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Kostant’s maximal torus in apposition

G compact, simple, simply connected Lie group

T maximal torus

W = N(T )/T Weyl group

A Coxeter element is a product of simple reflections:

w = s1 · · · sl ∈W

(for some choice of ordered simple roots). The order

h = ord(w)

is the Coxeter number of G .

Basic properties:

1) Coxeter elements form a single conjugacy class in W .

2) The fixed point set of w on T is discrete: Tw = Z (G ).
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Kostant’s maximal torus in apposition

Let h be the Coxeter number.

Theorem (Kostant (1959))

(i) For all regular elements g ∈ G ,

ord(Ad(g)) ≥ h.

Equality holds for a unique conjugacy class C∗ of regular
elements.

(ii) For g ∈ C∗, there is a maximal torus U, invariant under
Ad(g), such that Ad(g)|U is a Coxeter transformation.

For
g = t∗ ∈ C∗ ∩ T ,

one calls the maximal torus U in apposition to T .
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Kostant’s maximal torus in apposition

Example

G = SU(2), T=diagonal matrices, t∗ = diag(i ,−i) ∈ C∗,

U =

SO(2)

Example

G = SU(n), T=diagonal matrices,

t∗ = diag(ζn−1, ζn−3, . . . , ζ1−n) ∈ C∗

where ζ = exp(iπ/n). A maximal torus in apposition is

U = {A ∈ SU(n)| Aij = Ai+1,j+1}

with indices taken mod n.
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Kostant’s maximal torus in apposition

Conjugacy classes of G are labeled by the Weyl alcove:

G/Ad(G ) ∼= T/W ∼= A ⊂ t+.

The conjugacy class C∗ = Ad(G )t∗ corresponds to

ξ∗ =
1

h
ρ∨.

Note: Z (G ) acts on A, fixing ξ∗.
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Moduli spaces

G compact, simply connected, simple Lie group

Σ compact oriented surface of genus g

MG (Σ) moduli space of flat G -connections on Σ

· basic inner product on g  symplectic structure on MG (Σ)

Quasi-Hamiltonian description (Alekseev-Malkin-M, 1997):

MG (Σ) = G 2g//G

where G acts by conjugation, with moment map Φ: G 2g → G ,

Φ(a1, b1, . . . , ag, bg) =
∏

aibia
−1
i b−1

i

Unique prequantization at any level k ∈ N.
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Moduli spaces

Define the level k quantization of MG (Σ) as index of Dirac
operator

Q(MG (Σ)) = index(/∂L) ∈ Z;

here L is pre-quantum line bundle at level k.

Need more Lie theoretic data:

t ∼= t∗ identification by basic inner product

Λ ⊂ Λ∗ integral lattice, weight lattice

Λ∗k = Λ∗ ∩ kA level k weights

ρ ∈ Λ∗ half-sum of positive roots

J ∈ C∞(T ) Weyl denominator

h∨ dual Coxeter number
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Moduli spaces

Symplectic Verlinde formula

The level k quantization of MG (Σ) is given by the formula

Q(MG (Σ)) =
∑
λ∈Λ∗k

(
#Tk+h∨

|J(tλ)|2

)g−1

where g is the genus of Σ.

Here

Tk+h∨ = 1
k+h∨Λ∗/Λ finite subgroup of T

tλ = exp( λ+ρ
k+h∨ ) ∈ Tk+h∨ ‘special elements’
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Moduli spaces

Non-simply connected case? Let G ′ = G/Z for Z ⊂ Z (G ).

The moduli space of flat G ′-connections is

MG ′(Σ) = (G ′)2g//G ;

here (G ′)2g is viewed as q-Hamiltonian G -space.

Warning: This is not (G ′)2g//G ′.

k ∈ N does not suffice for prequantizability

Prequantization (if exists) not unique: any two differ by some
Hom(Z 2g,U(1)).
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Moduli spaces

Theorem (Krepski, 2006)

The (G ′)2g is pre-quantizable at level k ⇔ k-th multiple of basic
inner product takes on integer values on ΛZ = exp−1

T (Z ).

New proof based on following fact:

Lemma

A q-Hamiltonian G -space (M, ω,Φ) with abelian fundamental
group is pre-quantizable at level k if and only if

1 M̃ is pre-quantizable,

2 the following invariant

q : π1(M)× π1(M)→ U(1)

is trivial.
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Moduli spaces

Definition of q : π1(M)× π1(M)→ U(1):

(1) Represent (c1, c2) ∈ π1(M)× π1(M) by a map

f : S1 × S1 → M

(uses that π1(M) abelian).

(2) Choose homotopy h : S1 × S1 × [0, 1]→ G ;

Φ ◦ f 'h const : S1 × S1 → G

(3) Put

q(c1, c2) = exp
(

2πi k
( ∫

S1×S1

f ∗ω+
1

12

∫
S1×S1×[0,1]

h∗(θL·[θL, θL])
))
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Moduli spaces

Let G ′ = G/Z as before; suppose k is such that (G ′)2g is
prequantized.

To describe Q(MG ′(Σ)) = index(/∂L), note

Z (G ) � A  Z (G ) � Λ∗k = Λ∗ ∩ kA
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Fuchs-Schweigert

Fuchs-Schweigert formula

Q(MG ′(Σ)) =
1

#Z 2g

∑
c∈Z2g

ε(c1, . . . , c2g)
∑

λ∈Λ∗k , ci ·λ=λ

(
#Tk+h∨

|J(tλ)|2

)g−1

.

Here ε(c1, . . . , c2g) ∈ U(1) depend on prequantization.

Proved in arXiv:1706.04045 (with precise formula for ε(c))
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Fixed point formula

Starting point: Fixed point formula for level k prequantized
q-Hamiltonian spaces with group-valued moment map

Φ: M → G

(Alekseev-Woodward-M, 2001).

Q(M//G ) =
∑
λ∈Λ∗k

(
#Tk+h∨

|J(tλ)|2

)−1 ∑
F⊂Mtλ

ζF (tλ)1/2

∫
F

Â(F ) e
1
2 c1(LF )

DR(νF , tλ)
.

Here LF is line bundle for Spinc -structure on TM|F , and ζF (t)
phase factor for action on LF .

Computing these phase factors ζF (t) tends to be tricky.
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Fixed point formula

Example

For M = G 2g, get unique fixed point component of t = tλ,

F = T 2g.

In particular, Â(F ) = 1. Furthermore,

DR(νF , t) = |J(tλ)|2g,

∫
F
e

1
2 c1(LF ) = (#Tk+h∨)g, ζF (t)1/2 = 1.

 Verlinde formulas.

Computation of phase factor was ‘easy’ since F ⊂ MT , and
Φ(F ) = {e}.
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Fixed point formula

Consider fixed point sets for M = (G ′)2g with G ′ = G/Z .

The action Z (G ) � A defines a group homomorphism

Z (G )→W , c 7→ wc

where
c exp(ξ) = wc(exp(ξ̃)), ξ̃ = c .ξ ∈ A.

Lemma

For t = tλ,
(G ′)t =

⋃
c∈Z : c·λ=λ

N(T ′)(c)

where N(T ′)(c) pre-image of wc .
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Fixed point formula

So, for t = tλ, M = (G ′)2g,

Mt =
⋃

c1,...,c2g : ci ·λ=λ

N(T ′)(c1) × · · · × N(T ′)(c2g)

All components F ⊂ Mt are tori, normal bundle trivial,

DR(νF , t) = |J(tλ)|2g,

∫
F
e

1
2 c1(LF ) =

(#Tk+h∨)g

#Z 2g

as before.

Computation of ζF (t)1/2 still tricky.
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Fixed point formula

Rescue: Kostant’s maximal torus in apposition, U.

Lemma

The maximal torus U meets every N(T )(c), c ∈ Z (G ).

Hence,
(U ′)2g ⊂ (G ′)2g

meets each component of fixed point set. Note Φ((U ′)2g) = {e}.

The prequantization of (G ′)2g restricts to a prequantization of
(U ′)2g, which we can analyse to figure out ζF (t)1/2.
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Hence,
(U ′)2g ⊂ (G ′)2g

meets each component of fixed point set. Note Φ((U ′)2g) = {e}.

The prequantization of (G ′)2g restricts to a prequantization of
(U ′)2g, which we can analyse to figure out ζF (t)1/2.
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Concluding remarks

For G ′ = PU(n) with n prime, recover formulas of Beauville
(1997)

At some (non-optimal) levels k , the formulas were proved in
Alekseev-M-Woodward (1998, unfinished)

For G ′ = SO(3), the formulas were proved in Krepski-M
(2012), including cases with boundary.

For higher rank, case with boundary is much harder (in
progress)
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Concluding remarks

Thanks.
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