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0. The triple reduced product Space: Motivation

• Let G = SU(3), and let T be the maximal torus. Let the Lie algebras be

denoted g and t respectively.

We are considering the symplectic quotient of the product of three coadjoint

orbits of SU(3)

M = Oξ1 ×Oξ2 ×Oξ3//G

where ξj ∈ t are in the Lie algebra of the maximal torus of SU(3) (in other

words they are diagonal matrices with purely imaginary entries).

• The moment map for each (co)adjoint orbit is the inclusion map into the Lie

algebra g.

• So if X,Y, Z ∈ Oλ ×Oµ ×Oν , the moment map is φ(X,Y, Z) = X + Y + Z.

• This space has dimension 2 (because the dimension of each of the orbits is 6

and the moment map condition reduces the dimension by 8 , while the

quotient by the group action reduces by a further 8: 18− 8− 8 = 2)



• The triple reduced product space may be identified with a polygon space, a

space of triangles in su(3) with vertices in specific coadjoint orbits.

• These spaces are a prototype for flat connections on the three-punctured

sphere, with the holonomy around each puncture constrained to lie in a

prescribed conjugacy class. (See LJ, Math. Ann. 1994.)



• The orbit method (Kirillov) has many applications in geometry.

• A tuple of matrices may be identified with a Higgs field.

• In the paper “The triple reduced product and Hamiltonian flows” (L. Jeffrey,

S. Rayan, G. Seal, P. Selick, J. Weitsman, in XXXV WGMP Proceedings),

the main objective was to identify a Hamiltonian function which was the

moment map for a circle action. We were able to do this only indirectly, by

choosing an auxiliary function which maps the triple reduced product onto

the unit interval, and defining the moment map indirectly as a definite

integral involving the auxiliary function.

• Symplectic volume of triple reduced product is known (Suzuki-Takakura

[ST08]; LJ- Jia Ji, arXiv:1804.06474)



• Assuming that 0 is a regular value of the moment map, the triple reduced

product is homeomorphic to S2.

• Our dimension count tells us that it has dimension 2. For generic values of

the moment map, the zero level set of the moment map is a manifold, and the

G action is free so the quotient is also a manifold. Since the Kirwan map is

surjective, dimH0 ≤ 1 (because the space is connected), dimH1 = 0 –because

the orbits have no odd-dimensional cohomology – and dimH2 ≤ 1 (by

Poincaré duality). Hence the reduced space must be either empty or S2.



1. Background

Let ξ1, . . . , ξN ∈ t.

Assumption 1: All of O(ξ1), · · · ,O(ξN ) are diffeomorphic to the homogeneous

space G/T . This assumption is equivalent to the assumption that all of the

stabilizer groups StabG(ξ1), · · · , StabG(ξN) are conjugate to the chosen maximal

torus T . If all of ξ1, · · · , ξN are contained in t∗ ⊆ g∗, then this assumption is

saying that

StabG(ξ1) = · · · = StabG(ξN) = T.

Remark: Since every coadjoint orbit O(ξ) can be written as O(ξ′) for some

ξ′ ∈ t∗ ⊆ g∗, we can always assume that ξ = (ξ1, · · · , ξN ) satisfies that ξj ∈ t∗ ⊆ g∗

for all j.

The Cartesian product M(ξ) = O(ξ1)× · · · × O(ξN ) carries a natural symplectic

structure ωξ defined by:

ωξ := π∗
1ωO(ξ1) + · · ·+ π∗

NωO(ξN ) (1)

where πj : O(ξ1)×· · ·×O(ξN ) → O(ξj) is the projection onto the j-th component.

Let G act on M(ξ) = O(ξ1)× · · · × O(ξN ) by the diagonal action ∆:

∆(g)(η1, · · · , ηN ) := (K(g)(η1), · · · ,K(g)(ηN )) (2)



for all g ∈ G, ηj ∈ O(ξj). Here K(g) denotes the (co)adjoint action of g.

The symplectic form ωξ is clearly G-invariant, and we also have the following.

Proposition: The diagonal action ∆ of G on (M(ξ), ωξ) is a Hamiltonian

G-action with the moment map µξ : M(ξ) → g∗ being:

µξ(η) =
N∑

j=1

ηj (3)

for all η := (η1, · · · , ηN ) ∈ M(ξ).

We assume that:

Assumption 2: 0 ∈ g∗ is a regular value for µξ : M(ξ) → g∗ and µ−1
ξ (0) 6= ∅.

Remark: By Sard’s theorem, the set where the previous two assumptions hold is

nonempty and has nonempty interior in t∗ × · · · × t∗.

Then, the level set M0(ξ) := µ−1
ξ (0) is a closed, thus compact, submanifold of

M(ξ) and the diagonal action ∆ of G restricts to an action on M0(ξ). Therefore,

we can form the quotient space with respect to this action of G on M0(ξ):

M(ξ) := M0(ξ)/G. (4)

The above quotient space will also be denoted by M//G. Note that this quotient



space is compact.

If the G-action on M0(ξ) is free and proper (in our situation, properness is

automatically satisfied), then the quotient space M(ξ) = M0(ξ)/G is a smooth

manifold. However, in our situation, the G-action on M0(ξ) is in general not free.

Hence, in general the quotient space is only an orbifold. To avoid this

complication, we will assume:

Assumption 3: The quotient space M(ξ) = M0(ξ)/G is a smooth compact

manifold.

Remark: The above assumption will put further restrictions on which

ξ ∈ t∗ × · · · × t∗ we can choose as initial data. Thus we only choose initial data

from the following set in this talk:

A′ :=






ξ ∈

N
︷ ︸︸ ︷

t∗ × · · · × t∗ : previous 3 assumptions hold






(5)

Suzuki and Takakura also made this assumption in their paper [ST08] (in Section

2.3). It seems reasonable to us to assume that even after Assumption 3 is

imposed, the initial data set A′ is still nonempty and still has nonempty interior

in t∗ × · · · × t∗. Notice that since the elements in the center of G always act



trivially on M(ξ) and M0(ξ), Assumption 3 is valid if PG = G/Z(G) acts freely

on M0(ξ). This happens for G = SU(n) if all the coadjoint orbits O(ξi) are

generic.

Then, we have the following well known theorem:

Theorem:[Marsden-Weinstein] The smooth compact manifold M(ξ) = M0(ξ)/G

carries a unique symplectic structure ω(ξ) such that

i∗ωξ = π∗ω(ξ) (6)

where i : M0(ξ) →֒ M(ξ) is the inclusion map and π : M0(ξ) → M(ξ) is the

associated projection map.



2. The case G = SU(3), N = 3

In this section, we study 3-fold reduced products, or triple reduced products for

G = SU(3). See [TRP1], [TRP2] for recent studies about these objects. Our focus

is on the symplectic volume of triple reduced products.

The Setup for the case G = SU(3)

• Let G = SU(3) and let T be its standard maximal torus, i.e., T consists of

diagonal matrices in SU(3).

• In this case, we know that the corresponding Weyl group W is isomorphic to

the permutation group S3.

• The Weyl group W acts on t∗ ∼= t by permutations of diagonal entries.

• The elements

H1 := 2πi








1 0 0

0 −1 0

0 0 0








, H2 := 2πi








0 0 0

0 1 0

0 0 −1








in t are generators of the integral lattice exp−1(I) ⊂ t. The elements H1, H2

form a basis of t.



• Let ω1, ω2 be the basis of t∗ dual to H1, H2, i.e., ωi(Hj) = δij . Under the

identification t∗ ∼= t, ω1, ω2 correspond to the elements

Ω1 :=
2πi

3








2 0 0

0 −1 0

0 0 −1








, Ω2 :=
2πi

3








1 0 0

0 1 0

0 0 −2








in t, respectively.

• Let t∗+ := R≥0ω1 +R≥0ω2 and Λ+ := Z≥0ω1 +Z≥0ω2. So t∗+ is a positive Weyl

chamber and Λ+ is the associated set of dominant integral weights. Any

element ξ of t∗+ or Λ+ can be written as

ξ = (ℓ−m)ω1 +mω2, ℓ ≥ m ≥ 0. (7)

• Under the identification t∗ ∼= t, ξ corresponds to the element

X = (ℓ−m)Ω1 +mΩ2. (8)

• Every coadjoint orbit can be written as Oξ for some ξ ∈ FWC, and in this

case, Oξ ∩ t∗ is the W -orbit through ξ, and Oξ ∩ FWC = {ξ}.

• If ξ = (ℓ−m)ω1 +mω2 ∈ FWC with ℓ > m > 0, then StabG(ξ) = T and Oξ



is diffeomorphic to the homogeneous space G/T .

• Let ξ1, ξ2, ξ3 ∈ FWC so that ξi = (ℓi −mi)ω1 +miω2 with ℓi > mi > 0. Let

ξ := (ξ1, ξ2, ξ3).

• Then ξ determines a triple reduced product (M(ξ), ω(ξ)).



3. Symplectic Volume of a Triple Reduced Product

• By nonabelian localization [JK95],
∫

M eiω can be expressed as a finite sum of

contributions indexed by the fixed point set MT of M under the action of

the maximal torus T :

MT = {(w1 · ξ1, w2 · ξ2, w3 · ξ3) : w1, w2, w3 ∈ W} . (9)

• More precisely, we have

∫

M
eiω =

∑

w∈W 3

∫

X∈t
̟2(X)

ei〈µ(w·ξ),X〉

ew·ξ(X)
dX, (10)

• Here

• w = (w1, w2, w3) ∈ W 3, ξ = (ξ1, ξ2, ξ3)

w · ξ := w1 · ξ1 + w2 · ξ2 + w3 · ξ3 (11)

• ̟(X) =
∏

α 〈α,X〉 with α running over all positive roots of G = SU(3)

• eF (X) is the equivariant Euler class of the normal bundle to the fixed point

F . In this case,

ew·ξ(X) = sgn(w)̟3(X), (12)



where sgn(w) := sgn(w1)sgn(w2)sgn(w3).

• This is the Fourier transform of the Duistermaat-Heckman oscillatory integral

evaluated at 0.



• The DH oscillatory integral decomposes as a sum of finitely many terms.

None of these terms separately admits a Fourier transform, but it is possible

to define a Fourier transform of each term provided one picks polarizations

consistently at each term (see [GLS96]).

• In the special case when t = R, a choice of a polarization is a choice to

replace R by R+ iǫ where the choice of polarization is the choice of sign of ǫ.



Theorem:
∫

M
eiω =

∑

w∈W 3

sgn(w)

∫

X∈t

ei〈µ(w·ξ),X〉

̟(X)
dX. (13)

The symplectic volume of the reduced space µ−1
η,T (0)/T of the Hamiltonian system

(Oη, ωη, T, µη,T ), where µη,T : Oη →֒ t∗ ⊂ g∗ is the moment map associated to the

Hamiltonian group action (in this case, the coadjoint action) on Oη by the

standard maximal torus T , is expressed by the following formula, known from

[GLS] and [JK95] (using Atiyah-Bott-Berline-Vergne localization).



• Theorem:

SV ol(µ−1
η,T (0)/T ) =

1

2πi

∑

w∈W

sgn(w)

∫

X∈t

ei〈w·η,X〉

̟(X)
dX. (14)

• Let

f(η) := 2πiVol(µ−1
η,T (0)/T ) =

∑

w∈W

sgn(w)

∫

X∈t

ei〈w·η,X〉

̟(X)
dX. (15)

• Then, by writing w2 = w1w
−1
1 w2, w3 = w1w

−1
1 w3 and letting

w′
2 = w−1

1 w2, w′
3 = w−1

1 w3, we obtain
∫

M
eiω =

∑

w′

2
∈W

∑

w′

3
∈W

sgn(w′
2)sgn(w

′
3)f(ξ1 + w′

2 · ξ2 + w′
3 · ξ3). (16)

• On the other hand, it is known from [JK95] (from Atiyah-Bott-Berline-Vergne

localization formula and nonabelian localization) that



Theorem:

Vol(µ−1
η,T (0)/T ) =

∑

w∈W

sgn(w)Hβ(w · η) (17)

• Here β = (β1, β2, β3) and β1, β2, β3 are the positive roots of SU(3), and

Hβ(ξ) := vola

{

(s1, s2, s3) ∈ R
3
≥0 :

3∑

i=1

siβi = ξ

}

(18)

• Here, vola here denotes the standard a-dimensional Euclidean volume

multiplied by a normalization constant, and

a = r − dimT (19)

• Here r is the number of positive roots of SU(3). Notice that in this case

a = 1.

• Therefore
∫

M eiω can also be expressed as

2πi
∑

w′

2
∈W

∑

w′

3
∈W

sgn(w′
2)sgn(w

′
3)

∑

w1∈W

sgn(w1)Hβ(w1·(ξ1+w′
2·ξ2+w′

3·ξ3)). (20)



• By letting w′
2 = w−1

1 w2, w′
3 = w−1

1 w3, we then obtain
∫

M
eiω = 2πi

∑

w∈W 3

sgn(w)Hβ(µ(w · ξ)). (21)

So we obtain the volume formula for triple reduced products for G = SU(3):



Theorem:

SV ol(M(ξ)) =
∑

w∈W 3

sgn(w)Hβ(µ(w · ξ)). (22)

Here, Hβ : t∗ → R is called the Duistermaat-Heckman function. For a general

semisimple compact connected Lie group G, it can be defined as follows:



• Definition:

Hβ(ξ) = vola

{

(s1, · · · , sr) : si ≥ 0,
r∑

i=1

siβi = ξ

}

(23)

• β = (β1, · · · , βr) and β1, · · · , βr ∈ t∗ are all the positive roots of G and

a = r − dimT .

• For G = SU(3), there are two simple roots β1, β2 (with < β1, β2 >= 2π/3)

and one additional positive root β3 = β1 + β2. Expressing ξ as (ξ1, ξ2) where

ξj =< βj , ξ >, we have

Hβ(ξ) = ξ1

if ξ2 > ξ1 and

Hβ(ξ) = ξ2

if ξ1 > ξ2. Notice that the two definitions agree when ξ1 = ξ2. The function is

continuous along that line, but its first derivatives are not continuous there.



• Remark: It is clear from the above definition that Hβ is supported in the

cone

Cβ :=

{
r∑

i=1

siβi : si ≥ 0

}

⊆ t∗. (24)



• In the case G = SU(3), we have r = 3 and

•

β1 = H1, β2 = H2, β3 = H1 +H2.

• If ξ = (ℓ−m)Ω1 +mΩ2 = (ℓ−m) · (2H1 +H2)/3 +m · (H1 + 2H2)/3, then

we obtain:

Hβ(ξ) = κ ·max

{

min

{
2

3
ℓ−

1

3
m,

1

3
ℓ+

1

3
m

}

, 0

}

(25)

where κ is a normalization constant.

• We fix the basis {Ω1,Ω2 − Ω1} for t. Then, each ξi = (ℓi −mi)Ω1 +miΩ2 ∈ t

has (ℓi,mi) as its coordinates in this basis. Hence, ξ = (ξ1, ξ2, ξ3) can be

represented in this basis by the vector

(ℓ1, ℓ2, ℓ3,m1,m2,m3) ∈ R
6. (26)



Hence, the symplectic volume of a triple reduced product for G = SU(3) can be

computed explicitly by the following formula:

• Theorem:

SV ol(l1, l2, l3,m1,m2,m3) = (27)

κ
5∑

i,j,k=0

(−1)i+j+k max

{

min

{

(
2

3
π1 −

1

3
π2)(Pijk),

(
1

3
π1 +

1

3
π2)(Pijk)

}

, 0

}

• Here,

Pijk(l1, l2, l3,m1,m2,m3) = vi ·




l1

m1



+ vj ·




l2

m2



+ vk ·




l3

m3



 (28)

and π1, π2 : R
2 → R are the standard projections to the first and second

coordinates, respectively. The notations vi, vj , vk denote elements of the Weyl

group W .



4. Generalizations

Symplectic volume of triple reduced products for general semisimple

compact connected Lie group G

• Our method applies to any semisimple compact connected Lie group G.

Therefore the above theorems still hold in this more general situation.

• The set of positive roots is now different and the Duistermaat-Heckman

function Hβ should be replaced by the general one above.



• Symplectic volume of N-fold reduced products for general

semisimple compact connected Lie group G

• We can also generalize our results from the triple reduced product (symplectic

quotient of product of three orbits) to the N -fold reduced product (symplectic

quotient of product of N orbits). The formulas are similar, although we no

longer get a piecewise linear function (the formulas are piecewise polynomial).

• Theorem:
∫

M
eiω =

∑

w∈WN

sgn(w)

∫

X∈t

ei〈µ(w·ξ),X〉

̟N−2(X)
dX (29)



• where ξ = (ξ1, · · · , ξN ), w = (w1, · · · , wN ) ∈ WN and

̟(X) =
∏

α

〈α,X〉 (30)

where α runs over all the positive roots of G.



• Proof: In this case, the equivariant Euler class is

ew·ξ(X) = (sgn(w))N ̟N (X). (31)

In addition, the symplectic volume of M can be computed by a similar

formula involving Duistermaat-Heckman functions:

• Theorem:

SV ol(M) =
∑

w∈WN

sgn(w)H(N−2)·β(µ(w · ξ)) (32)

Here, β = (β1, · · · , βr) with β1, · · · , βr being all the positive roots of G and

the Duistermaat-Heckman function H(N−2)·β is defined as follows:

•

H(N−2)·β(ξ) := vola

{

(s
(1)
1 , · · · , s(1)r , · · · , s

(N−2)
1 , · · · , s(N−2)

r ) : (33)

s
(j)
i ≥ 0 for all i and j and

N−2∑

j=1

r∑

i=1

s
(j)
i βi = ξ







where r is the number of positive roots of G and a = (N − 2) · r − dimT .



• Remark: Notice that here the Duistermaat-Heckman function is piecewise

polynomial.



5. Equivariant cohomology of coadjoint orbits

Let us review the equivariant cohomology of an orbit. For an adjoint orbit

homeomorphic to G/T . we see that the cohomology is generated multiplicatively

by the first Chern classes of line bundles Lβ over the orbit, where

Lβ = G×T,β C

where we write the orbit as G/T and the equivalence relation as

(g, z) ∼ (gt, β(t)−1z)

for g ∈ G, t ∈ T , z ∈ C and a weight β ∈ Hom(T, U(1)).

Example: For G = SU(n), a proof is in Fulton [F97] Chapter 20.3.



For general Lie groups this result is Theorem 5 and Theorem 11 in Loring Tu’s

article [TU10]:

Tu, Theorem 5: The ordinary cohomology of G/T is the quotient of the ring of

polynomials on t by the Weyl invariant polynomials of positive degree.

Tu, Theorem 11: The T -equivariant cohomology ring of G/T under the action

of T on G/T by left multiplication is

H∗
T (G/T ) =

Q[u1, . . . ,uℓ, ȳ1, . . . , ȳℓ]

J

where J is the ideal in Q[u1, . . . ,uℓ, ȳ1, . . . , ȳℓ] generated by the elements

b(ȳ)− b(u) for all Weyl invariant polynomials b on t of positive degree.



6. Intersection Pairings

Write each weight β as

β(expX) = exp(2πB(X))

for a linear map B : t → R which sends the integer lattice (the kernel of the

exponential map) to Z. Here we have used the exponential map exp : t → T . The

equivariant first Chern class of the line bundle Lβ is denoted

ceq1 (Lβ).

Its restriction to an isolated fixed point F of the T action is

ceq1 (Lβ)|F = c1(Lβ)F +B(X).



The restriction of this equivariant first Chern class to a component F of the fixed

point set is B(X).

By functoriality of characteristic classes, we have

(πj)
∗(c1(Lj)) = c1(π

∗
jLj)

where

πj : Oξ1 × · · · × OξN → Oξj

is projection on the j-th orbit, and Lj is a line bundle over Oξj .

We then have

Theorem: Let M be as above, and let ζ be a G-equivariant cohomology class on

M. Let κ : H∗
G(M) → H∗(M) be the Kirwan map. We have

∫

M
eiωκ(ζ) = Res

∑

w∈WN

sgn(w)
ei〈µT (w·ξ),X〉ζ(X)|w·ξ

̟(X)N−2
dX. (34)

Notice that the residue map Res depends on the choice of a cone in t, and only

those fixed points whose moment map image lies in this cone give a nonzero

contribution.



6.1 Intersection pairings in reduced spaces of products

of orbits

The Atiyah-Bott-Berline-Vergne localization formula leads to the following (see

[JK95], Theorem 8.1):

∫

Mred

κ(α) = Res
∑

F

αm/2(X)
eiµX(F )

eF (X)
.

∫

Mred

κ(α) = Res
∑

w∈W

ei(wλ,X)sgn(w)
1

(
̟(X)

)N−2
. (35)

The above equation is the meaning of the integral over t in the earlier equation,

whose definition is given in [GLS] and developed further in [JK95] The symbol

Res (the residue) is defined in [JK95], Theorem 8.1. See also [JK97], Proposition

3.2. The residue has several equivalent definitions (as outlined in [JK97]). One of

these definitions characterizes the residue as an iteration of one-variable residues.

In the case when M is the product of N adjoint orbits when

α = exp(iω̄)



is the equivariant extension of the symplectic volume form, and

κ(α) = eiωred

is the symplectic volume form on Mred. The above theorem may be expressed as

follows.

In the above notation, we have the following:

Theorem: Let M be as above, and let ζ be a G-equivariant cohomology class on

M. Let κ : H∗
G(M) → H∗(M) be the Kirwan map. We have

∫

M
eiωκ(ζ) =

∑

w∈WN

sgn(w)

∫

X∈t

ei〈µT (w·ξ),X〉ζ(X)|w·ξ

̟(X)N−2
dX. (36)

= Res
∑

w∈WN

ei(w·ξ,X)sgn(w)
ζ(X)|w·ξ

(
̟(X)

) N−2
. (37)

Here ζ(X) is a product of powers of a collection of equivariant first Chern classes

(ceq1 (Lβℓ
(X))

nℓ where the index ℓ runs from 1 to N if we are considering the

reduced space of the product of N orbits and nℓ is a nonnegative integer, and the

weight of the ℓ-th line bundle is βℓ with associated linear map Bℓ. The restriction



of ζ to the fixed point set of the T action is

∏

ℓ

(Bℓ(X))nℓ .



7. Riemann-Roch number of reduced space of

coadjoint orbits

By Grothendieck-Riemann-Roch, the Riemann-Roch number of a manifold M is

given by
∫

M
ch(Lk)Td(M)

where ch is the Chern character and Td is the Todd class.

We are assuming that L is the prequantum line bundle, so this is equal to
∫

M eikωTd(M) where

Td(M) =
∏

γ

γ

1− e−γ

in terms of the Chern roots γ. Note that the equivariant Chern roots for the

action of T at a fixed point are given by the roots, because the roots specify the

action of the maximal torus on the tangent space to the orbit at a fixed point of

the T action.

Since the Todd class is multiplicative, it follows from the residue formula that



when M is the reduced space of
∏

j O(ξj),

RR(M) = Res
N∏

j=1

∑

wj∈W

∑

F

N∏

i=1

ei<
∑N

j=1
>wjξj ,X> >

N∏

j=1

∏

γj

γj(X)

1− e−γj(X)
.

We are using the fact that the restriction of the equivariant Chern roots of a

coadjoint orbit to a fixed point F of the action of T are the roots γ(X) evaluated

on the parameter X ∈ t.


