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Open Systems

Open Systems: System coupled to environment, treated as noise.
• Classical mechanics:

• Langevin equation
• Fokker-Planck-Kolmogorov (FPK) equation

• Quantum mechanics:
• Lindblad equation, quantum analogue of FPK equation
• Decoherence
• Thermalisation
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The Lindblad Equation
• States: positive normalised trace class operators ρ̂ on Hilbert

space H, ρ̂ > 0, tr[ρ̂] = 1 Expectation values: 〈Â〉ρ̂ = tr[Âρ̂].

• Lindblad-Gorini-Kossakowski-Sudarshan equation

i~∂t ρ̂ = [Ĥ, ρ̂] +
i

2

∑
k

2L̂k ρ̂L̂
∗
k − L̂∗k L̂k ρ̂− ρ̂L̂∗k L̂k

• Ĥ internal Hamiltonian, L̂k Lindblad operators, describing
coupling to the environment.

• most general form of generator of completely positive trace
preserving semigroup. Quantum channel.

Examples:

• L̂ =
√
σ q, scattering on environmental ”dust”-particles

• L̂1 =
√
γ− â, L2 =

√
γ+ â∗, where â = p̂ − iq̂ creation

operator, coupling to heat bath.
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Phase Space Representation

Let ρ,H, Lk be Weyl-symbols of ρ̂, Ĥ, L̂k , then the Lindblad
equation gives

∂tρ = X0ρ+ divX0 ρ+
~
2

∑
k

X 2
k ρ+ O(~2)

where vector fields Xk , k = 0, 1, · · · , 2K are given by

• X0ρ = {H, ρ}+
∑

k Im(L̄k{Lk , ρ})
• Xkρ = {Re Lk , ρ} and Xk+Kρ = {Im Lk , ρ}

Remarks:

• X0 describes transport, Lindblad parts give dissipation

• X 2
k terms describe diffusion, due to external noise

• O(~2) = 0 if H quadratic and Lk linear.

• equation in Hörmander ”sum of squares form”.
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Examples

• Let ρ̂ = |ψ〉〈ψ|
• if ψ = ψy is coherent state centred at y , then

ρ(x) = Ne−
1
~ |x−y |

2

• if ψ = ψy1 + ψy2 is superposition of two coherent states, then

ρ(x) = Ne−
1
~ |x−y1|2 + Ne−

1
~ |x−y2|2 + N cos

(
δy · x/~

)
e−

1
~ |x−ȳ |

2

where δy = Ω(y2− y1) and ȳ = (y1 + y2)/2 with Ω =

(
0 −I
I 0

)
• Let H = 1

2 (p2 + q2) and L =
√
σ q, x = (p, q), then

∂tρ = −p∂qρ+ q∂pρ+
~σ
2
∂2
pρ

• transport and diffusion in momentum. L models impact of
random scatterers.
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Example

Figure: Cat state Wigner function, evolving with Harmonic oscillator
ω = 1 and L = a. Times (t = 0, 0.01, 0.1), ~ = 1/50.
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Decoherence

We say ρ ∈ S 1
2
(R2d) if for all α there exists Cα

|∂αx ρ(x)| ≤ ‖ρ‖∞Cα~−
|α|

2 .

Examples: ρ(x) = ~−de−
1
~ |x−y |

2 ∈ S 1
2
, cos(δy · x/~) /∈ S 1

2
.

Definition
We say a system shows decoherence in phase space if for any
trace classρ̂0 the time evolved symbol ρt(x) of is in S 1

2
for any

t ≥ T > 0 uniformly, i.e., for any T > 0 and α there exist
CT ,α > 0 such that

sup
x∈R2n

|∂αx ρt(x)| ≤ ‖ρT‖∞CT ,α~−
|α|

2 (1)

for all ~ ∈ (0, 1] and t ≥ T .
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Hörmander condition

Definition
Suppose Xj , j = 0, 1, · · · ,K , is a set of vector fields on R2d , and
consider the subspaces Vk(x) ⊂ Rn, k = 0, 1, 2, · · · , spanned by
the Xj and iterated commutators,

V0(x) := span{X0(x),X1(x), · · · ,XK (x)}
Vk(x) := span{Y (x), [Y ,Xj ](x), ; Y ∈ Vk−1(x), j = 0, 1, 2, · · · ,K} .

We say that Xj , j = 0, 1, · · · ,K , satisfy the Hörmander
condition if for some r we have Vr (x) = R2d for all x ∈ R2d .

Example: H = 1
2p

2 + V (q), L = q, then

X0 = −p∂q + V ′(q)∂p , X1 = ∂p , [X0,X1] = ∂q .

So V0((0, q)) = span {∂p}, V1(x) = R2 for all x .
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Hörmander condition: geometric meaning

Let φtk(x) be flow generated by Xk , then

• φtk(x) = tXk(x) + O(t2)

• φ−tk ◦ φ
−t
k ′ ◦ φ

t
k ◦ φtk ′ = t2[Xk ,Xk ′ ] + O(t3)

Can transport in direction of commutators: Hörmander condition
gives transport in any direction.

Theorem (Chow ’39, Rashevski ’38)

Assume the Hörmander condition holds. Then for any x0, x1 there
exists a C 1 path x(t) with x0 = x(0) and x1 = x(1) and controls
u(t) ∈ L1([0, 1]) such that

ẋ(t) =
∑
k

uk(t)Xk(x(t)) .
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Hypoellipticity and Hörmander’s Theorem

Definition
A linear operator L is called hypoelliptic if Lf ∈ C∞ implies
f ∈ C∞.

Theorem (Hörmander 67)

Assume Hörmander’s condition holds for the vector fields
X0,X1, · · · ,Xr , then the operator

L = X0 +
r∑

k=1

X 2
k

is hypoelliptic.
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Decoherence and Hörmander’s condition

i~∂t ρ̂ = [Ĥ, ρ̂] +
i

2

∑
k

2L̂k ρ̂L̂
∗
k − L̂∗k L̂k ρ̂− ρ̂L̂∗k L̂k

Theorem (Parsons, Plastow, RS 19)

Suppose H(x) = 1
2x · Qx is quadratic and Lk = lk · Ωx are linear

and the Hamiltonian vector fields of H and Re Lk and Im Lk satisfy
Hörmander’s condition. Then the systems shows decoherence in
phase space.

• Decoherence is semiclassical manifestation of hypoellipticity.

• Theorem is direct application of previous results by Kuptsov
’72-’83, Lanconelli and Polidoro ’94.

• One can as well derive more quantitative estimates, see proof.
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Ingredients in proof I

• Let
∑

k l̄k l
T
k = M + iN, M,N real, F = ΩQ and A = F +NΩ.

• Characteristic function χ(t, ξ) := 1
(2π~)d

∫
e−

i
~ x ·ξρ(t, x)dx is

given by

χ(t, ξ) = χ0(RT
t ξ)e−

1
2~ ξ·Dtξ ,

where Rt = etA and Dt =
∫ t

0 RsMRT
s ds.

• Decoherence equivalent to Dt > 0 for t > 0.

Hörmander condition: Vr = R2d for some r ≤ 2d where

V0 = span{Re lk , Im lk} , Vr = V0 + FV0 + · · ·+ F rV0 .

orthogonal decomposition: R2d = W0 ⊕W1 ⊕ · · · ⊕Wr with
W0 = V0 and Vk = Vk−1 ⊕Wk .
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Ingredients in proof II, short time approximation

A =


A00 A01 · · ·
F10 F11

0 F21
...

. . .

0 0 Fr ,r−1 Fr ,r

 ,F ] :=


0 0 0 · · ·
F10 0 0
0 F21 0
...

. . .

0 0 0 Fk,k−1 0

 ,

Lemma
Let ξ ∈Wj , then with R]t = etF

]

ξ · Dtξ =
∑
k

∫ t

0
|ξ · R]s lk |2 ds + O(t2j+2)

=
t2j+1

(2j + 1)(j!)2

∑
k

|ξ · F j lk |2 + O(t2j+2) .
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Decoherence timescales

Theorem (Parsons, Plastow, RS 19)

Suppose that the characteristic function of ρ̂0 satisfies

|χ0(ξ)| ≤ 1√
detG

e−
1

4~ (ξ−Ωξ0)·G−1(ξ−Ωξ0) ,

where G is symmetric and strictly positive. If ξi ∈Wj then

‖ρ̂t‖HS ≤ e−
1

2~ [dj (ξ0) t2j+1+O(t2j+2)](
√

detG + O(t))

where dj(ξ0) = 1
(2j+1)(j!)2

∑K
k=1|Lk(F jξ0)|2 and F = ΩH ′′ is the

Hamiltonian map of H.
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Dilations and Carnot Groups

Short time approximation defined by F ] gives rise to

L] = X ]
0 +

~
2

∑
k≥1

X 2
k ,where X ]

0 = −(F ]x) · ∇ .

• Dilations: δλ(ξ) = λ2j+1 for ξ ∈Wj , then
δ1/λ ◦ L] ◦ δλ = λ2L], so ∂t − L] invariant under
(t, x) 7→ (λ2t, δλ(x)). Gives geometric explanation of different
time scales of decoherence.

• F ] nilpotent: gives rise to nilpotent Lie group with Lie
Algebra given by X ]

0 ,X1, · · · , graded and with dilation, hence
a Carnot group (Lanconnelli Polidoro ’92).

• Underlying geometry of Decoherence is sub-Riemannian
Geometry described by distribution of Hörmander vector fields.
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Gaussian states I

Let ρ̂ be a quantum state (pure or mixed) with Gaussian
Wignerfunction,

ρ(x) =

√
detG

(π~)n
e−

1
~ (x−X )G(x−X ) ,

• x = (q, p),X = (Q,P) ∈ Rn ⊕ Rn

• G is symmetric and satisfies the uncertainty relation

G−1 + iΩ > 0 with Ω =

(
0 I
−I 0

)
• X expectation values of x̂ = (q̂, p̂), G−1 corresponding

covariance matrix.

• ρ̂ pure if G symplectic.
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Propagation of Gaussian states in closed systems
Let Ĥ be Weyl-quantisation of H(x), then e−

i
~ tĤ ρ̂e

i
~ tĤ has

Wignerfunction

ρ(t, x) =

√
detGt

(π~)n
e−

1
~ (x−Xt)Gt(x−Xt) + Rt

and

• Ẋt = Ω∇H(Xt) classical flow

• Ġt = H ′′(Xt)ΩGt − GtΩH ′′(Xt) linearised flow

• ‖Rt‖L1 = Ot(
√
~/λmin(G )) where λmin(G ) is the smallest

eigenvalue of G

Hepp ’74, Heller ’75, Littlejohn, Hagedorn ..... . Simple
propagation scheme. Very versatile tool in applications.

Main proof idea: Taylor expand H around centre Xt of wave
packet.
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Non-Hermitian propagation of Gaussian states

Let Ĥ − iΓ̂ be Weyl-quantisation of H(x)− iΓ(x), H, Γ real, then

e−
i
~ t(Ĥ−iΓ̂)ρ̂e

i
~ t(Ĥ+iΓ̂) has Wignerfunction

ρ(t, x) = e−
α(t)
~

√
detGt

(π~)n
e−

1
~ (x−Xt)Gt(x−Xt) + Rt

and

• Ẋt = Ω∇H(Xt)− G−1
t ∇Γ(Xt) Hamiltonian + gradient

• Ġt = H ′′ΩGt − GtΩH ′′ + Γ′′ − GtΩ
TΓ′′ΩGt

• α̇ = 2Γ(Xt) + ~
2 tr[ΩTΓ′′ΩGt ]

• Graefe and RS ’11; Burns, Lupercio and Urube ’13

• evolution of centre Xt and variance Gt coupled!
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The Lindblad Equation
• Time evolution of density operator ρ̂, Lindblad-GKS equation

(’76)

i~∂t ρ̂ = [Ĥ, ρ̂] +
i

2

∑
k

2L̂k ρ̂L̂
∗
k − L̂∗k L̂k ρ̂− ρ̂L̂∗k L̂k

• Ĥ internal Hamiltonian, L̂k Lindblad operators, describing
coupling to the environment.

• most general form of generator of completely positive trace
preserving semigroup.

Examples:

• L̂ =
√
σ q̂, scattering on environmental ”dust”-particles

• L̂1 =
√
γ− â, L2 =

√
γ+ â∗, where â = p̂ − iq̂ annihilation

operator, coupling to heat bath.
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Lindblad evolution of Gaussian states

Let ρ,H, Lk be Weyl-symbols of ρ̂, Ĥ, L̂k , then a Gaussian state
evolves as

ρ(t, x) =

√
detGt

(π~)n
e−

1
~ (x−Xt)Gt(x−Xt) + Rt

where

• Ẋt = Ω∇H(Xt) + Ω
∑

k Im(Lk∇L̄k)(Xt)

• Ġt = ΛΩGt − GtΩΛT − 2GΩTDΩG

• here Λ = H ′′ +
∑

k Im(Lk L̄
′′
k +∇Lk∇L̄Tk ) and

D =
∑

k Re(∇Lk∇L̄Tk )

• ‖Rt‖L1 = Ot(
√
~/λmin(G )) where λmin(G ) is the smallest

eigenvalue of G

Generalisation of previous results by Brodier and Ozorio de
Almeida ’10.
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Gradient flow in Lindblad equation

Often there exist a W (x) with Ω
∑

k Im(Lk∇L̄k)(x) = −∇W (x)

Ẋt = Ω∇H(Xt)−∇W (Xt)

holomorphic/anti-holomorphic Lindblads

• Let a = p − iq and a∗ = p + iq

• holomorphic: ∂L
∂a∗ = 0, then 2Ω Im(L∇L̄)(x) = −∇|L(x)|2.

• anti-holomorphic: ∂L
∂a = 0, then 2Ω Im(L∇L̄)(x) = ∇|L(x)|2.

• So if all Lk are either holomorphic or anti-holomorphic, then

W (x) =
1

2

∑
hol

|Lk(x)|2 − 1

2

∑
anti−hol

|Lk(x)|2 .

• Gradient dynamics, but not coupled to G .
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Example

Figure: Comparison of the quantum (top row) and semiclassical (bottom
row) dynamics of the system given by Ĥ = â∗â, L̂1 =

√
0.1 â, L̂2 = 0.1 â2

and L3 =
√

0.15 â∗ for times t = 13, 50, 150
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Gaussian states II: superposition of coherent states

• Let ρ̂ = |ψ〉〈ψ|
• if ψ = ψy is coherent state centred at y : ρ(x) = Ne−

1
~ |x−y |

2

• if ψ = ψy1 + ψy2 is superposition of two coherent states, then

ρ(x) = Ne−
1
~ |x−y1|2 + Ne−

1
~ |x−y2|2 + N cos

(
ξ · x/~

)
e−

1
~ |x−ȳ |

2

where ξ = Ω(y2 − y1) and ȳ = (y1 + y2)/2.

• Get coherent states on phase space:

ρcross(x) = Ne
i
~ ξ·xe−

1
~ (x−y)·G(x−y)

• Decoherence: rapid suppression of interference effects from
superpositions, due to noise from environment.

• Expect ρcross → 0 as t > 0 if ξ 6= 0.
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Example

Figure: Cat state Wigner function, evolving with Harmonic oscillator
ω = 1 and L = a. Times (t = 0, 0.01, 0.1), ~ = 1/50.
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Lindblad equation as non-Hermitian Schrödinger equation

Goal: Write the Lindblad equation for Hilbert Schmidt operators ρ̂
as Schrödinger equation for ρ(x) with (possibly) non-Hermitian
Hamiltonian.

• recall 〈ρ̂, σ̂〉 = tr[ρ̂∗σ̂] = 1
(2π~)n

∫
ρ̄(x)σ(x) dx

• key identities: Â ρ̂ = Â]ρ and ρ̂ Â = ρ̂]A with

A]B = Ae
i~
2

←−
∇Ω
−→
∇B

• A]ρ(x) = Â(−)ρ and ρ]A = Â(+)ρ with

Â(±) = A
(
x ± 2Ωξ̂

)
ξ̂ =

~
i
∇x

Weyl quantisation on doubled phase space of
A(±)(x , ξ) = A(x ± 1

2 Ωξ).
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Lindblad equation on doubled phase space

i~∂t ρ̂ = [Ĥ, ρ̂] +
i

2

∑
k

2L̂k ρ̂L̂
∗
k − L̂∗k L̂k ρ̂− ρ̂L̂∗k L̂k

then translates into

i~∂tρ = K̂ρ

with K = K (0) + ~K (1) + · · · and

K (0) = H(+) − H(−) +
∑
k

Im
(
L̄

(−)
k L

(+)
k

)
− i

2

∑
k

∣∣L(+)
k − L

(−)
k

∣∣2
K (1) =

1

2

∑
k

{L̄k , Lk}(+) + {L̄k , Lk}(−)

ImK (0) ≤ 0 for ξ > 0 responsible for decoherence.
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Example

Figure: The quantum (top) and semiclassical (bottom) dynamics of an
initial cat state in an anharmonic potential with β = 0.1 and damping at
a rate γ = 0.3. Times t = 0, 0.5, 1.5, 2.5 are shown from left to right.
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Summary and Outlook
• Open quantum systems described by Lindblad equation, which

gives rise to phase-space evolution of ”sum of squares” type

∂tρ = X0ρ+
~
2

∑
k≥1

X 2
k ρ .

• Decoherence: rapid suppression of interference effects due to
smoothing by noise.

• Decoherence is semiclassical manifestation of hypoellipticity,
expect Hörmander condition to give sufficient condition for
decoherence. We demonstrated this for special class of
Hamiltonian and Lindblad operators.

• Decoherence is connected to sub-Riemannian geometry.

• Future directions: More general operators, e.g., quadratic
Lindblad’s, local modelling by Carnot groups, sub-Riemannian
heat-kernel estimates.
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