,DM )

(1), for n = 0,

Z(M,DM )(−n + 1), for n < 0.

Motivated by a theorem of Phong-D’Hoker, 1986, which says
that when m = 0, two sides of the previous equation coincide∗

Limitations of this approach

Restriction on the topology 2g(M)− 2 + #DM > 0.
Complex structure predefines the Kähler metric.
No liberty in choosing (ξ,hξ).
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Analytic approach to the determinant

λ−s =
1

Γ(s)

∫ +∞

0
exp(−λt)ts−1dt

If M is compact, i.e. m = 0

ζEξn
(s) =

∑
λ∈Spec(�Eξn )\{0}

λ−s (?)

=
1

Γ(s)

∫ +∞

0
Tr
[

exp⊥(−t�Eξn )
]
ts−1dt (??)

For m > 0 ?
Idea : define ζEξn

(s) for m > 0 using (??) and not (?)

Problem : exp⊥(−t�Eξn ) is not of trace class for m > 0
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Two faces of the trace

A ∈ End(Cn),n ∈ N, self-adjoint

Tr
[
A
]

=
∑

λi ,
(
λi
)n

i=0 eigenvalues

A =
(
akl
)n

k ,l=1, v = (b1, . . . ,bn)

Av =
(∑

a1ibi ,
∑

a2ibi , . . . ,
∑

anibi

)
Tr
[
A
]

=
∑

aii

Idea : if Tr
[
A
]

= +∞, we define Trr
[
A
]

=
∑

aii 6=+∞ aii .
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Regularizing trace, I

The operator exp(−t�Eξn ) has a smooth Schwartz kernel

exp(−t�Eξn )(x , y) ∈ (Eξ
n)x ⊗ (Eξ

n)∗y , x , y ∈ M

exp(−t�Eξn )s =

∫
M

〈
exp(−t�Eξn )(x , y), s(y)

〉
dvM(y).

If m = 0, Tr
[

exp(−t�Eξn )
]

=

∫
M

Tr
[

exp(−t�Eξn )(x , x)
]
dvM(x).

Idea : define Trr
[

exp(−t�Eξn )
]

by taking the finite part of∫
Mr

Tr
[

exp(−t�Eξn )(x , x)
]
dvM(x)

as r → 0, where Mr is the non-striped region

|Zi|<r
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Regularizing trace, II

P = CP1 \ {0,1,∞},
gTP hyperbolic metric csc −1 over P

We fix n ≤ 0

gn(r , t) =
1
3

∫
Pr

exp(−t�ωP(D)n
)(x , x)dvP(x), (4.1)

where Pr is the non-striped region
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Regularizing trace, III

Theorem. (-, 2018)

For any (M,DM ,gTM), (ξ,hξ), t > 0, the function

R>0 3 r 7→
∫

Mr

Tr
[

exp(−t�Eξn )(x , x)
]
dvM(x)− rk(ξ) ·m · gn(r , t)

extends continuously over r = 0.
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Regularizing trace, IV

Regularized heat trace

Trr
[

exp(−t�Eξn )
]

= lim
r→0

(∫
Mr

Tr
[

exp(−t�Eξn )(x , x)
]
dvM(x)

− rk(ξ) ·m · gn(r , t)
)
.
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Regularized zeta function

ζEξn
(s) =

1
Γ(s)

∫ +∞

0
Trr
[

exp⊥(−t�Eξn )
]
ts−1dt .

Theorem. (-, 2018)

ζEξn
(s) is well-defined and extends meromorphically to C

0 ∈ C is a holomorphic point of ζEξn
(s)
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Finally, the determinant

Definition of the determinant

det ′�Eξn = exp
(
− ζ ′

Eξn
(0)
)
.
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Compatibility theorem

Theorem. (-, 2019)

Suppose (M,DM ,gTM
hyp ) has csc −1, (ξ,hξ) trivial. Then for any

m ≥ 0, n ≤ 0, we have

det ′�Eξn =∗ det ′TZ�
Eξn .

=∗ means up to some computed universal constant

m = 0, Phong-D’Hoker, 1986

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 35 / 58



Compatibility theorem

Theorem. (-, 2019)

Suppose (M,DM ,gTM
hyp ) has csc −1, (ξ,hξ) trivial. Then for any

m ≥ 0, n ≤ 0, we have

det ′�Eξn =∗ det ′TZ�
Eξn .

=∗ means up to some computed universal constant

m = 0, Phong-D’Hoker, 1986

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 35 / 58



Finally, the Quillen norm

Quillen norm
Hermitian norm on λ(Eξ

n), given by

‖·‖Q
(
gTM ,hEξn

)
=
(

det ′�Eξn
)1/2 ·‖·‖L2

(
gTM ,hEξn

)
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A question

How to compute the Quillen norm ?
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Relative compact perturbation theorem
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A notion of flattening

Flattening of a metric with cusps gTM

is a Kähler metric gTM
f on M such that

The same for‖·‖M
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A problem

Let (M,DM ,gTM) be a surface with cusps,

(ξ,hξ) Hermitian vector bundle over M

gTM
f ,‖·‖f

M the flattenings of gTM ,‖·‖M

We want to understand how to calculate

‖·‖Q
(
gTM ,hξ ⊗ ‖·‖2n

M
)

‖·‖Q
(
gTM

f ,hξ ⊗ (‖·‖f
M)2n)

In other words :
How Quillen metric changes under compact perturbation ?
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Compatible flattenings

Two flattenings gTM
f , gTN

f of gTM , gTN are called compatible if
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Relative compact perturbation theorem

(M,DM ,gTM), (N,DN ,gTN) surfaces with cusps, #DM = #DN

(ξ,hξ) Hermitian vector bundle over M

gTM
f ,gTN

f ,‖·‖f
M ,‖·‖f

N compatible flattenings of gTM ,gTN ,‖·‖M‖·‖N

Theorem. (-, 2018)

For simplicity, suppose (ξ,hξ) is trivial

‖·‖Q
(
gTM ,hξ ⊗ ‖·‖2n

M
)

‖·‖Q
(
gTM

f ,hξ ⊗ (‖·‖f
M)2n)

=

( ‖·‖Q (gTN , ‖·‖2n
N
)

‖·‖Q
(
gTN

f , (‖·‖f
N)2n)

)rk(ξ)
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‖·‖Q
(
gTM ,hξ ⊗ ‖·‖2n

M
)

‖·‖Q
(
gTM

f ,hξ ⊗ (‖·‖f
M)2n)

=

( ‖·‖Q (gTN , ‖·‖2n
N
)

‖·‖Q
(
gTN

f , (‖·‖f
N)2n)

)rk(ξ)

· exp
(1

2

∫
M

c1(ξ,hξ)
(

2n ln(‖·‖f
M /‖·‖M) + ln(gTM

f /gTM)
))
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Anomaly formula
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The Wolpert norm

(M,DM ,gTM), DM = {P1, . . . ,Pm} surface with cusps

z1, . . . , zm local holomorphic coordinates, zi(0) = {Pi}
gTM over {|zi | < ε} is induced by

√
−1dzidz i∣∣zi log |zi |

∣∣2
Wolpert norm

‖·‖W on ⊗m
i=1ωM |Pi is defined by∥∥⊗i dzi |Pi

∥∥W
= 1.
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Wolpert norm is related to the “constant term"
of the conformal transformation at cusp
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Anomaly formula, setting

(M,DM) a pointed Riemann surface
gTM , gTM

0 metrics with cusps at DM

‖·‖M ,‖·‖0M the norms induced by gTM ,gTM
0 on ωM(D)

‖·‖W ,‖·‖W0 the associated Wolpert norms on ⊗P∈DMωM |P

ξ holomorphic vector bundle on M
hξ, hξ0 Hermitian metrics on ξ over M
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Anomaly formula

Theorem. (-, 2018)

2 log
(
‖·‖Q

(
gTM

0 ,hξ0 ⊗ (‖·‖0M)2n)/‖·‖Q (gTM ,hξ ⊗ ‖·‖2n
M
))

=

∫
M

[
Bott-Chern terms, analogic to the anomaly

for compact manifolds of Bismut-Gillet-Soulé
]

− rk(ξ)

6
log
(
‖·‖W /‖·‖W0

)
+
∑

log
(

det(hξ/hξ0)|Pi

)
.
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What is a family of curves with cusps ?
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Family of curves with cusps

π :X → S proper holomorphic of relative dimension 1,
t ∈ S, Xt = π−1(t) has at most double-point singularities
(i.e. those of the form {z0z1 = 0})

ΣX/S singular points of the fibers, ∆ = π∗(ΣX/S)

σ1, . . . , σm :S → X \ ΣX/S hol. non intersect. sections
DX/S = Im(σ1) + · · ·+ Im(σm)

‖·‖ωX/S Herm. norm on ωX/S over X \ (|DX/S| ∪ π−1(|∆|))

‖·‖ωX/S |Xt induces metric gTXt on Xt \ |DX/S|, t ∈ S \ |∆|
So that (Xt , {σ1(t), . . . , σm(t)},gTXt ) is a surface with cusps

(π :X → S,DX/S,‖·‖ωX/S) a family of curves with cusps
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A picture

Xt X0 Y0

t 0

ρ
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Curvature theorem for family of curves with cusps

Finski Siarhei Paris Diderot University RRG theorem 17 July 2019 Cologne, Germany 51 / 58



Grothendieck-Knudsen-Mumford determinant

(π :X → S,DX/S,‖·‖ωX/S) a family of curves with cusps
ωX/S(D) = ωX/S ⊗ OX (DX/S), ‖·‖X/S

twisted relative canonical line bundle on X

(ξ,hξ) a holomorphic Hermitian vector bundle over X

Eξ
n = ξ ⊗ ωX/S(D)n

λ(j∗Eξ
n)t = (ΛmaxH0(Xt ,E

ξ
n |Xt ))−1 ⊗ ΛmaxH1(Xt ,E

ξ
n |Xt )

Grothendieck-Knudsen-Mumford
λ(j∗Eξ

n)t , t ∈ S form a holomorphic line bundle λ(j∗Eξ
n) over S
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Quillen norm for families of surfaces with cusps

Quillen norm
We define the Quillen norm on λ(ξ ⊗ ωX/S(D)n) by

‖·‖Q
(
gTXt ,hξ ⊗‖·‖2n

X/S
)

=
(

det ′�Eξn
t
)1/2 ·‖·‖L2

(
gTXt ,hξ ⊗‖·‖2n

X/S
)
.
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Wolpert norm for families

Wolpert norm

We define the Wolpert norm‖·‖W on ⊗iσ
∗
i (ωX/S) over S by

gluing the Wolpert norms‖·‖Wt on ⊗iωX/S|σi (t) induced by gTXt .
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Necessity of additional hypothesis

We are in the non-compact setting !
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Hypothesis on the metric

We suppose that the metric ‖·‖X/S induced on ωX/S(D) is pre-
log-log on X with singularities along π−1(|∆|) ∪ DX/S

Notion defied by Burgos Gil-Kramer-Kühn, 2005
It is less restrictive than "good" condition of Mumford, 1977

If {z = 0} is a local equation for π−1(|∆|) ∪ DX/S around a
smooth point

log(‖υ‖X/S) = O((log | log |z||)N)

∂ log(‖υ‖X/S) = O
(

(log | log |z||)N dz
z log |z|

)
∂∂ log(‖υ‖X/S) = O

(
(log | log |z||)N dzdz

|z log |z||2
)

Wolpert, 1990, (compact case) and Freixas, 2007, (pointed
case) proved : the metric of csc −1 on the relative twisted

canonical line bundle of universal curve is good
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Riemann-Roch-Grothendieck theorem in the presence of cusps

Ln = λ(j∗Eξ
n)12 ⊗ (⊗iσ

∗
i ωX/S)−rk(ξ) ⊗ OS(∆)rk(ξ) ⊗ (⊗iσ

∗
i det ξ)6

Canonical singular norm

s∆ the canonical holomorphic section of OS(∆)

‖·‖div
∆ on OS(∆) is defined by‖s∆‖div

∆ (x) = 1, x ∈ S \ |∆|

‖·‖Ln =
(
‖·‖Q

(
gTXt ,hξ ⊗‖·‖2n

X/S
))12 ⊗

(
‖·‖W

)−rk(ξ)

⊗ (‖·‖div
∆ )rk(ξ) ⊗ (⊗iσ

∗
i hdet ξ)3

Theorem. (-, 2018)

‖·‖Ln extends continuously∗ over |∆|, smooth∗ over S \ |∆| ,
and on the level of currents over S :

c1

(
Ln, (‖·‖Ln )2

)
= −12

∫
π

[
Td(ωX/S(D), ‖·‖2

X/S)ch(ξ, hξ)ch(ωX/S(D),‖·‖2n
X/S)

][4]
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Thank you !
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