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Sub-Riemannian Laplacian

(M,D, g) sub-Riemannian (sR) structure:

M smooth connected manifold of dimension n (may have a boundary)

m ∈ IN∗, D = Span(X1, . . . ,Xm) ⊂ TM (horizontal distribution: subsheaf)

sR metric defined by

∀q ∈ M ∀v ∈ Dq gq(v , v) = inf

{ m∑
i=1

u2
i

∣∣∣ v =
m∑

i=1

ui Xi (q)

}

µ: arbitrary smooth volume form on M

4 = −
m∑

i=1

X∗i Xi =
m∑

i=1

(
X 2

i + divµ(Xi )Xi

)

(X∗i : adjoint in L2(M, µ))
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Sub-Riemannian Laplacian

Equivalent definitions:

−4 = selfadjoint nonnegative operator on L2(M, µ) defined as the Friedrichs
extension of the Dirichlet integral

Q(φ) =

∫
M
‖dφ‖2

g∗ dµ φ ∈ C∞c (M)

(
g∗(ξ, ξ) = max

v∈Dq\{0}

〈ξ, v〉2

gq (v, v)
cometric associated with g

)

4φ = divµ (∇sRφ) where:

divµ defined by LX dµ = divµ(X) dµ ∀X vector field on M

∇sR horizontal gradient defined by gq(∇sRφ(q), v) = dφ(q).v ∀v ∈ Dq

note that ‖dφ‖g∗ = ‖∇sRφ‖g
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Hörmander operators

More generally:

X0 smooth vector field on M, c smooth function on M that is bounded above

4 =
m∑

i=1

X 2
i + X0 + c id

→ operator on L2(M, µ)

Remark: 4 symmetric⇔ X0 =
∑m

i=1 divµ(Xi )Xi

e(t) = Schwartz kernel of et4, of density e4,µ(t) w.r.t. µ.
→ heat kernel e4,µ : (0,+∞)×M ×M → (0,+∞)

Objective

Establish small-time asymptotics for the heat kernel.
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Spectral properties of sR Laplacians

4 = −
m∑

i=1

X∗i Xi =
m∑

i=1

(
X 2

i + divµ(Xi )Xi

)

For M compact, under Hörmander’s assumption Lie(D) = TM, the operator −4 is
hypoelliptic (and even subelliptic), has a compact resolvent and thus a discrete
spectrum

0 = λ1 6 λ2 6 · · · 6 λk → +∞

Let (φk )k∈IN∗ be an orthonormal eigenbasis of L2(M, µ).

Objectives

Derive (micro-)local Weyl laws for4, identify (micro-)local Weyl measures.

Establish Quantum Ergodicity (QE) properties.
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sR flag

Sequence of subsheafs Dk ⊂ TM:

D0 = {0}
D1 = D = Span(X1, . . . ,Xm)

Dk+1 = Dk + [D,Dk ] for k > 1

sR flag at q: {0} = D0
q ⊂ Dq = D1

q ⊂ D2
q ⊂ . . . ⊂ Dr(q)−1

q ( Dr(q)
q = TqM

r(q): degree of nonholonomy at q

ni (q) = dim Di
q (nr(q)(q) = n = dim M)

w1(q) = · · · = wn1 (q) = 1
wn1+1(q) = · · · = wn2 (q) = 2

.

.

.
wnr−1+1(q) = · · · = wnr (q) = r

Q(q) =
r∑

i=1

i(ni (q)− ni−1(q)) =
n∑

i=1

wi (q)

(= Hausdorff dimension around q if q regular)

q is said regular if the flag at q is regular.
The sR structure is said equiregular if all points are regular.
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Nilpotentization

(M̂q0 , D̂q0 , ĝq0 ) = nilpotentization of the sR structure (M,D, g) at q0 ∈ M

= tangent space (in the metric sense of Gromov)

(equivalence class under the action of sR isometries on sR structures)

M̂q0 ∼ IRn

D̂q0 = Span(X̂ q0
1 , . . . , X̂ q0

m )

In privileged coordinates:

Dilation δε(x) =
(
εw1(q0)x1, . . . , ε

wn(q0)xn

)
X̂ q0

i = lim
ε→0

εδ∗εXi

µ̂q0 = lim
ε→0

1
εQ(q0)

δ∗εµ = Cst(q0) dx
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Nilpotentization

(M̂q0 , D̂q0 , ĝq0 ) = nilpotentization of the sR structure (M,D, g) at q0 ∈ M

= tangent space (in the metric sense of Gromov)

(equivalence class under the action of sR isometries on sR structures)

M̂q0 ∼ IRn

D̂q0 = Span(X̂ q0
1 , . . . , X̂ q0

m )

Nilpotentized sR Laplacian: 4̂q0 =
m∑

i=1

(
X̂ q0

i

)2

Heat kernel: e4̂q0 ,µ̂q0 : (0,+∞)× M̂q0 × M̂q0 → IR

Remark: Homogeneity e4̂q0 ,µ̂q0 (t , x , x ′) = εQ(q0) e4̂q0 ,µ̂q0 (ε2t , δε(x), δε(x ′)) ∀ε ∈ IR
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Heat kernel asymptotics

Fundamendal lemma

q0 ∈ M arbitrary, µ arbitrary smooth measure on M. In a local chart of privileged
coordinates at q0:

∀k ∈ IN tQ(q0)/2 e4,µ
(

t , δ√t (x), δ√t (x ′)
)

= e4̂q0 ,µ̂q0 (1, x , x ′) + t a1(x , x ′) + · · ·+ tk ak (x , x ′) + o(tk )

as t → 0+, in C∞(M ×M) topology, with aj smooth.

If q0 is regular, then the above convergence and asymptotic expansion are
locally uniform with respect to q0.

Still valid for4 =
m∑

i=1
X 2

i + X0 + c id, with an expansion in tk/2, provided that:

either X0 smooth section of D;

or X0 smooth section of D2, and then replace 4̂q0 with 4̂q0 + X̂ q0
0 .
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Heat kernel asymptotics

Fundamendal lemma

q0 ∈ M arbitrary, µ arbitrary smooth measure on M. In a local chart of privileged
coordinates at q0:

∀k ∈ IN tQ(q0)/2 e4,µ
(

t , δ√t (x), δ√t (x ′)
)

= e4̂q0 ,µ̂q0 (1, x , x ′) + t a1(x , x ′) + · · ·+ tk ak (x , x ′) + o(tk )

as t → 0+, in C∞(M ×M) topology, with aj smooth.

x = x ′ = 0⇒ expansion of the kernel along the diagonal, and

e4,µ(t , q0, q0) dµ(q0) ∼
e4̂q0 ,µ̂q0 (1, 0, 0)

tQ(q0)/2
dµ(q0) = e4̂q0 ,µ̂q0 (t , 0, 0) dµ(q0)

→ useful to derive the local Weyl law.
Generalization of results by Métivier (1976), Ben Arous (1989).

estimations near the diagonal→ microlocal Weyl law and singular sR structures.
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General question in sR geometry: define an intrinsic volume on a sR manifold.

[Agrachev Barilari Boscain 2012]

Hausdorff (standard or spherical) Mitchell 1985, Gromov 1996

Popp Montgomery 2002

a new one: Weyl
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Popp measure

Popp volume (Montgomery 2002): canonical smooth volume form defined at q regular
by

|dP(q)| = Φ∗|ν1 ∧ · · · ∧ νr |
with the canonical isomorphism

Λn(T?q M)
Φ−→ Λn

( r(q)⊕
k=1

Dk
q/Dk−1

q

)?

and with νk = canonical volume form on Dk
q/Dk−1

q induced by the Euclidean structure coming from the surjection

D⊗k
q → Dk

q/Dk−1
q (take Lie brackets modulo Dq ).

P is invariant under (local) sR isometries

P commutes with nilpotentization: P̂M
q

= PM̂q ⇒ P is “doubly intrinsic”

Explicit expression in [Barilari Rizzi 2013]
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(Micro-)local Weyl measure

M compact

Local Weyl measure = probability measure w4 on M defined (if the limit exists) by

∫
M

f dw4 = lim
t→0+

Tr
(
f et4)

Tr
(
et4

) = lim
t→0+

∫
M e(t , q, q)f (q) dµ(q)∫

M e(t , q, q) dµ(q)
∀f ∈ C0(M)

i.e.,
w4 = weak lim

t→0+

e(t , q, q)∫
M e(t , q′, q′) dµ(q′)

µ

Microlocal Weyl measure = probability measure W4 on S?M defined (if the limit exists)
by ∫

S?M
a dW4 = lim

t→0+

Tr
(
Op(a)et4)

Tr
(
et4

) ∀a ∈ S0(S?M)
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(Micro-)local Weyl measure

M compact

Local Weyl measure = probability measure w4 on M defined (if the limit exists) by

∫
M

f dw4 = lim
t→0+

Tr
(
f et4)

Tr
(
et4

) = lim
t→0+

∫
M e(t , q, q)f (q) dµ(q)∫

M e(t , q, q) dµ(q)
∀f ∈ C0(M)

Microlocal Weyl measure = probability measure W4 on S?M defined (if the limit exists)
by ∫

S?M
a dW4 = lim

t→0+

Tr
(
Op(a)et4)

Tr
(
et4

) ∀a ∈ S0(S?M)

They do not depend on µ, nor on the quantization.

π∗W4 = w4 with π : T∗M → M canonical projection.

w4 is invariant under sR isometries of M.

In the equiregular case: w4 exists, is smooth (cf further) and commutes with
nilpotentization: ŵ4

q
= “w4̂q ”

supp(W4) ⊂ SΣ, where Σ = D⊥ (annihilator of D).
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(Micro-)local Weyl measure

Equivalent definition (by the Karamata tauberian theorem):

−4φk = λkφk , (φk )k∈IN∗ orthonormal eigenbasis of L2(M, µ), λ1 6 λ2 6 · · · 6 λk → +∞

Spectral counting function: N(λ) = #{k | λk 6 λ}

Local Weyl measure = probability measure w4 on M defined (if the limit exists) by∫
M

f dw4 = lim
λ→+∞

1
N(λ)

∑
λk6λ

∫
M

f |φk |2 dµ ∀f ∈ C0(M)

i.e.,
w4 = weak lim

λ→+∞

1
N(λ)

∑
λk6λ

|φk |2 µ (Cesàro mean)

Microlocal Weyl measure = probability measure W4 on S?M defined (if the limit exists)
by ∫

S?M
a dW4 = lim

λ→+∞

1
N(λ)

∑
λk6λ

〈
Op(a)φk , φk

〉
L2(M,µ)

∀a ∈ S0(S?M)
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(Micro-)local Weyl measure

Defining the averaged correlation of eigenfunctions by

C(x , y) = lim
λ→+∞

1
N(λ)

∑
λk6λ

φk (x + y/2)φk (x − y/2) ∀(x , y) ∈ M ×M

(when the limit exists), the correlation is the Fourier transform with respect to ξ of W4,
i.e.,

C(x , y) =

∫
e−iy.ξdW4(x , ξ)
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(Micro-)local Weyl measure

Objective

Identify the Weyl measures (equiregular and singular cases).

Compare them with Hausdorff, Popp.
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Local Weyl law in the equiregular case

Theorem

In the equiregular case, the local Weyl measure w4 exists, is smooth, and

dw4(q) =
êq(1, 0, 0)∫

M êq′ (1, 0, 0) dP(q′)
dP(q) (with êq = e4̂q ,P̂q )

Proof: Along the diagonal, tQ/2e4,µ(t , q, q) dµ(q) −→ êq(1, 0, 0) dP(q) as t → 0+.

Remark: Since w4 is smooth, it differs in general from HS (which is not smooth
in general for n > 5, see [Agrachev Barilari Boscain 2012])

Consequence: N(λ) ∼
∫

M êq(1, 0, 0) dP(q)

Γ(Q/2 + 1)
λQ/2 as λ→ +∞ (Q: Hausdorff dim)

Example: 3D contact case, N(λ) ∼ 1
32λ

2
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Local Weyl law in the equiregular case

w4 = P (i.e., Weyl = Popp) ⇐⇒ q 7→ êq(1, 0, 0) is constant

Remark:

IsosR(M) acts transitively on M

⇒ all nilpotent sR structures (M̂q , D̂q , ĝq) are sR-isometric

⇒ q 7→ êq(1, 0, 0) is constant

This is so in the following cases:

The sR structure on M is free

The sR structure on M is nilpotent and equiregular, and dim M 6 5, with:
dimension 3: growth vector (2, 3) (Heisenberg)
dimension 4: growth vector (2, 3, 4) (Engel) and (3, 4) (quasi-Heisenberg)
dimension 5: growth vector (2, 3, 5) (Cartan), (2, 3, 4, 5) (Goursat rank 2), (3, 5) (corank 2),
(3, 4, 5) (Goursat rank 3)

[Agrachev Barilari Boscain 2012]

Remark: w4 6= P in general (example: bi-Heisenberg (4, 5) case)
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Microlocal Weyl law in the equiregular case

Define Σi = (Di )⊥ ⊂ T?M (annihilator of Di ) for i = 1, . . . , r .

Theorem

In the equiregular case, the microlocal Weyl measure W4 exists, and

dW4(q, u) =
1

(2π)n

(∫ +∞

0

∫
T∗q M/Σ

r−1
q

K (q,P1, ru) dP1 rn−nr−1−1 dr

)
dHSΣr−1 (q, u)

with K (q, p) =

∫
IRn

e−iy.pe4̂q ,µ̂q (1, y, 0) dµ̂q(y) = F
(

y 7→ e4̂q ,µ̂q (1, y, 0)
)

(p)

In particular:

supp(W4) ⊂ SΣr−1



sR Laplacian heat kernels canonical sR measures Weyl law quantum limits, QE

Two simple singular sR structures

Regular Grushin case:

Almost-Riemannian structure on M compact 2D, Riemannian except along a 1D
submanifold S, with no tangency points.

Local model: X = ∂x , Y = x∂y , S = {x = 0}.

In M \ S, we have dP = 1
|x|dx dy = 1

|x|dx ⊗ dν with ν smooth.

Regular Martinet case:

Rank-two sR structure on M compact 3D, with D = kerα, with α ∧ dα vanishing on S
(Martinet surface), D transverse to S.

⇔ D2 6= D3, D2 = TM outside of S, D3 = TM along S, D ∩ TS line bundle over S.

Local model: α = dz − x2

2 dy
(

X = ∂x , Y = ∂y + x2

2 ∂z

)
, S = {x = 0}.

In M \ S, we have dP = 1
x2 dx dy dz = 1

x2 dx ⊗ dν with ν smooth.
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Two simple singular sR structures

Small-time expansion along the diagonal at any order:

Grushin:∫
M

e4,µ(t, q, q)f (q) dµ = a1
| ln t|

t
+a2

1

t
+a3
| ln t|
√

t
+a4

1
√

t
+a5| ln t|+a6 +a7

√
t| ln t|+a8

√
t +a9t| ln t|+a10 t + · · ·

with a1 = 1
4π
∫
S f dν and a2 = 1

4π (γ + 4 ln 2)
∫
S f dν + P.V.

∫
M f dxg

Martinet:∫
M

e4,µ(t, q, q)f (q) dµ = a1
| ln t|

t2
+a2

1

t2
+a3
| ln t|
t3/2

+a4
1

t3/2
+a5
| ln t|

t
+a6

1

t
+a7
| ln t|
√

t
+a8

1
√

t
+a9| ln t|+a10 +· · ·

with a1 = 1
16
∫
S f dν

Consequence: w4 = ν
ν(S)

W4 = 1
2π
∗
|Σw4 (π|Σ : SΣ→ M double covering)

Grushin : N(λ) ∼
ν(S)

4π
λ lnλ Martinet : N(λ) ∼

ν(S)

32
λ2 lnλ

⇒ spectral concentration on the singular manifold S
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Singular sR structures

S: singular set of the sR structure

Theorem

If S is Whitney stratifiable then there exists a submanifold N of M s.t.

∫
M

e4,µ(t , q, q)f (q) dµ(q) ∼
t→0+

Cst
| lnk t |

t r

∫
N

f dw4 ∀f ∈ C0(M)

(concentration on N)
for some k ∈ {0, 1, . . . , n} and r ∈ Q s.t. r >

Qeq
2 .

Moreover if k = n then r =
Qeq

2 .

Corollary

N(λ) ∼ λr lnk λ
(by the Karamata tauberian theorem)

Remark: We have r ∈ IN∗ under the condition (in privileged coordinates)

∀q ∈ M ∀σ ∈ IRn ∀i ∈ {1, . . . , n} ∀k ∈ {1, . . . ,m} wσi (Xk ) = wσi (X̂ q
k )

(which is valid for instance when each Xk can be at any point q “factorized” by X̂ q
k )
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Some examples of singular sR structures
name definition asymptotics concentration

k -Grushin X1 = ∂1, X2 = xk
1 ∂2 (k > 1)

| ln t|
t if k = 1

1
tk+1 if k > 2

N = S = {x1 = 0}

Sing. k -Grushin
X1 = ∂1, X2 = (xk

1 − x2)∂2

(k > 2)
| ln t|

t ∀k > 2 N = S = {x2 = xk
1 }

X1 = ∂1, X2 = (x2p
1 + x1yk

1 )∂2

p, k ∈ IN∗

ln2 t
t if k = 1

1

t
p+ 1

2−
2p−1

2k
if k > 2

N = {(0, 0)}
⊂ S = {x2p

1 + x1yk
1 = 0}

X1 = ∂1, X2 = (x2
1 − x3

2 )∂2
1

t7/6 N = {(0, 0)} ( S = {x2
1 = x3

2}

Martinet X1 = ∂1, X2 = ∂2 + x2
1∂3

| ln t|
t2

N = S = {x1 = 0}

Nilp. tang. hyp. X1 = ∂1, X2 = ∂2 + x2
1 x2∂3

ln2 t
t2

N = {x1 = x2 = 0}
( S = {x1x2 = 0}

Ghezzi Jean

X1 = ∂1

X2 = ∂2 + x1∂3 + x2
1∂5

X3 = ∂4 + (xk
1 + xk

2 )∂5 (k > 2)

1
t7/2 if k = 2

| ln t|
t7/2 if k = 3

1

t
2+ k

2
if k > 4

N = IR5 ) S = {x1 = x2 = 0}

N = S = {x1 = x2 = 0}

N = S = {x1 = x2 = 0}

It may happen that N = S, N ( S or N ) S.
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Quantum Limits (QL)

M compact, smooth volume µ

4 selfadjoint nonnegative operator on L2(M, µ), with compact resolvent

discrete spectrum λ1 6 λ2 6 · · · 6 λj 6 · · · → +∞

(φj )j∈IN∗ orthonormal eigenbasis of L2(M, µ)

A quantum limit (on the base) is a (weak) limit of the sequence of probability measures |φ2
j | dµ.

More generally (pseudo-diff. version), a QL is a probability measure on S?M, closure point of
the sequence of measures µj (a) = 〈Op(a)φj , φj 〉 (a: symbol of order 0)

General question in quantum physics, quantum chaos: what are the possible QLs?
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Quantum Ergodicity (QE)

We say we have QE for (T , (φn)n∈IN∗ ) if there exist a probability measure ν on M and a
subsequence (nj )j∈IN∗ of density one such that

|φnj |
2 dµ ⇀ dν as j → +∞

(density one meaning that 1
n #{j | nj 6 n} −→

n→+∞
1)

More generally (pseudo-diff. version):
〈

Op(a)φnj , φnj

〉
L2(M,µ)

→
∫

Σ
a d ν̃ ∀a ∈ S0

Shnirelman Theorem (1974)

On (M, g) compact Riemannian manifold, if the geodesic flow is ergodic, then we have
QE for any orthonormal basis of eigenfunctions of the Laplace-Beltrami operator4,
with ν = normalized Riemannian volume (and ν̃ = Liouville measure on S∗M).

(Zelditch 1987, Colin de Verdière 1985, Gérard Leichtnam 1993, Zelditch Zworski 1996)
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The 3D contact case

(M,D, g) 3D contact sR structure, M compact

D = kerαg with (dαg )|D = oriented volume form induced by g on D.

Reeb vector field Z : αg (Z ) = 1 and dαg (Z , ·) = 0. Popp = |αg ∧ dαg |.

Theorem (Colin de Verdière, Hillairet, Trélat, Duke Math. 2018)

If the Reeb flow is ergodic on M for the Popp measure, then we have QE.

We identify S?M = U?M ∪ SΣ, with U?M = {g? = 1} (cylinder bundle).

Without any ergodicity assumption:
1 ∀β ∈ QL β = β0 + β∞ with β0 ⊥ β∞ and

supp(β0) ⊂ U?M, and β0 invariant under the sR geodesic flow

supp(β∞) ⊂ SΣ, and β∞ invariant under the (lift to SΣ of the) Reeb flow

2 ∃(nj )j∈IN∗ of density one s.t. ∀β ∈ QL associated with (φnj )j∈IN∗ , we have
supp(β) ⊂ SΣ (i.e., β0 = 0)
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A general path towards QE

(see Zelditch)

N(λ) = #{n | λn 6 λ}

First step: establish a microlocal Weyl law

(and identify the invariant measure ν)

E(A)
def
= lim

λ→∞

1
N(λ)

∑
λn6λ

〈Aφn, φn〉 = ā =

∫
S?M

a dW4

∀A ∈ Ψ0 with a = σP(A).

(E(A) = Cesáro mean)

→ Cesáro convergence property, under weak assumptions (without ergodicity):

〈(A− ā id)φn, φn〉 → 0 in Cesáro mean
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A general path towards QE

(see Zelditch)

N(λ) = #{n | λn 6 λ}

Second step: prove a variance estimate

V (A− ā id)
def
= lim

λ→∞

1
N(λ)

∑
λn6λ

|〈(A− ā id)φn, φn〉|2 = 0

i.e.
|〈(A− ā id)φn, φn〉|2 → 0 in Cesáro mean

→ Combine the microlocal Weyl law with ergodicity properties of some associated
classical dynamics and with an Egorov theorem.
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A general path towards QE

(see Zelditch)

End of the proof of QE:

Lemma (Koopman and Von Neumann)

Given a bounded sequence (un)n∈IN of nonnegative real numbers:

1
n

n−1∑
k=0

uk −→
n→+∞

0 ⇐⇒ ∃(nj )j∈IN∗ of density one s.t. uk −→
j→+∞

0

Hence, there exists a density-one sequence (nj )j∈IN∗ s.t.

lim
j→+∞

〈
Aφnj , φnj

〉
= ā.

Conclusion with a diagonal argument, using the fact that S0 admits a countable
dense subset.
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Classical and quantum Birkhoff normal forms

Model: Compact 3D flat Heisenberg group

Locally: XH = ∂x and YH = ∂y − x∂z , g flat

ZH = [XH ,YH ] (Reeb)

4H = X 2
H + Y 2

H

g∗H = σ(−4H ) = h2
XH

+ h2
YH

= ρH IH

with ρH = |hZH
| and IH =

(
hXH√
|hZH
|

)2

+

(
hYH√
|hZH
|

)2

By quantization (RH = Op(ρH ) and ΩH = Op(IH )):

−4H = RH ΩH = ΩHRH

General 3D contact case:

Melrose classical
normal form:

g∗H ◦ χ = g∗ (= σP(−4))

with χ symplectic diffeo
(valid globally along any Reeb orbit)

Quantum normal form near Σ:

−4 = RΩ + V0 + OΣ(∞)

with [R,Ω] = 0, V0 of order 0
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Perspectives, open questions

3D contact case: are the Reeb periods spectral invariants?

5D contact case: resonances→ Birkhoff normal form only at finite order along Σ
(Cyril Letrouit, ongoing)

QE (and QLs) in more general cases:
Grushin: we have QE if the singular curve is connected.

Martinet: ergodicity of the singular flow (in the Martinet surface)⇒ QE?

Quasi-contact in dim 4: magnetic lines = projections of singular geodesics.
Ergodicity of the magnetic vector field⇒ QE? (Nikhil Savale, ongoing)

Microlocal Weyl law W4 in general singular cases?

Controllability, observability of subelliptic wave equations (Cyril Letrouit, ongoing)

Trace formulas in sR geometry (Nikhil Savale, ongoing)
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