Geometric quantization on CR manifolds

Chin-Yu Hsiao

Institute of Mathematics, Academia Sinica, Taiwan

Chin-Yu Hsiao Geometric quantization on CR manifolds

э

- In this work we study the problem of "quantization commutes with reduction" for CR manifolds (for some non-hypoelliptic operators), in particular for Sasakian manifolds.
- An important difference between CR setting and symplectic setting is that the quantum spaces we considered in CR setting are infinite dimensional.

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

CR manifolds

- Let X be a smooth and orientable manifold of dimension 2n + 1, $n \ge 1$.
- Let T^{1,0}X be a subbundle of CTX the complexified tangent bundle of X.

Definition

We say that $T^{1,0}X$ is a CR structure of X if

• (i) $\dim_{\mathbb{C}} T_x^{1,0} X = n$, for every $x \in X$.

• (ii)
$$T^{1,0}X \cap T^{0,1}X = \{0\}$$
, where $T^{0,1}X := \overline{T^{1,0}X}$.

• (iii)
$$[\mathcal{V},\mathcal{V}] \subset \mathcal{V}, \ \mathcal{V} = \mathscr{C}^{\infty}(X, T^{1,0}X).$$

 For a 2n + 1 dimensional smooth manifold X, if we can find a CR structure T^{1,0}X on X, we call the pair (X, T^{1,0}X) a CR manifold.

CR manifolds

- Take a Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}TX$ such that we have the orthogonal decompositions:
 - $\mathbb{C}TX = T^{1,0}X \oplus T^{0,1}X \oplus \mathbb{C}T$, $T \in \mathscr{C}^{\infty}(X, TX)$, ||T|| = 1,
 - $\mathbb{C}T^*X = T^{*1,0}X \oplus T^{*0,1}X \oplus \mathbb{C}\omega_0, \ \omega_0 \in \mathscr{C}^{\infty}(X, T^*X), \ \|\omega_0\| = 1,$
 - $\langle \omega_0, T \rangle = -1, T^{*0,1}X = (T^{1,0}X \oplus \mathbb{C}T)^{\perp}.$
 - ω₀: Reeb one form, *T*: Reeb vector field, *T*^{*0,1}*X*: bundle of (0, 1) forms.

CR manifolds

- Take a Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}TX$ such that we have the orthogonal decompositions:
 - $\mathbb{C}TX = T^{1,0}X \oplus T^{0,1}X \oplus \mathbb{C}T$, $T \in \mathscr{C}^{\infty}(X, TX)$, ||T|| = 1,
 - $\mathbb{C}T^*X = T^{*1,0}X \oplus T^{*0,1}X \oplus \mathbb{C}\omega_0, \ \omega_0 \in \mathscr{C}^{\infty}(X, T^*X), \ \|\omega_0\| = 1,$
 - $\langle \omega_0, T \rangle = -1$, $T^{*0,1}X = (T^{1,0}X \oplus \mathbb{C}T)^{\perp}$.
 - ω₀: Reeb one form, *T*: Reeb vector field, *T*^{*0,1}*X*: bundle of (0, 1) forms.

Definition

For $p \in X$, the Levi form \mathcal{L}_p is the Hermitian quadratic form on $T_p^{1,0}X$ given by $\mathcal{L}_p(U, V) = -\frac{1}{2i}d\omega_0(p)(U, \overline{V}), U, V \in T_p^{1,0}X.$

- We say that X is strongly psudoconvex at p ∈ X if the Levi form is positive definite at p ∈ X.
- We say that X is strongly psudoconvex if the Levi form is positive definite at each point of X.

・ 同 ・ ・ ヨ ・ ・ ヨ ・

CR functions

• Let $\tau : \mathbb{C}T^*X \to T^{*0,1}X$ be the orthogonal projection.

•
$$\overline{\partial}_b = \tau \circ d : \mathscr{C}^{\infty}(X) \to \Omega^{0,1}(X)$$
: tangentia
Cauchy-Riemann(CR) operator, where
 $\Omega^{0,1}(X) = \mathscr{C}^{\infty}(X, T^{*0,1}X).$

CR functions

• Let $\tau : \mathbb{C}T^*X \to T^{*0,1}X$ be the orthogonal projection.

•
$$\overline{\partial}_b = \tau \circ d : \mathscr{C}^{\infty}(X) \to \Omega^{0,1}(X)$$
: tangential Cauchy-Riemann(CR) operator, where $\Omega^{0,1}(X) = \mathscr{C}^{\infty}(X, T^{*0,1}X).$

• We extend $\overline{\partial}_b$ to L^2 space: $\overline{\partial}_b : \operatorname{Dom} \overline{\partial}_b \subset L^2(X) \to L^2_{(0,1)}(X)$, where $\operatorname{Dom} \overline{\partial}_b = \{ u \in L^2(X); \ \overline{\partial}_b u \in L^2(X) \}.$

CR functions

• Let $\tau : \mathbb{C}T^*X \to T^{*0,1}X$ be the orthogonal projection.

•
$$\overline{\partial}_b = \tau \circ d : \mathscr{C}^{\infty}(X) \to \Omega^{0,1}(X)$$
: tangentia
Cauchy-Riemann(CR) operator, where
 $\Omega^{0,1}(X) = \mathscr{C}^{\infty}(X, T^{*0,1}X).$

- We extend $\overline{\partial}_b$ to L^2 space: $\overline{\partial}_b : \operatorname{Dom} \overline{\partial}_b \subset L^2(X) \to L^2_{(0,1)}(X)$, where $\operatorname{Dom} \overline{\partial}_b = \{ u \in L^2(X); \ \overline{\partial}_b u \in L^2(X) \}.$
- For a function $u \in L^2(X)$, we say that u is a CR function if $u \in \operatorname{Ker} \overline{\partial}_b$.
- If X is strongly pseudoconvex at some point of X and $\overline{\partial}_b$ has L^2 closed range, then $\dim \operatorname{Ker} \overline{\partial}_b = +\infty$ (Boutet de Monvel-Sjöstrand, Hsiao-Marinescu).

CR manifolds with group action

 Let (X, T^{1,0}X) be a compact connected CR manifold of dimension 2n + 1, n ≥ 2.

・ロン ・四 と ・ ヨ と ・ ヨ と

CR manifolds with group action

- Let (X, T^{1,0}X) be a compact connected CR manifold of dimension 2n + 1, n ≥ 2.
- Now, we assume that
 - X admits a *d*-dim'l locally free connected compact Lie group action G with Lie algebra g.
 - The Lie group action G preserves ω_0 and CR structure. That is, $g^*\omega_0 = \omega_0$ and $dg(T^{1,0}X) = T^{1,0}X$, for every $g \in G$, $g: X \to X$.
- For any ξ ∈ g, ξ_X : the vector field on X induced by ξ. Let g = Span (ξ_X; ξ ∈ g).

(1日) (日) (日)

CR manifolds with group action

- Let (X, T^{1,0}X) be a compact connected CR manifold of dimension 2n + 1, n ≥ 2.
- Now, we assume that
 - X admits a *d*-dim'l locally free connected compact Lie group action G with Lie algebra g.
 - The Lie group action G preserves ω_0 and CR structure. That is, $g^*\omega_0 = \omega_0$ and $dg(T^{1,0}X) = T^{1,0}X$, for every $g \in G$, $g: X \to X$.
- For any $\xi \in \mathfrak{g}$, ξ_X : the vector field on X induced by ξ . Let $\underline{\mathfrak{g}} = \operatorname{Span}(\xi_X; \xi \in \mathfrak{g}).$
- Goal: Study $H_b^0(X)^G$ the space of global *G*-invariant L^2 CR functions.

CR momentum map

Definition

The momentum map associated to the form ω_0 is the map $\mu: X \to \mathfrak{g}^*$ such that, for all $x \in X$ and $\xi \in \mathfrak{g}$, we have

$$\langle \mu(x), \xi \rangle = \omega_0(\xi_X(x)).$$
 (1)

・ロト ・ 同ト ・ ヨト ・ ヨト

CR momentum map

Definition

The momentum map associated to the form ω_0 is the map $\mu: X \to \mathfrak{g}^*$ such that, for all $x \in X$ and $\xi \in \mathfrak{g}$, we have

$$\langle \mu(x), \xi \rangle = \omega_0(\xi_X(x)).$$
 (1)

• We will work under the following natural assumption.

Assumption

0 is a regular value of μ , the action of G on $\mu^{-1}(0)$ is free and the Levi form of X is positive definite near $\mu^{-1}(0)$.

• X is not necessarily strongly pseudoconvex.

・ロト ・同ト ・ヨト ・ヨト

• Let
$$Y := \mu^{-1}(0)$$
, $Y_G := \mu^{-1}(0)/G$.

Theorem (H/Huang, 2017)

 Y_G is a strongly pseudoconvex CR manifold of dimension 2n - 2d + 1 with natural CR structure $T^{1,0}Y_G$ induced from $T^{1,0}X$.

・ロン ・四 と ・ ヨ と ・ ヨ と

• Let
$$Y := \mu^{-1}(0)$$
, $Y_G := \mu^{-1}(0)/G$.

Theorem (H/Huang, 2017)

 Y_G is a strongly pseudoconvex CR manifold of dimension 2n - 2d + 1 with natural CR structure $T^{1,0}Y_G$ induced from $T^{1,0}X$.

• Is $H^0_b(X)^G \cong H^0_b(Y_G)$?

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

G-invariant Szegő projection

- Fix a *G*-invariant smooth Hermitian metric $\langle \cdot | \cdot \rangle$ on $\mathbb{C}TX$.
- Let $(\cdot | \cdot)$ and $(\cdot | \cdot)_{Y_G}$ be the L^2 inner products on $L^2(X)$ and $L^2(Y_G)$ induced by $\langle \cdot | \cdot \rangle$ respectively.
- Let $\overline{\partial}_b : \mathscr{C}^{\infty}(X) \to \Omega^{0,1}(X)$ and $\overline{\partial}_{b,Y_G} : \mathscr{C}^{\infty}(Y_G) \to \Omega^{0,1}(Y_G)$ be the tangential Cauchy-Riemann operators on X and Y_G respectively.
- We extend $\overline{\partial}_b$ and $\overline{\partial}_{b,Y_G}$ to L^2 spaces in the standard way.

$$\overline{\partial}_b : \mathrm{Dom}\,\overline{\partial}_b \subset L^2(X) \to L^2_{(0,1)}(X), \\ \overline{\partial}_{b,Y_G} : \mathrm{Dom}\,\overline{\partial}_{b,Y_G} \subset L^2(Y_G) \to L^2_{(0,1)}(Y_G).$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

• Put

$$\begin{split} H^{0}_{b}(X) &:= \left\{ u \in L^{2}(X); \ \overline{\partial}_{b}u = 0 \right\}, \\ H^{0}_{b}(X)^{G} &:= \left\{ u \in H^{0}_{b}(X); \ h^{*}u = u, \ \text{ for every } h \in G \right\}, \\ H^{0}_{b}(Y_{G}) &:= \left\{ u \in L^{2}(Y_{G}); \ \overline{\partial}_{b,Y_{G}}u = 0 \right\}. \end{split}$$

• The G-invariant Szegő projection is the orthogonal projection

$$S_G: L^2(X) \to H^0_b(X)^G$$

with respect to $(\cdot | \cdot)$.

• Let $S_{Y_G} : L^2(Y_G) \to H^0_b(Y_G)$ be the orthogonal projection with respect to $(\cdot | \cdot)_{Y_G}$ (Szegő projection on Y_G).

The canonical Fredholm operator $\widehat{\sigma}$

- Let $\iota_G : \mathscr{C}^{\infty}(X)^G \to \mathscr{C}^{\infty}(Y_G)$ be the natural restriction,
- $\mathscr{C}^{\infty}(X)^{G}$: the space of G-invariant smooth functions on X.
- Let

$$\widehat{\sigma} : H^0_b(X)^G \cap \mathscr{C}^\infty(X)^G \to H^0_b(Y_G), u \mapsto S_{Y_G} \circ E \circ \iota_G \circ f \circ u,$$
 (2)

- $E: \mathscr{C}^{\infty}(Y_G) \to \mathscr{C}^{\infty}(Y_G)$: any elliptic pseudodifferential operator with principal symbol $p_E(x,\xi) = |\xi|^{-\frac{d}{4}}$,
- $f \in \mathscr{C}^{\infty}(X)^{G}$: a specific *G*-invariant smooth function.

The canonical Fredholm operator $\widehat{\sigma}$

- Let $\iota_G : \mathscr{C}^{\infty}(X)^G \to \mathscr{C}^{\infty}(Y_G)$ be the natural restriction,
- $\mathscr{C}^{\infty}(X)^{G}$: the space of G-invariant smooth functions on X.
- Let

$$\widehat{\sigma} : H^0_b(X)^G \cap \mathscr{C}^\infty(X)^G \to H^0_b(Y_G), u \mapsto S_{Y_G} \circ E \circ \iota_G \circ f \circ u,$$
 (2)

- $E: \mathscr{C}^{\infty}(Y_G) \to \mathscr{C}^{\infty}(Y_G)$: any elliptic pseudodifferential operator with principal symbol $p_E(x,\xi) = |\xi|^{-\frac{d}{4}}$,
- $f \in \mathscr{C}^{\infty}(X)^{G}$: a specific *G*-invariant smooth function.
- We can show that there exists a C > 0 such that $(\widehat{\sigma}u | \widehat{\sigma}u)_{Y_G} \leq C ||u||^2$, for every $u \in H^0_b(X)^G \cap \mathscr{C}^{\infty}(X)$.
- Hence, we can extend $\widehat{\sigma}$ to $\widehat{\sigma}: H^0_b(X)^G \to H^0_b(Y_G)$.

Theorem I (H/Ma/Marinescu, 2019)

Suppose that $\overline{\partial}_{b,Y_G}$ has L^2 closed range and the Levi form is positive definite near $\mu^{-1}(0)$. The map

 $\widehat{\sigma}: H^0_b(X)^G \to H^0_b(Y_G)$

is Fredholm. That is, Ker $\hat{\sigma}$ and $(\operatorname{Im} \hat{\sigma})^{\perp}$ are finite dimensional subspaces of the spaces $\mathscr{C}^{\infty}(X) \cap H^0_b(X)^G$ and $\mathscr{C}^{\infty}(Y_G) \cap H^0_b(Y_G)$ respectively.

伺 とう きょう とう とう

Geometric quantization on CR manifolds

- In this work, we do not assume that $\overline{\partial}_b$ has closed range on X.
- The definition of $\hat{\sigma}$ depends on the choice of elliptic pseudodifferential operator *E*.
- Up to lower order terms of *E*, the map $\widehat{\sigma}$ is a canonical choice.
- $\overline{\partial}_b$ is not hypoelliptic and not transversally elliptic in general.
- Theorem I establishes "quantization commutes with reduction" for some non-hypoelliptic operators.

ヨッ イヨッ イヨッ

Applications: Complex manifolds

- (L, h^L) : a holomorphic line bundle over a connected compact complex manifold (M, J),
- h^L is a Hermitian fiber metric of L.
- R^L : the curvature of (L, h^L) .
- G : a connected compact Lie group with Lie algebra \mathfrak{g} . Assume that
 - G acts holomorphically on (M, J),
 - the action lifts to a holomorphic action on L,
 - h^L is preserved by the *G*-action.
 - $\omega := \frac{i}{2\pi} R^L$ is a *G*-invariant form.

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\tilde{\mu}: M \to \mathfrak{g}^*$: the momentum map induced by ω . Assume that
 - $\bullet \ 0 \in \mathfrak{g}^* \text{ is regular,} \\$
 - the action of G on $\tilde{\mu}^{-1}(0)$ is free.
- M₀ := µ̃⁻¹(0)/G: a complex manifold with natural complex structure induced by J.
- $L_0 := L/G$: a holomorphic line bundle over M_0 .

Theorem (Guillemin-Sternberg (1982))

Suppose that $R^L > 0$ on X. We have dim $H^0(M, L^m)^G = \dim H^0(M_0, L_0^m)$, for every $m \in \mathbb{N}^*$.

- $H^0(M_0, L_0^m)$: the space of holomorphic sections on M_0 with values in L_0^m ,
- $H^0(M, L^m)^G$: the space of G-invariant holomorphic sections with values in L^m .

- Guillemin and Sternberg conjectured: "quantization commutes with reduction" holds for compact symplectic manifolds with compact connected Lie group *G*.
- When G is abelian, this conjecture was proved by Meinrenken (1996) and Vergne (1996).
- The remaining nonabelian case was first proved by Meinrenken (1998) using the symplectic cut techniques of Lerman, and then by Tian and Zhang (1998) using analytic localization techniques by Bismut-Lebeau.
- Paradan developed a *K*-theoretic approach for Guillemin and Sternberg conjecture.

・ロン ・回 と ・ ヨン ・ ヨン

- When symplectic manifold is non-compact and momentum map is proper, "quantization commutes with reduction problem (Vergne's conjecture in her ICM 2006 plenary lecture)," was solved by Ma-Zhang.
- Paradan gave a new proof for Vergne's conjecture.
- When manifold and group are both non-compact: many works, Mathai, Zhang, Hochs, etc.

(4月) (4日) (4日)

- Let X be the circle bundle of (L^*, h^{L^*}) , i.e. $X := \left\{ v \in L^*; |v|_{h^{L^*}}^2 = 1 \right\}.$
- X is a compact strongly pseudoconvex CR manifold with a group action G.
- X admits a S¹ action e^{iθ}: e^{iθ} ∘ (z, λ) := (z, e^{iθ}λ), where λ denotes the fiber coordinate of X.
- $\overline{\partial}_b$ is not hypoelliptic but transversally elliptic with respect to the S^1 action.

伺 とう きょう とう とう

Applications: Complex manifolds

• For every $m \in \mathbb{Z}$, let

$$\begin{aligned} H^0_{b,m}(X)^G &:= \left\{ u \in H^0_b(X)^G; \, (e^{i\theta})^* u = e^{im\theta} u, \text{for every } e^{i\theta} \in S^1 \right\}, \\ H^0_{b,m}(Y_G) &:= \left\{ u \in H^0_b(Y_G); \, (e^{i\theta})^* u = e^{im\theta} u, \text{for every } e^{i\theta} \in S^1 \right\}. \end{aligned}$$

- We have
 - $H^0_b(X)^G := \bigoplus_{m \in \mathbb{Z}} H^0_{b,m}(X)^G$, $H^0_b(Y_G) := \bigoplus_{m \in \mathbb{Z}} H^0_{b,m}(Y_G)$, • $\widehat{\sigma} : H^0_{b,m}(X)^G \to H^0_{b,m}(Y_G)$, for every $m \in \mathbb{Z}$.
- For every $m \in \mathbb{Z}$,

 $H^{0}(M, L^{m})^{G} \cong H^{0}_{b,m}(X)^{G}, \ H^{0}(M_{0}, L^{m}_{0}) \cong H^{0}_{b,m}(Y_{G}).$

 From Theorem I, we deduce that if |m| ≫ 1, then dim H⁰_{b,m}(X)^G = dim H⁰_{b,m}(Y_G).

イロト イポト イヨト イヨト

Ma-Zhang showed that the map

$$\rho: H^0(M, L^m)^G \to H^0(M_0, L_0^m),$$

$$u \mapsto m^{-\frac{d}{4}} B_{M_0, m} \circ \iota_G \circ f \circ u,$$
(3)

is an isomorphism if *m* is large enough,

- $B_{M_0,m}: L^2(M_0, L_0^m) \to H^0(M_0, L_0^m)$: the orthogonal projection (Bergman projection).
- When we change $m^{-\frac{d}{4}}$ in (3) to any *m*-dependent function with order $m^{-\frac{d}{4}} + O(m^{-\frac{4}{d}-1})$, we still have an isomorphism between $H^0(M, L^m)^G$ and $H^0(M_0, L_0^m)$ for *m* large.

- In this work, we only assume the Levi form is positive definite near μ⁻¹(0).
- As an application of Theorem I, we deduce

Theorem

With the notations and assumptions above and suppose that R^L is positive near $\tilde{\mu}^{-1}(0)$. Then, for |m| large, we have

$$\dim H^0(M, L^m)^G = \dim H^0(M_0, L_0^m).$$

Applications: Sasakian manifolds

- Let (X, T^{1,0}X) be a compact strongly pseudoconvex CR manifold.
- We say that X is torsion free if there is a non-vanishing global real vector field $T \in \mathscr{C}^{\infty}(X, TX)$ such that
 - T preserves the CR structure $T^{1,0}X$,
 - $T, T^{1,0}X \oplus T^{0,1}X$ generate the complex tangent bundle of X.
- We call T CR Reeb vector field on X.
- Ornea and Verbitsky: A (2n + 1)-dimensional smooth manifold X is a Sasakian manifold if and only if X is a torsion free strongly pseudoconvex CR manifold.

(4月) (1日) (日)

Applications: Sasakian manifolds

- X is a quasi-regular (regular) Sasakian manifold if the flow of T induces a locally free (free) S¹-action on X.
- X is an irregular Sasakian manifold if there is an orbit of the flow of T which is non-compact.
- In this case, the flow of *T* induces a transversal CR ℝ-action on *X*.
- We now assume that X is an irregular Sasakian manifold with a CR Reeb vector field T and suppose that the Lie group G preserves T and CR structure on X.

Consider the operators

$$\begin{split} &-i\mathscr{L}_{\mathcal{T}}:\mathscr{C}^{\infty}(X)\to\mathscr{C}^{\infty}(X),\\ &-i\mathscr{L}_{\widehat{\mathcal{T}}}:\mathscr{C}^{\infty}(Y_G)\to\mathscr{C}^{\infty}(Y_G), \end{split}$$

- \widehat{T} is the CR Reeb vector field on Y_G ,
- $\mathscr{L}_{\mathcal{T}}$, $\mathscr{L}_{\widehat{\mathcal{T}}}$ denote the Lie derivative of \mathcal{T} and $\widehat{\mathcal{T}}$ respectively.
- We extend $-i\mathscr{L}_T$ and $-i\mathscr{L}_{\widehat{T}}$ to L^2 spaces by their weak maximal extension.

Image: A Image: A

Theorem (H/Herrmann/Li, 2017)

We have that $\operatorname{Spec}(-i\mathscr{L}_T)$ is countable and every element in $\operatorname{Spec}(-i\mathscr{L}_T)$ is an eigenvalue of $-i\mathscr{L}_T$, where $\operatorname{Spec}(-i\mathscr{L}_T)$ denotes the spectrum of $-i\mathscr{L}_T$.

• Put

$$\begin{split} &\operatorname{Spec}\left(-i\mathscr{L}_{T}\right) = \{\alpha_{1}, \alpha_{2}, \ldots\} \subset \mathbb{R}, \\ &\operatorname{Spec}\left(-i\mathscr{L}_{\widehat{T}}\right) = \{\beta_{1}, \beta_{2}, \ldots\} \subset \mathbb{R}, \\ &H^{0}_{b,\alpha}(X)^{G} := \left\{ u \in H^{0}_{b}(X)^{G}; -i\mathscr{L}_{T}u = \alpha u \right\}, \quad \alpha \in \operatorname{Spec}\left(-i\mathscr{L}_{T}\right), \\ &H^{0}_{b,\beta}(Y_{G}) := \left\{ v \in H^{0}_{b}(Y_{G}); -i\mathscr{L}_{\widehat{T}}v = \beta u \right\}, \quad \beta \in \operatorname{Spec}\left(-i\mathscr{L}_{\widehat{T}}\right). \end{split}$$

(1日) (日) (日)

- $\overline{\partial}_b$ is transversally elliptic with respect to the \mathbb{R} action.
- $H^0_{b,\alpha}(X)^G$ and $H^0_{b,\beta}(Y_G)$ are finite dimensional subspaces of $\mathscr{C}^{\infty}(X)^G$ and $\mathscr{C}^{\infty}(Y_G)$ respectively, for every $\alpha \in \operatorname{Spec}(-i\mathscr{L}_T), \ \beta \in \operatorname{Spec}(-i\mathscr{L}_{\widehat{T}}).$
- $H^0_b(X)^G = \bigoplus_{\alpha \in \operatorname{Spec}(-i\mathscr{L}_T)} H^0_{b,\alpha}(X)^G$, $H^0_b(Y_G) = \bigoplus_{\beta \in \operatorname{Spec}(-i\mathscr{L}_T)} H^0_{b,\beta}(Y_G)$.

Quantization commutes with reduction for irregular Sasakian manifolds

Theorem II (H/Ma/Marinescu, 2019)

There is a $N \in \mathbb{N}$ such that the map

$$\widehat{\sigma}: H^0_{b,\alpha_k}(X)^G \to H^0_{b,\alpha_k}(Y_G)$$

is an isomorphism, for every $k \ge N$ and if $\beta_k \ne \alpha_k$, where $k \ge N$, then $\dim H^0_{b,\beta_k}(Y_G) = 0$.

A (10) × (10) × (10) ×

Quantization commutes with reduction for irregular Sasakian manifolds

Theorem II (H/Ma/Marinescu, 2019)

There is a $N \in \mathbb{N}$ such that the map

$$\widehat{\sigma}: H^0_{b,\alpha_k}(X)^G \to H^0_{b,\alpha_k}(Y_G)$$

is an isomorphism, for every $k \ge N$ and if $\beta_k \ne \alpha_k$, where $k \ge N$, then $\dim H^0_{b,\beta_k}(Y_G) = 0$.

- It was shown by Marinescu and Yeganefar that $\overline{\partial}_{b,Y_G}$ has L^2 closed range.
- In the rest of this talk, we will sketch the proof of Theorem I.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Consider
$$\overline{\partial}_{b,G}:\mathrm{Dom}\,\overline{\partial}_{b,G}\subset L^2(X)^G
ightarrow L^2_{(0,1)}(X)^G$$
,

- $L^2_{(0,1)}(X)^G$: the space of G-invariant $L^2(0,1)$ forms,
- Dom $\overline{\partial}_{b,G} = \left\{ u \in L^2(X)^G; \ \overline{\partial}_b u \in L^2_{(0,1)}(X)^G \right\},$

•
$$\overline{\partial}_{b,G} u = \overline{\partial}_{b} u$$
, for every $u \in \text{Dom}\,\overline{\partial}_{b,G}$.

• Let $\overline{\partial}_{b,G}^* : \text{Dom} \overline{\partial}_{b,G}^* \subset L^2_{(0,1)}(X)^G \to L^2(X)^G$ be the Hilbert space adjoint of $\overline{\partial}_{b,G}$ with respect to $(\cdot | \cdot)$.

(日本)(日本)(日本)

Let

$$\Box_{b,G} = \overline{\partial}_{b,G}^* \overline{\partial}_{b,G} : \mathrm{Dom}\, \Box_{b,G} \subset L^2(X)^G \to L^2(X)^G$$

denote the (Gaffney extension) of the G-invariant Kohn Laplacian given by

$$\operatorname{Dom} \Box_{b,G} = \left\{ s \in L^2(X)^G; \ s \in \operatorname{Dom} \overline{\partial}_{b,G}, \quad \overline{\partial}_{b,G} s \in \operatorname{Dom} \overline{\partial}_{b,G}^* \right\},$$
$$\Box_{b,G} s = \overline{\partial}_{b,G}^* \overline{\partial}_{b,G} s \text{ for } s \in \operatorname{Dom} \Box_{b,G}.$$

• $\Box_{b,G}$ is self-adjoint.

(四) (目) (日)

Closed range property for G-invariant Kohn Laplacian

• By using some kind of Kohn's hypoelliptic estimates, we can show that

Theorem (H/Ma/Marinescu, 2019)

Recall that we work with the assumption that the Levi form is positive near $\mu^{-1}(0)$. The operator $\Box_{b,G} : \text{Dom} \Box_{b,G} \subset L^2(X)^G \to L^2(X)^G$ has closed range

Closed range property for G-invariant Kohn Laplacian

• By using some kind of Kohn's hypoelliptic estimates, we can show that

Theorem (H/Ma/Marinescu, 2019)

Recall that we work with the assumption that the Levi form is positive near $\mu^{-1}(0)$. The operator $\Box_{b,G} : \text{Dom} \Box_{b,G} \subset L^2(X)^G \to L^2(X)^G$ has closed range

The Kohn Laplacian □_b : Dom □_b ⊂ L²(X) → L²(X) may not have closed range.

Let S_G(x, y) ∈ D'(X × X) be the distribution kernel of the orthogonal projection S_G : L²(X) → Ker □_{b,G} = H⁰_b(X)^G.

伺 とう きょう とう とう

- Let S_G(x, y) ∈ D'(X × X) be the distribution kernel of the orthogonal projection S_G : L²(X) → Ker □_{b,G} = H⁰_b(X)^G.
- We have

$$S_G(x,y) = \int_G S(x,h \circ y) d\mu(h)$$
 on $X \times X$, (4)

- $d\mu = d\mu(h)$: the Haar measure on G with $\int_G d\mu(h) = 1$,
- $S(x, y) \in \mathscr{D}'(X \times X)$ is the distribution kernel of the orthogonal projection $S : L^2(X) \to \operatorname{Ker} \Box_b$.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Let $S_G(x, y) \in \mathscr{D}'(X \times X)$ be the distribution kernel of the orthogonal projection $S_G : L^2(X) \to \operatorname{Ker} \Box_{b,G} = H^0_b(X)^G$.

We have

$$S_G(x,y) = \int_G S(x,h \circ y) d\mu(h)$$
 on $X \times X$, (4)

• $d\mu = d\mu(h)$: the Haar measure on G with $\int_G d\mu(h) = 1$,

- S(x, y) ∈ D'(X × X) is the distribution kernel of the orthogonal projection S : L²(X) → Ker □_b.
- When X is strongly pseudoconvex and □_b has closed range, we can study S_G(x, y) by using (4) and Boutet de Monvel and Sjöstrand's classical result for the Szegő kernel S(x, y).

- Let $S_G(x, y) \in \mathscr{D}'(X \times X)$ be the distribution kernel of the orthogonal projection $S_G : L^2(X) \to \operatorname{Ker} \Box_{b,G} = H^0_b(X)^G$.
- We have

$$S_G(x,y) = \int_G S(x,h \circ y) d\mu(h)$$
 on $X \times X$, (4)

- $d\mu = d\mu(h)$: the Haar measure on G with $\int_G d\mu(h) = 1$,
- S(x, y) ∈ D'(X × X) is the distribution kernel of the orthogonal projection S : L²(X) → Ker □_b.
- When X is strongly pseudoconvex and □_b has closed range, we can study S_G(x, y) by using (4) and Boutet de Monvel and Sjöstrand's classical result for the Szegő kernel S(x, y).
- Since the Kohn Laplacian □_b may not have closed range, it is difficult to study S_G(x, y) by using (4).

Spectral kernel for Kohn Laplacian

- \Box_b is self-adjoint and the spectrum of \Box_b is contained in $\overline{\mathbb{R}}_+$.
- For $\lambda \geq 0$, set $H^0_{b,\leq\lambda}(X) := \operatorname{Ran} E([0,\lambda]) \subset L^2(X)$,
 - E([0, λ])):the spectral projection of □_b,
 - *E*: the spectral measure of \Box_b .

Let

$$S_{\leq \lambda}: L^2(X) \to H^0_{b,\leq \lambda}(X)$$

be the orthogonal projection with respect to the product ($\cdot \,|\, \cdot\,$).

• Let $S_{\leq \lambda}(x,y) \in \mathscr{D}'(X \times X)$ be the distribution kernels of $S_{\leq \lambda}$.

Theorem (H/Marinescu, 2017)

Assume that the Levi form is positive on an open set $D \subseteq X$. Then for every $\lambda > 0$, $S_{\leq \lambda}(x, y)$ is a complex Fourier integral operator on D of the form

$$S_{\leq\lambda}(x,y) \equiv \int_{0}^{\infty} e^{i\varphi(x,y)t} s(x,y,t) dt,$$

$$s(x,y,t) \sim \sum_{j=0}^{+\infty} t^{n-j} s_{j}(x,y),$$

$$s_{0}(x,y) \neq 0,$$

$$\operatorname{Im} \varphi \geq 0, \quad \varphi(x,x) = 0.$$
(5)

高 と く ヨ と く ヨ と

G-invariant Szegő kernel asymptotics

• From the closed range property for *G*-invariant Kohn Laplacian, we can show that

Theorem

There is a $\lambda_0 > 0$ such that

$$S_G(x,y) = \int_G S_{\leq \lambda_0}(x,h\circ y) d\mu(h) \quad on \ X \times X.$$
 (6)

A (1) > A (2) > A (2) >

G-invariant Szegő kernel asymptotics

• From the closed range property for *G*-invariant Kohn Laplacian, we can show that

Theorem

There is a $\lambda_0 > 0$ such that

$$S_G(x,y) = \int_G S_{\leq \lambda_0}(x,h\circ y) d\mu(h)$$
 on $X \times X$. (6)

- From (5), (6) and note that the Levi form is positive near $\mu^{-1}(0)$, we can study $S_G(x, y)$ near $\mu^{-1}(0)$.
- By using Kohn's estimates, we can show that S_G is smoothing away $\mu^{-1}(0)$.

A (1) > A (2) > A (2) >

Theorem III (H/Ma/Marinescu, 2019)

- S_G is smoothing outside $\mu^{-1}(0)$.
- In an open set U of $\mu^{-1}(0)$, we have

$$\mathcal{S}_{\mathcal{G}}(x,y)\equiv\int_{0}^{\infty}e^{i\Phi(x,y)t}a(x,y,t)dt \ \ ext{on} \ \ U imes U,$$

•
$$a(x,y,t) \sim \sum_{j=0}^{\infty} a_j(x,y) t^{n-\frac{d}{2}-j}$$
 in $S_{1,0}^{n-\frac{d}{2}}(U \times U \times \mathbb{R}_+)$

- $d_x \Phi(x, x) = -d_y \Phi(x, x) = -\omega_0(x), \ \forall x \in \mu^{-1}(0),$
- $\operatorname{Im} \Phi(x, y) \ge 0$, $\operatorname{Im} \Phi(x, x) \approx d(x, \mu^{-1}(0))^2$.

<日

• Consider $\hat{\sigma}$ as a map acting on $L^2(X)$:

$$\widehat{\sigma}: L^2(X) \to H^0_b(Y_G) \subset L^2(Y_G), \quad u \to S_{Y_G} \circ E \circ \iota_G \circ f \circ S_G \circ u.$$

- Let $\widehat{\sigma}^* : L^2(Y_G) \to \mathscr{D}'(X)$ be the adjoint of $\widehat{\sigma}$.
- From Theorem III and by developing some kind of complex Fourier integral operators calculation, we can show that
 - $F := \widehat{\sigma}^* \widehat{\sigma} : L^2(X) \to \mathscr{D}'(X)$ is the same type of operator as S_G ,
 - $F = C_0(I R)S_G$, C_0 is a constant, R is also the same type of operator as S_G .
 - We take E so that the order of F is the same as the order of S_G .

- We can take f so that
 - the leading symbol of R vanishes at $\operatorname{diag}(\mu^{-1}(0) \times \mu^{-1}(0))$,
 - R: H^s(X) → H^{s+ε}(X) is continuous, for every s ∈ Z, where ε > 0 is a constant and H^s(X) denotes the Sobolev space of order s on X.
- From $F = \hat{\sigma}^* \hat{\sigma} = C_0(I R)$ on $H_b^0(X)^G$ and the regularity property of R, we can show that
 - the kernel of $F : H_b^0(X)^G \to H_b^0(X)^G$ is a finite dimensional subspace of $\mathscr{C}^{\infty}(X) \cap H_b^0(X)^G$.
- Since Ker σ̂ ⊂ Ker F, Ker σ̂ is a finite dimensional subspace of C[∞](X) ∩ H⁰_b(X)^G.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Similarly, we can repeat the argument above with minor change and deduce that
 - the kernel of the map

$$\hat{\mathsf{F}} = \widehat{\sigma} \widehat{\sigma}^* : \mathsf{H}^0_b(Y_G) o \mathsf{H}^0_b(Y_G)$$

is a finite dimensional subspace of $\mathscr{C}^{\infty}(Y_G) \cap H^0_b(Y_G)$.

Since (Im σ̂)[⊥] ⊂ Ker F̂, (Im σ̂)[⊥] is a finite dimensional subspace of C[∞](Y_G) ∩ H⁰_b(Y_G).

高 ト イ ヨ ト イ ヨ ト

- Similarly, we can repeat the argument above with minor change and deduce that
 - the kernel of the map

$$\hat{F} = \widehat{\sigma}\widehat{\sigma}^* : H^0_b(Y_G) \to H^0_b(Y_G)$$

is a finite dimensional subspace of $\mathscr{C}^{\infty}(Y_G) \cap H^0_b(Y_G)$.

- Since (Im σ̂)[⊥] ⊂ Ker F̂, (Im σ̂)[⊥] is a finite dimensional subspace of C[∞](Y_G) ∩ H⁰_b(Y_G).
- We can also apply the method of the proof to study some extension problems in several complex variables.

高 ト イ ヨ ト イ ヨ ト

• By using spectral theory, we will show that there is a self-adjoint bounded operator

•
$$\sqrt{N_+}$$
: $L^2(X) \rightarrow L^2(X)$,

•
$$\sqrt{N_+}S_G = S_G\sqrt{N_+}$$
 on $L^2(X)$,

• $\sqrt{N_+}(I-R)\sqrt{N_+} = I - P$ on $L^2(X)$, where P is the orthogonal projection from $L^2(X)$ onto Ker (I - R).

• Let
$$\sigma := \frac{1}{\sqrt{C_0}} \widehat{\sigma} \circ S_G \circ \sqrt{N_+} : H^0_b(X)^G \to H^0_b(Y_G).$$

•
$$\sigma^* \sigma = \frac{1}{C_0} \sqrt{N_+} \widehat{\sigma}^* \widehat{\sigma} \sqrt{N_+} = \sqrt{N_+} (I-R) \sqrt{N_+} = I - P.$$

高 ト イ ヨ ト イ ヨ ト

We have

$$(\sigma u | \sigma v)_{Y_G} = (\sqrt{N_+}(I-R)\sqrt{N_+}u | v) = (u | v) - (P u | v),$$

for every $u, v \in H^0_b(X)^G$.

- Note that P is smoothing and for u ∈ H⁰_b(X)^G, Pu = 0 if and only of u ∈ (Ker σ)[⊥].
- σ is microlocally isometric.

(4月) (4日) (4日)

Geometric quantization on CR manifolds

Theorem (H/Ma/Marinescu, 2019)

Suppose that $\overline{\partial}_{b,Y_G}$ has L^2 closed range and the Levi form is positive near $\mu^{-1}(0)$. The map

$$\sigma: H^0_b(X)^G \to H^0_b(Y_G)$$

is Fredholm and

$$(\sigma u | \sigma v)_{Y_G} = (u | v), \quad u, v \in (\operatorname{Ker} \sigma)^{\perp}.$$

向下 イヨト イヨト