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sR Laplacian
Sub-Riemannian Laplacian

(M, D, g) sub-Riemannian (sR) structure:

@ M smooth connected manifold of dimension n  (may have a boundary)
@ me N*, D= Span(Xi,...,Xm) C TM (horizontal distribution: subsheaf)
@ sR metric defined by

m m
VvgeM YveDg gg(v,v) :inf{z u? ‘ v:Zu,-X,-(q)}
i= i=1

w: arbitrary smooth volume form on M

(X: adjoint in L2(M, 1)) -
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sR Laplacian
Sub-Riemannian Laplacian

Equivalent definitions:

@ A = selfadjoint nonnegative operator on L2(M, 1) defined as the Friedrichs
extension of the Dirichlet integral

Q) = /M l06I2. du ¢ € C(M)

(&, v)? . : .
*(€,8) = cometric associated with )
(9“9 veDg\{0} gg(v, V) g

@ | Agp =div, (Vsgo) ‘ where:

div, definedby Lxdp =divy(X)dp VX vector fieldon M
Vsr horizontal gradient defined by  gq(Vsgro(q), v) = do(q).v Vv € Dq

note that [|d||gx = [|Vsréllg
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sR Laplacian

Hormander operators

More generally:
Xo smooth vector field on M, ¢ smooth function on M that is bounded above

m
A =YX+ X+ cid

i=1

— operator on L?(M, 1)
Remark: A symmetric < Xo = S°77, div, (X)X

e(t) = Schwartz kernel of !4, of density e, (f) w.r.t. p.
— heat kernel ex ,, : (0, +00) x M x M — (0, +00)

Objective

@ Establish small-time asymptotics for the heat kernel.
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Spectral properties of sR Laplacians

For M compact, under Hérmander’s assumption Lie(D) = TM, the operator —A is
hypoelliptic (and even subelliptic), has a compact resolvent and thus a discrete

spectrum
O0=X <A< <A = +00

Let (éx)ken+ be an orthonormal eigenbasis of L2(M, w).

@ Derive (micro-)local Weyl laws for A, identify (micro-)local Weyl measures.

@ Establish Quantum Ergodicity (QE) properties.
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sR Laplacian

sR flag

Sequence of subsheafs DX ¢ TM:
@ D° = {0}
@ D' =D = Span(Xy,...,Xm)
@ DM = DK 4 [D, DX for k > 1

sRflagatq: |{0} =D} c Dg=D}cDZc...c D{? "¢ D9 = Tom

r(q): degree of nonholonomy at q
@ ni(q) =dmD]  (nyg(q) = n=dmM)
Q wi(g = =wy(g) =1 Q(q) = > i(ni(q) — ni—1(q)) = >_ wi(q)

Wni41(q) = -+ = Wny(q) =2 i=1 izt

(= Hausdorff dimension around q if g regular)

W, _41(@) = =wn(q)=r

q is said regular if the flag at g is regular.
The sR structure is said equiregular if all points are regular. ™ SORBONNE
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sR Laplacian

Nilpotentization

(M , D% g%) = nilpotentization of the sR structure (M, D, g) at go € M
= tangent space (in the metric sense of Gromov)
(equivalence class under the action of sR isometries on sR structures)
@ M% ~ R"
@ D% = Span(X®, ..., X%)

In privileged coordinates:
@ Dilation . (x) = <5W1 (@)xy, ..., sW"(q‘J)x,,>
@ X = Iimoa6;‘X,-
E—>

@ % = |lim

i EQ< 00 O = Cst(qo) ax
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sR Laplacian

Nilpotentization

(M , D% g%) = nilpotentization of the sR structure (M, D, g) at go € M
= tangent space (in the metric sense of Gromov)
(equivalence class under the action of sR isometries on sR structures)

@ M% ~R"
@ D% = Span(X®, ..., X%)

m
- PR
Nilpotentized sR Laplacian: | A% = (X,.q“)

i=1

Heat kernel: e x

Ado 0 ¢ (0,00) x M¥ x M% — R

Remark: Homogeneity €xq, a (f X, X') = £<%) o4, % (°1,8:(x), 6:(x")) Ve €R
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heat kernels

Heat kernel asymptotics

Fundamendal lemma

Qo € M arbitrary, p arbitrary smooth measure on M. In a local chart of privileged
coordinates at qp:

VkeN t20)/2g, , (t, 6ﬂ(x),6ﬁ(x’))

= exap a0 (1, X, X') + tar(x, x') + - + t ak(x, x') + o(t¥)

as t — 0T, in C>°(M x M) topology, with a; smooth.

@ If qp is regular, then the above convergence and asymptotic expansion are
locally uniform with respect to qq.

m
@ Still valid for A = 3~ X? + X, + cid, with an expansion in t%/2, provided that:
i=1

i=

@ either Xy smooth section of D;
@ or Xy smooth section of D?, and then replace A% with A% 4 X,
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heat kernels

Heat kernel asymptotics

Fundamendal lemma

Qo € M arbitrary, p arbitrary smooth measure on M. In a local chart of privileged
coordinates at qp:

VkeN t20)/2g, , (t, 6ﬂ(x),6ﬁ(x’))

= exap a0 (1, X, X') + tar(x, x') + - + t ak(x, x') + o(t¥)

as t — 0T, in C>°(M x M) topology, with a; smooth.

@ x = x/ = 0 = expansion of the kernel along the diagonal, and

e&% % (1 ,0, 0)
ea,u(t, G0, Q) dp(o) ~ ———5ray7z—— d1(q) = €aa 5 (1,0,0) dn( )

— useful to derive the local Weyl law.
Generalization of results by Métivier (1976), Ben Arous (1989).

@ estimations near the diagonal — microlocal Weyl law and singular sR struct
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sR Laplacian heat kernels canonical sR measures Weyl law quantum limits, QE

General question in sR geometry: define an intrinsic volume on a sR manifold.

[Agrachev Barilari Boscain 2012]

@ Hausdorff (standard or spherical) Mitchell 1985, Gromov 1996
@ Popp Montgomery 2002
@ anew one: Weyl




canonical sR measures

Popp measure

Popp volume (Montgomery 2002): canonical smooth volume form defined at g regular

by

|dP(G)] = &*[u1 A~ A ]
with the canonical isomorphism r(q)

A (TF M) (@DK/D"’1>

~1 induced by the Euclidean structure coming from the surjection

and with v, = canonical volume form on Dg/Dg
DE* — Df/DE~" (take Lie brackets modulo Dy).

@ Pisinvariant under (local) sR isometries

q
= P-, = P is “doubly intrinsic”

@ P commutes with nilpotentization: 15,\‘,, a

Explicit expression in [Barilari Rizzi 2013]
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canonical sR measures

(Micro-)local Weyl measure

M compact
Local Weyl measure = probability measure wa on M defined (if the limit exists) by

Tr (fe!”) Ju e(t,q,9)f(q) du(q)
fdwa = lim —— 2~ i 2 vfe COM
/ e = H”E+ Tr (et) Hlo+ fM (t,9,9) du(q) € C(M)

e, e(t,q,q)
wa = weak lim
. =0+ [ e(t, ', q") du(q’)

Microlocal Weyl measure = probability measure W on S*M defined (if the limit exists)
by
. Tr(Op(a)ets) 0
adWp = lm ——————= Vae S°(S™M
/S*M &7 50r Tr(eftd) (S*M)

"\ SORBONNE

g UNIVERSITE
il ®Fsmp



sR Laplacian heat kernels canonical sR measures Weyl law quantum limits, QE

(Micro-)local Weyl measure

M compact
Local Weyl measure = probability measure wa on M defined (if the limit exists) by

vf € CO(M)

Tr (fe'® e(t,q,q)f(q) d
/fde_ lim Tr(fet) _ i Jm et 9,9)1(q) du(q)
t—0t+ Tr (efA) t—0+ IM f 9,9 dM(q)

Microlocal Weyl measure = probability measure W on S*M defined (if the limit exists)
by
. Tr(Op(a)e!s) @
dWp = lim ————~ vae S°(S*M
L*M adlin = I (et®) ae s )

They do not depend on y, nor on the quantization.
7« Wa = wa with 7 : T*M — M canonical projection.

wp is invariant under sR isometries of M.

®© 6 6 o

In the equiregular case: wa exists, is smooth (cf further) and commutes with

nilpotentization: WA 7 = “wx,"
JONNE

ERSITE

@ supp(W,) C ST, where ¥ = D+ (annihilator of D).
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canonical sR measures

(Micro-)local Weyl measure

Equivalent definition (by the Karamata tauberian theorem):
— Ay = N, (ék)ken= orthonormal eigenbasis of L2(M, ), A S A< K A = oo

Spectral counting function:  N(X) = #{k | Ak < A}

Local Weyl measure = probability measure wa on M defined (if the limit exists) by

> [ fedn e ctm

deA =
/M >\~>+oo N()\) A

Wa = Weak im Z |(;$k|2 (Cesaro mean)
>\ <A

Microlocal Weyl measure = probability measure W on S*M defined (if the limit exists)
by

— i 0/ q*
/S*MadWA_AﬂT NOy 2 (@3 iz, VAESUSMY

<A S UNIVERSITE
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canonical sR measures

(Micro-)local Weyl measure

Defining the averaged correlation of eigenfunctions by

C(x,y)= _lim

A—>+mﬁ Z ¢k(x+}//2)m V(x,y)GMXM

Ac<A

(when the limit exists), the correlation is the Fourier transform with respect to £ of Wa,
i.e.,

C(xy) = [ eaWa(x.6)
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canonical sR measures

(Micro-)local Weyl measure

Objective

Identify the Weyl measures (equiregular and singular cases).

Compare them with Hausdorff, Popp.
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Weyl law
Local Weyl law in the equiregular case

In the equiregular case, the local Weyl measure w exists, is smooth, and

89(1,0,0) L
- ¢0,0 P hed— e o
dWA(q) fM eq’(1,0,0) dP(q’) fo! (q) (Wlt e eAQ,Pq)

Proof: Along the diagonal, t2/2ex ,,(t, g, q) du(g) — €9(1,0,0) dP(q) as t — 0.

Remark: Since wx is smooth, it differs in general from # g (which is not smooth
in general for n > 5, see [Agrachev Barilari Boscain 2012])

Ju®(1,0,0)0P(q) o

Consequence: | N(\) ~ Fo2+ 1)

as A\ — +oo  (Q: Hausdorff dim)

. 122
Example: 3D contact case, N(A) ~ 5 A ™ SORBONNE
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Weyl law

Local Weyl law in the equiregular case

wa = P (i.e., Weyl = Popp) <= g+ €9(1,0,0) is constant

Remark:
Isosr (M) acts transitively on M
= all nilpotent sR structures (A7Iq, Bq, g9) are sR-isometric
= g+~ €9(1,0,0) is constant

This is so in the following cases:
@ The sR structure on M is free

@ The sR structure on M is nilpotent and equiregular, and dim M < 5, with:

@ dimension 3: growth vector (2, 3) (Heisenberg)

@ dimension 4: growth vector (2, 3, 4) (Engel) and (3, 4) (quasi-Heisenberg)

@ dimension 5: growth vector (2, 3, 5) (Cartan), (2, 3, 4, 5) (Goursat rank 2), (3, 5) (corank 2),
(8, 4,5) (Goursat rank 3)

[Agrachev Barilari Boscain 2012]

Remark: wa # Pin general (example: bi-Heisenberg (4, 5) case)
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Weyl law

Microlocal Weyl law in the equiregular case

Define ¥’ = (D')+ C T*M (annihilator of D') for i = 1,...,r.

Theorem
In the equiregular case, the microlocal Weyl measure W exists, and

1 oo _ _
dWa(q,u) = @y (_/0 /*M/):{;1 K(q, Py, ru) dpy r"~"r=17" dr) dHger—1(9, U)
q

with K(q, p) = /R e "Pexq 2a(1,5,0) 0%(y) = F(y = ezq za(1.%,0)) (p)

In particular:

supp(Wp) C SE/! ‘
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Weyl law

Two simple singular sR structures

Regular Grushin case:

Almost-Riemannian structure on M compact 2D, Riemannian except along a 1D
submanifold S, with no tangency points.

@ Local model: X = dx, Y = xdy, S ={x=0}.

@ In M\ S, we have dP = ﬁdx dy = |17|dx ® dv with v smooth.

Regular Martinet case:

Rank-two sR structure on M compact 3D, with D = ker a, with a A do vanishing on S
(Martinet surface), D transverse to S.

< D? #D° D?=TMoutsideof S, D® = TMalongS, Dn TS line bundle over S.
2 2
® Localmodel:a =dz—%dy (X =0 Y=0y+%0:), S={x=0}

@ In M\ S, we have dP = %, dx dy dz = ; dx ® dv with v smooth.
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Weyl law

Two simple singular sR structures

Small-time expansion along the diagonal at any order:

@ Grushin:
/e (6,0, (@) du = ar o b L I o gt + ag 4+ a7 VA In t]+ g VE+ gt In ]+ argt +
MA,;L-,CIYGIGI;tfwt 2t3\ﬂ 4\ﬂ5 6 1+3a7 8 9 10
with a; = ;&= [gfdv  and & = 7 (y+4In2) [gfdv +P.V. [y, fdxg
@ Martinet:
/ (t Y(q) d |In |+ 1Jr \In1|+ 1 o \Inl‘\Jr 1+ \nt|Jr 1+ [T —
e 5 q, =ay ——5— a, a ——— +8g—+ta7—F~ +ag— +a n a
Sy 82t @ N dp = an =5 +82 15 +83 575 Tz T 5 JF TR T 10
with ay = {k [ fdv
Consequence: Wa = U(‘%) Wa = %ﬂ'l*.):WA (mx : S — M double covering)
. . v(S
Grushin :  N(\) ~ ( )A In A Martinet : ~ N(\) ~ ( )AZ In X\
= spectral concentration on the singular manifold S S UNIVERSITE
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Weyl law

Singular sR structures

S: singular set of the sR structure

Theorem

If S is Whitney stratifiable then there exists a submanifold N of M s.t.

[In
t

k
t
/eAM(t,q,q)f(q)du(q) ~ Cst— l/fde vf e CO(M)
M t—0+ N

(concentration on N)

forsome k € {0,1,...,n}andr € Q st.r > %
Moreover if Kk = nthen r = Q;“.
N(A) ~ A" In“ X (by the Karamata tauberian theorem)

Remark: We have r € N* under the condition (in privileged coordinates)
YgeM Yo eR" Vie{l,...n} Vke{l,..m wl(X)=w (X)) _
(which is valid for instance when each X, can be at any point g “factorized” by X{) S 5?:7&5?.5;“1
JiL @Fsmp



Weyl law

Some examples of singular sR structures

name definition asymptotics concentration
M if k= 1
K-Grushin Xy =01, Xo=xka, (k>1) N=3S8={x =0}
o ifk>2
Xy =01, Xo = (xf — x)d
Sing. k-Grushin | X1 =0 X = (% (kxi)Zi ntl vk > 2 N=35={x=x
=
In% el
Xi=01, Xe=(F+xy)o. | "t ithk=1 "1 N={(0,0)}
p, k € N* et ifk>2 C 8= {xX* +xyf =0}
e Tk
Xi =01, Xo=(x —x3)02 b0 N={(0,0} ¢S ={xf=x)
Martinet Xi = 01, Xp= 02+ X205 A N=38={x =0}
. N = {X1 = X2 = O}
Nilp. tang. hyp. | Xi = 81, Xo = 02 + x2x20 2 ¢
ilp. tang. hyp 1 1 2 > + X7 X203 2 C 8= {xx=0}
Xy = & 17% ifk=2 N=R®DS={x=x=0}
. 2 | Int| ifk =3
Ghezzi Jean Xo = 92+ X103 + X{ 05 772 Mg = N=S8={xi=x =0}
1 -
Xs = 04 + (XK + X505 (k > 2) P itk >4 N=S={x=5x%=0}

It may happenthat N=S,NC SorN 2 S.

JiL
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quantum limits, QE

Quantum Limits (QL)

@ M compact, smooth volume p

@ A selfadjoint nonnegative operator on L?(M, 1), with compact resolvent
@ discrete spectrum Ay <A <o < Ay <o = 00

@ (¢;)jen~ orthonormal eigenbasis of L2(M, 1)

A quantum limit (on the base) is a (weak) limit of the sequence of probability measures |¢I?| d,u.J

More generally (pseudo-diff. version), a QL is a probability measure on S*M, closure point of
the sequence of measures  p;(a) = (Op(a)¢;, ¢;) (a: symbol of order 0)

General question in quantum physics, quantum chaos: what are the possible QLs?
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quantum limits, QE

Quantum Ergodicity (QE)

We say we have QE for (T, (¢n)nen+) if there exist a probability measure » on M and a
subsequence (n;)jen+ of density one such that

|¢nj\2 dp — dv as j — +o0

(density one meaning that %#{j [ nj<n} — 1)

n—+oco

More generally (pseudo-diff. version): <Op(a)¢nj,¢nj>LZ(M ; — / adv vae S°
sH x

Shnirelman Theorem (1974)

On (M, g) compact Riemannian manifold, if the geodesic flow is ergodic, then we have
QE for any orthonormal basis of eigenfunctions of the Laplace-Beltrami operator A,
with v = normalized Riemannian volume (and © = Liouville measure on S*M).

(Zelditch 1987, Colin de Verdiere 1985, Gérard Leichtnam 1993, Zelditch Zworski 1996)
"\ SORBONNE
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quantum limits, QE

The 3D contact case

JiL

(M, D, g) 3D contact sR structure, M compact J

D = ker ag with (dexg)|p = oriented volume form induced by g on D.
Reeb vector field Z: ag(Z) = 1 and dag(Z, -) = 0. Popp = |ag A dag].

Theorem (Colin de Verdiére, Hillairet, Trélat, Duke Math. 2018)

If the Reeb flow is ergodic on M for the Popp measure, then we have QE.

We identify S*M = U*M U SX, with U*M = {g* = 1} (cylinder bundle).

Without any ergodicity assumption:
@Q 8L  B=H+Bxc with Byl B and
@ supp(By) C U*M, and Sy invariant under the sR geodesic flow

@ supp(B=) C SX, and B invariant under the (lift to SX of the) Reeb flow

Q 3(ny)jen~ of density one s.t. V3 € QL associated with (¢n;)jen~, We have -
supp(8) C S (i.e., Bo = 0) ERSITE
WrESMP




quantum limits, QE

A general path towards QE

(see Zelditch)

NQA) = #{n| xn < A}

First step: establish a microlocal Weyl law

(and identify the invariant measure v)

VA € WO with a = op(A).

(E(A) = Cesaro mean)

— Cesaro convergence property, under weak assumptions (without ergodicity):
((A— aid)¢n, ¢n) — 0 in Cesédro mean ™ SORBONNE
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quantum limits, QE

A general path towards QE

(see Zelditch)

NQA) = #{n| xn < A}

Second step: prove a variance estimate

V(A— aid) & 1 > [{(A—aid)n, én)[> =0

lim
A— 00 N()\) X<

[{((A— 2id)¢n, ¢n)[2 — O in Cesdro mean

— Combine the microlocal Weyl law with ergodicity properties of some associated
classical dynamics and with an Egorov theorem.

"\ SORBONNE
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quantum limits, QE

A general path towards QE

(see Zelditch)

End of the proof of QE:

Lemma (Koopman and Von Neumann)

Given a bounded sequence (un)nen Of Nnonnegative real numbers:
1 n—1

72”" — 0 <= 3(m)jen~ of density ones.t. uy — 0
n s n—+oo J—+oo

Hence, there exists a density-one sequence (1;)jen~ S.t.

lim <A¢,,j,¢nj> —a

Jj—=+oo

Conclusion with a diagonal argument, using the fact that S° admits a countable
dense subset.
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quantum limits, QE

Classical and quantum Birkhoff normal forms

Model: Compact 3D flat Heisenberg group

Locally: Xy = 0x and Yy = 0y — x0z, g flat
Zy = [Xn, Y] (Reeb)
Ay = )(ﬁ + Y75

g5 =o(=4p) = hiH + h%/H = prly

2 2
. hx, hy,
with = |hz,|and Iy = L2} + L2l
pH = |hz,| H ( th|> ( T@I)

By quantization (Ry = Op(py) and Q4 = Op(/y)):

]fAH:f%QH:QHmJ

General 3D contact case:

Melrose classical
normal form:

[Grx =] (= -0

with x symplectic diffeo
(valid globally along any Reeb orbit)

Quantum normal form near X:

[ -4 =R+ Vo +05(c0) |

"\ SORBONNE
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quantum limits, QE

Perspectives, open questions

@ 3D contact case: are the Reeb periods spectral invariants?

@ 5D contact case: resonances — Birkhoff normal form only at finite order along ¥
(Cyril Letrouit, ongoing)
@ QE (and QLs) in more general cases:
@ Grushin: we have QE if the singular curve is connected.
@ Martinet: ergodicity of the singular flow (in the Martinet surface) = QE?
@ Quasi-contact in dim 4: magnetic lines = projections of singular geodesics.
Ergodicity of the magnetic vector field = QE? (Nikhil Savale, ongoing)

@ Microlocal Weyl law W in general singular cases?

@ Controllability, observability of subelliptic wave equations (Cyril Letrouit, ongoing)
@ Trace formulas in sR geometry (Nikhil Savale, ongoing)
N Jh
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