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Classical vs. Quantum: The Dream

1 Classical systems
2 Observables C∞(M)
3 Bracket {f, g}

1 Quantum System
2 Operators in H (Hilbert)
3 Commutator [A,B]h = 2πi

h (AB −BA)
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The truth...
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Goals

To revisit several Quantization schemes under the presence of
singularities. Singularities can appear in additional data (polarization)
or in the symplectic structure itself.
Claim: Symmetries help! Specially toric, semitoric, almost toric...
Compare different schemes.
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Geometrical Approach I: Geometric Quantization

(M2n, ω) symplectic manifold with integral [ω].
(L,∇) a complex line bundle with a connection ∇ such that
curv(∇) = −iω (prequantum line bundle).
A real polarization P is a Lagrangian foliation.
Integrable systems provide natural examples of real polarizations.
Flat sections equation: ∇Xs = 0, ∀X tangent to P.
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Bohr-Sommerfeld leaves

Definition
A Bohr-Sommerfeld leaf is a leaf of a polarization admitting global flat
sections.

Example: Take M = S1 × R with ω = dt ∧ dθ, P =< ∂
∂θ >, L the trivial

bundle with connection 1-form Θ = tdθ  ∇Xσ = X(σ)− i < Θ, X > σ
 Flat sections: σ(t, θ) = a(t).eitθ  Bohr-Sommerfeld leaves are given
by the condition t = 2πk, k ∈ Z.

Liouville-Mineur-Arnold ! this example is the canonical one.
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Bohr-Sommerfeld leaves: continued...

Theorem (Guillemin-Sternberg)
If the polarization is a regular fibration with compact leaves over a simply
connected base B, then the Bohr-Sommerfeld set is given by,

BS = {p ∈M, (f1(p), . . . , fn(p)) ∈ Zn}

where f1, . . . , fn are global action coordinates on B.

For toric manifolds the base B may be identified with the image of the
moment map.
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Bohr-Sommerfeld leaves and Delzant polytopes

Theorem (Delzant)
Toric manifolds are classified by Delzant’s polytopes and the bijective
correspondence is given by the image of the moment map:

{toric manifolds} −→ {Delzant polytopes}
(M2n, ω,Tn, F ) −→ F (M)

µ = h

R

CP2 µ

(t1, t2) · [z0 : z1 : z2] = [z0 : eit1z1 : eit2z2]
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The case of fibrations

“Quantize” these systems counting Bohr-Sommerfeld leaves.
For real polarization given by integrable systems Bohr-Sommerfeld
leaves are just “integral” Liouville tori.

Theorem (Sniatycki)
If the leaf space Bn is Hausdorff and the natural projection π : M2n → Bn

is a fibration with compact fibers, then quantization is given by the count
of Bohr-Sommerfeld leaves.

But how exactly?
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Quantization: The cohomological approach

Following the idea of Kostant when there are no global sections we
define the quantization of (M2n, ω,L,∇, P ) as

Q(M) =
⊕
k≥0

Hk(M,J ).

J is the sheaf of flat sections.

Then quantization is given by:

Theorem (Sniatycki)
Q(M2n) = Hn(M2n,J ), with dimension the number of Bohr-Sommerfeld
leaves.
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What is this cohomology?

1 Define the sheaf: ΩiP(U) = Γ(U,∧iP)..
2 Define C as the sheaf of complex-valued functions that are locally constant

along P. Consider the natural (fine) resolution

0→ C i→ Ω0
P
dP→ Ω1

P
dP→ Ω1

P
dP→ Ω2

P
dP→ · · ·

The differential operator dP is the one of foliated cohomology.
3 Use this resolution to obtain a fine resolution of J by twisting the previous

resolution with the sheaf J .

0→ J i→ S ∇P→ S ⊗ Ω1
P
∇P→ S ⊗ Ω2

P → · · ·

with S the sheaf of sections of the line bundle L(⊗N1/2).

4 Computation kit: Mayer-Vietoris, Künneth formula, Remarkable
fact: S1-actions help prove semilocal Poincaré lemma (toric, almost toric,
semitoric case).
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Quantization of toric manifolds

Theorem (Hamilton)
For a 2n-dimensional compact toric manifold

Q(M) = Hn(M ;J ) ∼=
⊕
l∈BSr

C

with a BSr the set of regular Bohr-Sommerfeld leaves.

In the example of the sphere Bohr-Sommerfeld leaves are given by integer values
of height (or, equivalently) leaves which divide out the manifold in integer areas.
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Action-angle coordinates with singularities

The theorem of Marle-Guillemin-Sternberg for fixed points of toric actions
can be generalized to non-degenerate singularities of integrable systems.

Theorem (Eliasson)
There exists symplectic Morse normal forms for integrable systems with
non-degenerate singularities.

Liouville torus ke comp. elliptic kh hyperbolic kf focus-focus
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Description of singularities

The local model is given by N = Dk × Tk ×D2(n−k) and
ω =

∑k
i=1 dpi ∧ dθi +

∑n−k
i=1 dxi ∧ dyi. and the components of the

moment map are:
1 Regular fi = pi for i = 1, ..., k;
2 Elliptic fi = x2

i + y2
i for i = k + 1, ..., ke;

3 Hyperbolic fi = xiyi for i = ke + 1, ..., ke + kh;
4 focus-focus fi = xiyi+1 − xi+1yi, fi+1 = xiyi + xi+1yi+1 for
i = ke + kh + 2j − 1, j = 1, ..., kf .

We say the system is semitoric if there are no hyperbolic components.

Eva Miranda (UPC) Quantization, singularities and symmetries July 19, 2019 14 / 45



The case of surfaces

We can use Čech cohomology computation and a Mayer-Vietoris argument
to prove:

Theorem (Hamilton-M.)
The quantization of a compact surface endowed with an integrable system
with non-degenerate singularities is given by,

Q(M) = H1(M ;J ) ∼=
⊕
p∈H

(CN ⊕ CN)⊕
⊕
l∈BSr

C ,

where H is the set of hyperbolic singularities.
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The rigid body

Using this recipe and the quantization of this system is

Q(M) = H1(M ;J ) ∼=
⊕
p∈H

(CN
p )2 ⊕

⊕
b∈BS

Cb.

Comparing this system with the one of rotations on the sphere  This
quantization depends strongly on the polarization.
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CP 2, CP 2#3CP
2, and CP 2#9CP

2

Let us construct toric systems blowing up at 9 singular points using
symplectic cutting.
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(Symington’s) Nodal trades on CP 2#9CP
2
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We can convert elliptic points into focus-focus points using nodal trading

(Symington).
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K3 surface=(CP 2#9CP
2)#T2(CP 2#9CP

2)

K3

We may glue two copies to obtain a K3 surface.
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Other examples: Spin-spin system

s��� s
s s

-f f
s

s s
s

We may perform a nodal trade on CP 1 × CP 1 to obtain a spin-spin
system.
This is a toy model of the spin-spin system of Sadovskíı and Zĥilinskíı{

f1 = z1
2 + x1x2+y1y2+z1z2

2
f2 = z1 + z2
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Spherical pendulum
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Coupled classical spin and harmonic oscillator CP 1 × C

{
f1 = z + 1

2(u2 + v2)
f2 = 1

2(xu+ yv)
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Quantization of 4-dimensional almost toric manifolds

Theorem (M-Presas-Solha)
For a 4-dimensional compact almost toric manifold M ,

Q(M) ∼=

 ⊕
p∈BSr

C

⊕
 ⊕
p∈BSf

⊕n(p)C
∞(R;C)

 ,

where with BSr and BSf denotes the image of the regular and
focus-focus Bohr–Sommerfeld fibers respectively on the base and n(p) the
number of nodes on the fiber whose image is p ∈ BSf .
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Application: Real geometric quantization of a K3 surface

For a K3 surface with 24 Bohr–Sommerfeld focus-focus fibers;

Q(K3) ∼= C14 ⊕
⊕

j∈{1,...,24}
C∞(R;C) .
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Bohr-Sommerfeld leaves in Gompf decomposition of K3
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Kähler geometric quantization of a K3 surface

Dimension of H0(K3;L) is 1
2c1(L)2 + 2. and c1(L)2 =

∫
K3

ω ∧ ω

The symplectic volume of a symplectic sum is the sum of the
symplectic volumes K3 =

(
CP 2#9CP 2)#T 2

(
CP 2#9CP 2).

The symplectic volume of a toric 4-manifold is simply twice the
Euclidean volume of its Delzant polytope; thus,

1
2c1(L)2 + 2 = 1

2(2 · 24 + 2 · 24) + 2 = 50 .

and Q(K3) ∼= C50.
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Geometric Approach I for singular symplectic manifolds
What do we mean by singular symplectic manifolds?

 
  

Oo 

Poisson 

Complex 

Generalized Complex 

Symplectic 
Holom. 
Poisson 
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b-Poisson structures

Definition
Let (M2n,Π) be an (oriented) Poisson manifold such that the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)

is transverse to the zero section, then Z = {p ∈M |(Π(p))n = 0} is a
hypersurface called the critical hypersurface and we say that Π is a b-Poisson
structure on (M,Z).

Theorem
For all p ∈ Z, there exists a Darboux coordinate system x1, y1, . . . , xn, yn
centered at p such that Z is defined by x1 = 0 and

Π = x1
∂

∂x1
∧ ∂

∂y1
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi
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Dimension 2

(Radko) The invariants of b-symplectic structures in dimension 2 are :

Geometrical: The topology of S and the curves γi where Π vanishes.

Dynamical: The periods of the “modular vector field” along γi.

Measure: The regularized Liouville volume of S, limε→0 V
ε
h (Π) =

∫
|h|>ε ωΠ

for h a function vanishing linearly on the curves γ1, . . . , γn.

Figure: Two admissible vanishing curves (a) and (b) for Π; the ones in (b’) are
not admissible.
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Examples

The product of (R, πR) a Radko compact surface with a compact
symplectic manifold (S, ω) is a b-Poisson manifold.
corank 1 Poisson manifold (N, π) and X Poisson vector field ⇒
(S1 ×N, f(θ) ∂∂θ ∧X + π) is a b-Poisson manifold if,

1 f vanishes linearly.
2 X is transverse to the symplectic leaves of N .

We then have as many copies of N as zeroes of f .
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Poisson Geometry of the critical hypersurface
This last example is semilocally the canonical picture of a b-Poisson structure .

1 The critical hypersurface Z has an induced regular Poisson structure of
corank 1.

2 There exists a Poisson vector field v transverse to the symplectic foliation
induced on Z.

3 (Guillemin-M. Pires) Z is a mapping torus with glueing diffeomorphism the
flow of v.
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Singular forms

A vector field v is a b-vector field if vp ∈ TpZ for all p ∈ Z. The
b-tangent bundle bTM is defined by

Γ(U, bTM) =
{

b-vector fields
on (U,U ∩ Z)

}

The b-cotangent bundle bT ∗M is (bTM)∗. Sections of Λp(bT ∗M)
are b-forms, bΩp(M).The standard differential extends to

d : bΩp(M)→ bΩp+1(M)

A b-symplectic form is a closed, nondegenerate, b-form of degree 2.
This dual point of view, allows to prove a b-Darboux theorem and
semilocal forms via an adaptation of Moser’s path method because
we can play the same tricks as in the symplectic case.
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Radko surfaces and their symmetries

(S2, 1
hdh ∧ dθ) ! (S2, h ∂

∂h ∧
∂
∂θ ).

We want to study generalizations of rotations on a sphere.

µ = log |h|
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b-Hamiltonian actions

Denote by bC∞(M) the space of functions which are C∞ on M \ Z
and near each Zi can be written as a sum,

ci log |f |+ g (1)

with ci ∈ R and g ∈ C∞(M).
let T be a torus and T ×M →M an action of T on M . We will say
that this action is b-Hamiltonian if the elements, X ∈ t of the Lie
algebra of T satisfy

ι(XM )ω = dφ, φ ∈ bC(M), (2)
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The S1-b-sphere

Example
(S2, ω = dh

h ∧ dθ), with coordinates h ∈ [−1, 1] and θ ∈ [0, 2π]. The
critical hypersurface Z is the equator, given by h = 0. For the S1-action
by rotations, the moment map is µ(h, θ) = log |h|.

µ = log |h|
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The S1-b-torus

Example
On (T2, ω = dθ1

sin θ1
∧ dθ2), with coordinates: θ1, θ2 ∈ [0, 2π]. The critical

hypersurface Z is the union of two disjoint circles, given by θ1 = 0 and
θ1 = π. Consider rotations in θ2 the moment map is µ : T2 −→ R2 is
given by µ(θ1, θ2) = log

∣∣∣1+cos(θ1)
sin(θ1)

∣∣∣ .

µ
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bR
Consider the topological space
bR ∼= (Z× R)/{(a, (−1)a∞) ∼ (a+ 1, (−1)a∞)}. and the local charts
{x̂
∣∣
{a}×R, ŷa}a∈Z where x̂(a, x) = x and ŷa : ((a− 1, 0), (a, 0))→ R,

ŷa =

 − exp ((−1)ax̂/w(a)) in ((a− 1, 0), (a− 1, (−1)a−1∞))
0 at (a− 1, (−1)a−1∞)

exp ((−1)ax̂/w(a)) in ((a, (−1)a−1∞), (a, 0))
.

the function w : Z→ R>0 associates some weights to the connected components
of the critical hypersurface and is determined by the modular periods of each
component.
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b-surfaces and their moment map

A toric b-surface is defined by a smooth map f : S −→ bR or
f : S −→ bS1 (a posteriori the moment map).
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Classification of toric b-surfaces

Theorem (Guillemin, M., Pires, Scott)

A toric b-symplectic surface is equivariantly b-symplectomorphic to either
(S2, Z) or (T2, Z), where Z is a collection of latitude circles.

The action is the standard rotation, and the b-symplectic form is
determined by the modular periods of the critical curves and the
regularized Liouville volume.

The weights w(a) of the codomain of the moment map are given by the
modular periods of the connected components of the critical hypersurface.
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The semilocal model

Fix bt∗ with wt(1) = c.
For any Delzant polytope ∆ ⊆ t∗Z with corresponding symplectic toric
manifold (X∆, ω∆, µ∆), the semilocal model of the b-symplectic
manifold as

Mlm = X∆ × S1 × R ωlm = ω∆ + c
dt

t
∧ dθ

where θ and t are the coordinates on S1 and R respectively. The S1 × TZ
action on Mlm given by (ρ, g) · (x, θ, t) = (g · x, θ + ρ, t) has moment map
µlm(x, θ, t) = (y0 = t, µ∆(x)).
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From local to global....

We can reconstruct the b-Delzant polytope from the Delzant polytope on a
mapping torus via symplectic cutting in a neighbourhood of the critical
hypersurface.

This information can be recovered by doing reduction in stages: Hamiltonian
reduction of an action of Tn−1

Z and the classification of toric b-surfaces.
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A b-Delzant theorem

Theorem (Guillemin,M.,Pires, Scott)
The maps that send a b-symplectic toric manifold to the image of its moment map

{(M,Z, ω, µ : M → bt∗)} → {b-Delzant polytopes in bt∗} (3)

and

{(M,Z, ω, µ : M → bt∗/〈N〉)} → {b-Delzant polytopes in bt∗/〈N〉} (4)

are bijections.

Toric b-manifolds can be of two types either of type bT2 ×X ( with X a toric
symplectic manifold of dimension (2n− 2)) and manifolds obtained from bS2 ×X
via symplectic cutting.
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Quantization of b-symplectic toric manifolds

Example
Consider on the toric b-sphere: Bohr-Sommerfeld leaves near a connected
component of Z in the local model ω∆ + cdtt ∧ dθ correspond to
c log(|h|) = −n thus h = e−n/c or h = −e−n/c.

Flat sections are given by s(h, θ) = f(h)eic log(|h|)θ with f analytically flat
for |h| = e−n/c and c is the weight of the connected component of Z.
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Geometric approach II: Formal Quantization

Describe a method for quantizing non-compact prequantizable
Hamiltonian T-manifolds based upon the ”quantization commutes
with reduction” principle.
Important assumption: The moment map φ is proper.
Apply this method to b-symplectic manifolds.
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Formal quantization

1 (M,ω) compact symplectic manifold and (L,∇) line bundle with
connection of curvature ω.

2 By twisting the spin-C Dirac operator on M by L we obtain an
elliptic operator ∂̄́L.

Since M is compact, ∂̄L is Fredholm, and we define the geometric
quantization Q(M) by

Q(M) = ind(∂̄L)

as a virtual vector space.
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Definition of formal quantization ( d’après Paradan and
Weitsman)

Assume M is non-compact but φ proper:
Let ZT ∈ t∗ be the weight lattice of T and α a regular value of the
moment map.
If T acts freely the reduced space Mα = φ−1(α)/T is a prequantizable
symplectic manifold and [Q,R] = 0 asserts that Q(M)α = Q(Mα) where
Q(M)α is the α-weight space of Q(M). We define the formal
quantization of M as Q(M) =

⊕
αQ(Mα)

Theorem (Braverman-Paradan)
Q(M) = ind(∂)
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Formal quantization of b-symplectic manifolds

A b-symplectic manifold is prequantizable if:

M \ Z is prequantizable
The cohomology classes given under the Mazzeo-Melrose
isomorphism applied to [ω] are integral.

Theorem (Guillemin-M.-Weitsman)
Q(M) exists.
Q(M) is finite-dimensional.

Idea of proof
Q(M) = Q(M+)

⊕
Q(M−)

and an ε-neighborhood of Z does not contribute to quantization.

Eva Miranda (UPC) Quantization, singularities and symmetries July 19, 2019 44 / 45



Other approaches (Ongoing work with Reshetikhin):

Quantum integrable systems on b-symplectic manifolds
Example of classical integrable system on b-symplectic manifolds: b-Toda
system standard Toda

H = 1
2

n∑
i=1

p2
i +

n−1∑
i=1

eqi−qi+1

H2 = 1
2

n∑
i=1

p2
i + x1e

−q2 +
n−1∑
i=2

eqi−qi+1

Eva Miranda (UPC) Quantization, singularities and symmetries July 19, 2019 45 / 45


	Quantization: The dream
	Bohr-Sommerfeld leaves and action-angle coordinates
	Quantization via sheaf cohomology 
	Quantization of semitoric/almost toric 4-manifolds
	Poisson structures and bm-symplectic manifolds
	A Delzant theorem for b-symplectic manifolds

