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Probability measures arising in Kähler geometry

This talk is a survey of results on sequences {µk}∞k=1 of probability
measures arising in Kähler geometry. The parameter k corresponds
to the power Lk of a positive Hermitian line bundle L→ M. There
are two types:

I Toric case: {µxk} are prob measures on Zm ∩ kP, the lattice
points in the kth dilate of a Delzant polytope P, where
x ∈ P. These are generalization of multi-nomial distributions
and satisfy many of the same properties.

I General case: {µzk}∞k=1 are prob measures on R, pointwise
spectral measures for a Toeplitz operator. The toric case is
the one where there are m = dim M commuting operators.



Classical results in probability
The sequences µk should be compared with the sequence of
convolution powers µ∗k of a probability measure µ on Rm.
The convolution µ ∗ ν of two probability measures is defined by

µ ∗ ν(E ) =

∫
Rn

µ(E − x)ν(dx). (1)

Convolution powers arise when one studies sums
∑k

j=1 Xj of i.i.d.
random variables with values in Rm. Three (or four) classical
results involve limits of dilates of µ∗k . By a dilate we mean
Dtµ(E ) = µ(tE ).

I The weak LLN (law of large numbers): Dk∗µ
∗k ⇀ δm, where

m =
∫

xdµ is the mean;
I The CLT (central limit theorem): If µ is re-centered to have

mean zero, and normalized to have variance 1, then
D√k∗µ

∗k ⇀ N(0, 1).
I The Cramer LDP (large deviations principle: measures

exponential decay of Dkµ
∗
k{x : |x −m| ≥ C}.

I McMillan entropy theorem (later).



CLT

Suppose µ is a probability measure on Rn such that∫
dµ = 1,

∫
|x |2dµ <∞ and

∫
xdµ = 0. Consider

µk = kn/2D√kµ
∗k where D√k(x) = x

√
k . Suppose that∫

xixjdµ = Aij .

Then µk → γA where γA = 1√
| detA|

e−〈A
−1x ,x〉dx .



LDP

Let E ⊂ R, let E denotes its closure and let E o denote its interior.
{µn} satisfies an LDP if :

(UB) lim supn→∞
1
n log

(
Sn
n ∈ E

)
≤ − infE I (x),

(LB) lim infn→∞
1
n log

(
Sn
n ∈ E

)
≥ − infEo I (x).

(2)

I.e.
(UB) lim supn→∞

1
n log (µn(nE )) ≤ − infE I (x),

(LB) lim infn→∞
1
n log (µn(nE )) ≥ − infEo I (x).

(3)



Cramer LDP

Let µ be a probability measure on R and let µk = µ∗k . Let
Mµ(ξ) =

∫
Rn ex ·ξdµ(x) be the moment generating function and let

Λµ(ξ) = log Mµ(ξ) be the logarithmic moment generating function.
Let Iµ(x) = supξ∈R(xξ − Λµ(ξ) be its Legendre transform. Cramer
LDP:

DNµ
∗N [a,∞] ≤ e−NIµ(a), a ∈ [m,∞],

DNµ
∗N [−∞, a] ≤ e−NIµ(a), a ∈ [−∞,m].



Bernoulli and Binomial distributions

The simplest example of the classical CLT is that of the Bernoulli
measures µp = (1− p)δ0 + pδ1 and their convolution powers on
the unit interval [0, 1]. The kth convolution power
µ∗kp = 2−k

∑k
n=0 pk(1− p)n−k

(k
n

)
δn has its support in [0, k].



Convolution of binomial distributions
B(n, p) is the measure

µn,p =
n∑

k=0

(
n

k

)
pk(1− p)n−kδk .

Consider µ = 1
2 (δ0 + δ1). Then

µ ∗ µ = 1
4 (δ0 + 2δ1 + δ2),

µ ∗ µ ∗ µ = 1
8 (δ0 + 3δ1 + 3δ2 + δ3),

µ∗n = 1
2n (δ0 +

(n
1

)
δ1 +

(n
2

)
δ2 + · · ·+

(n
n

)
δn).

One then dilates back to [0, 1] to get

Dnµ
∗n =

1

2n
(δ0 +

(
n

1

)
δ 1

n
+

(
n

2

)
δ 2

n
+ · · ·+

(
n

n

)
δ1).

The measure peaks when k =
( n
n/2

)
at the point 1

2 .



LLN, CLT and LDP for binomial measures

In the law of large numbers one rescales the measure back to [0, 1]
as 2−k

∑k
n=0 pk(1− p)n−k

(k
n

)
δ n

k
, which tends weakly to δp. In the

CLT one recenters the measure at 0 and then dilates it by
√

k so
that it spreads out to [−

√
k ,
√

k], and then it tends to the
Gaussian of mean 0 and variance 1. The parameter p ∈ [0, 1] of µp
is analogous to the parameter z ∈ M in the Kähler setting. In the
special case of CP1 with the Fubini-Study metric, the measures are
precisely the Bernoulli measures µp with p ∈ [0, 1] being the image
of z under the moment map. Moreover, the CLT is in fact the
classical CLT in this special case, i.e. µzk is the kth convolution
power of µz1.
The LDP is the Cramer LDP: P(Sn ≥ an) ≤ e−nIp(a), where
Ip(a) = a log a

p + (1− a) log 1−a
1−p is the relative entropy of the a

and the p binomomial measures.



Bergman kernels, partial Bergman kernels, spectral
projections kernels

The probability measures in the Kähler setting do not arise (in
general) as convolution powers. They are constructed from
Bergman kernels and spectral projections. We now introduce our
notation: Let (L, h)→ (M, ω) be a positive Hermitian line bundle
over a Kähler manifold. The kth Bergman kernel is the orthogonal
projection:

Πhk : L2(M, Lk)→ H0(M, Lk) := holomorphic sections of Lk.

Its kernel w.r.t the Kähler volume form is denoted Πhk (x , y). For
any such kernel, the metric contraction (density of states) is
denoted (in terms of an ONB),

Πhk (x) :=

Nk∑
j=1

|sk,j(z)|2hk , Nk = dim H0(M, Lk)



Toeplitz Hamiltonians

Let H ∈ C∞(M,R). Quantize H as the self-adjoint zeroth order
Toeplitz operator

Hk := Πk(
i

k
∇ξH + H)Πk : H0(M, Lk)→ H0(M, Lk) (4)

acting on the space H0(M, Lk) of holomorphic sections. Here, ξH
is the Hamiltonian vector field of H, ∇ξH is the Chern covariant
deriative on sections, and H acts by multiplication.
Denote the eigenvalues by Sp(Ĥk) := {µk,j} and the eigenspaces
by

Vµk,j := {s ∈ H0(M, Lk) : Hks = µk,js}. (5)

We denote by Πk,j : H0(M, Lk)→ Vµk,j the orthogonal projection
to Vµk,j . Denote its metric contraction (DOS) by Πk,j(z).



Sequences in Kähler analysis

For any (L, h)→ (M, ω) and H : M → R we define three
sequences analogous to µ∗k ,D√kµ

∗k ,Dkµ
∗k :



(i) dµzk(x) =
∑

j Πk,j(z)δµk,j (x),

(ii) dµ
z, 1

2
k (x) =

∑
j Πk,j(z)δ√k(µk,j−H(z))(x),

(iii) dµz,1,τk (x) =
∑

j Πk,j(z)δk(µk,j−H(z))+
√
kτ (x),

(6)

We view these scalings as analogous to three scalings of the
convolution powers µ∗k of a probability measure µ supported on
[−1, 1] (say). The third scaling (iii) corresponds to µ∗k , which is
supported on [−k, k]. The first scaling (i) corresponds to the Law
of Large Numbers, which rescales µ∗k back to [−1, 1]. The second
scaling (ii) corresponds to the CLT (central limit theorem) which
rescales the measure to [−

√
k ,
√

k].



Allowed and forbidden regions for a spectral interval

Let E be a regular value of H. We denote the partial Bergman
kernels for the corresponding spectral subspaces by

Sk := Hk,E :=
⊕
µk,j<E

Vµk,j , (7)

The allowed, resp. forbidden region for these subspaces are,

A := {z : H(z) < E}, F = {z : H(z) > E}, C = {z : H(z) = E}.
(8)

The partial Bergman kernel is,

Πk,E : H0(M, Lk)→ Hk,E , (9)



Weak LLN and Pointwise Weyl

Theorem
Fix a regular value E of H : M → R. Then,

dµzk ⇀ δH(z).

I.e. for any f ∈ C∞(R), we have

Πk(z)−1

∫ E

−∞
f (λ)dµzk(λ)→

{
f (H(z)) ifz ∈ A
0 ifz ∈ F .

(10)

In particular, the density of states of the partial Bergman kernel is
given by the asymptotic formula:

Πk(z)−1Πk,E (z) ∼

{
1 mod O(k−∞) ifz ∈ A
0 mod O(k−∞) ifz ∈ F .

(11)

where the asymptotics are uniform on compact sets of A or F .



Sequences in Toric Kähler analysis

In the toric case, instead of one Toeplitz Hamiltonian, we have n
commuting Toeplitz Hamiltonians, the generators of a Hamiltonian
torus action Tm, whose joint eigenvalues are the lattice points
α ∈ kP in the kth dilate of a polytope.
By definition, ∃ a Hamiltonian torus action Φ~t(z) : Tm ×M → M
which extends holomorphically to a (C∗)m action, and M is the
closure of an open orbit Mo = (C∗)m{z0}. Let h denote a
Tm-invariant Hermitian metric on L with curvature form ω. The
moment map

µh := µ : M → P ⊂ Rm, (12)

defines a torus bundle on the open orbit over a convex lattice
(Delzant) polytope P. There is a natural basis {sα}α∈kP of the
space H0(M, Lk) of holomorphic sections of the k-th power of L by
eigensections sα of the Tm action. In a standard frame eL of L
over Mo , they correspond to monomials zα on (C∗)m.



The probability measures

For any z ∈ Mo and k ∈ N, we define the probability measure,

µzk =
1

Πhk (z , z)

∑
α∈kP∩Zm

|sα(z)|2
hk

‖sα‖2
hk

δα
k
∈M1(Rm), (13)

on Rm. Here, ‖sα‖hk is the L2 norm of sα with respect to the
natural inner product Hilbk(h) induced by the Hermitian metric on
H0(M, Lk) and Πhk (z , z) is the contracted Szegö kernel on the
diagonal (or density of states). The measures are discrete measures
supported on P ∩ 1

kZ
m.

Note: µzk depends only on µh(z) ∈ P. These are generalizations of
multi-nomial measures. They are vector-valued analogues of µxk for

one Ĥk (which are prob measures on R rather than on P ⊂ Rm).



Main results (joint with Peng Zhou)

I For one Toeplitz Hamiltonian Ĥk , the measures
dµzk(x) =

∑
j Πk,j(z)δµk,j (x) satisfy a weak LLN, a CLT, and

(in the real analytic case) an LDP.

I In the toric case, the measures µzk satisfy a weak LLN, a CLT,
an LDP.

I (new result with Pierre Flurin) In the toric case, the entropy
of the discrete measures µzk have asymptotic expansions. For
a discrete measure, the (Shannon) entropy is
H(µ) := −

∑
α µ(α) logµ(α)

Possibly there also exist entropy asymptotics in the single Toeplitz
Hamiltonian case.



Why do these analogue results exist

I In very rare cases such as (M, ω) = (CPm, ωFS), the
sequences of toric measures µzk on the simplex really are
convolution powers. In fact, they are multinomial
distributions. In the non-compact Bargmann-Fock space, they
are Poisson distributions. Probably this requires all powers hk

of the metric to be balanced.

I The measures µzk are the laws (distribution measures) of

random variables X z,R
k , resp. X z,Rm

k , which take values µk,j ,

resp α ∈ kP ∩ Zm, with probabilities
Πk,j (z)
Πk (z) , resp.

Πk,α

Πk (z) . They
seem to behave as sums of k i.i.d. variables. But we have no
definition of these.



Results in the toric case

To determine the appropriate Gaussian measure we need to
determine the asymptotics as k →∞ of the mean,

~mk(z) =

∫
P
~xdµzk(x),

resp. the covariance matrix

[Σk ]ij(z) =

∫
P

(xi −mk,i (z))(xj −mk,j(z))dµzk .

Lemma
Let µh : M → P be the moment map (12). Then,

~mk(z) = µh(z) + O(1/k), Σk(z) =
1

k
Hess ϕ(z) + O(

1

k2
)



Normalizing the measures to have mean zero and variance
one

We re-center the measures at µ(z), i.e. put

µ̃zk = µzk(x − µh(z)),

and then dilate by
√

k to obtain the normalized sequence,

D√k µ̃
z
k =

1

Πhk (z , z)

∑
α∈kP∩Zm

|sα(z)|2
hk

‖sα‖2
hk

δ√k(α
k
−µh(z)). (14)

Equivalently, if f ∈ Cb(Rm). Then,

〈f ,D√k µ̃
z
k〉 =

1

Πhk (z , z)

∑
α∈kP∩Zm

|sα(z)|2
hk

‖sα‖2
hk

f (
√

k(
α

k
− µh(z)),

(15)
Here, Cb(Rm) denotes the space of bounded continuous functions
on Rm.



Weak LLN for toric measures

Proposition
Let µ0 : M → P be the moment map with respect to the
symplectic form ω0. Then for any z ∈ M,

µzk ⇀ δµ0(z).

Thus,

µ0(z) = lim
k→∞

1

Πhkd (z , z)

∑
α∈kP

(
α

k
)
||sα(z)||2

hk0

Qhk0
(α)

.



CLT for toric Kähler manifolds

Theorem
In the topology of weak* convergence on Cb(Rm),

D√k µ̃
z
k

w∗→ γ0,Hess ϕ(z).

That is, for any f ∈ Cb(Rm),∫
Rm

f (x)D√kd µ̃zk(x)→
∫
Rm

f (x)dγ0,Hess ϕ(z)(x).

The role of the parameter z is similar to that of the parameter p in
the Bernoulli measures µp = pδ0 + (1− p)δ1 and their convolution
powers on the unit interval [0, 1]. In very special cases, such as the
Fubini-Study metric h of M = CPm, µzk is itself a sequence of
dilated convolution powers, µzk = (µz1)∗k = µz1 ∗ µz1 · · · ∗ µz1 (k
times).



Density of states for a toric sub-polytope PBK
The following graphics are from B. Shiffman-S.Z. on partial
Bergman kernels in the toric setting. The CLT is the Gaussian
transition.
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Entropy of the toric measures µz
k

The main result is an asymptotic formula for the entropy H(µzk) as
k →∞. There are very few results, even classical, on asymptotic
entropy.
For a finite probability distribution {pα}, the entropy of the
distribution is

H = −
∑
α

pα ln pα.

Thus, the entropy of µzk is

H(µzk) = −
∑
α∈kP

|sα(z)|2
hk

‖sα‖2
hk

ln
|sα(z)|2

hk

‖sα‖2
hk

.

Entropy H(µ) of a discrete probability measure µ is a measure of
the degree to which µ is uniform. The larger the entropy, the more
uniform the measure. Thus, entropy of µzk is a measure of its
uniformity as a measure on kP ∩ Zm.



Asymptotics of entropy (joint with Pierre Flurin)

Theorem
Let a0 (a universal constant) be the leading term of the density of
states limm→∞ k−mΠm(z) As k →∞. Then, in dimension m,

H(µzk) = m
2 log(k) + 3m

2 log(2π)− log(a0) + 1
2 log(|det∇2u0(x0)|)

+ (2π)−mm
2a0

|det∇2u0(x0)|−1

Note that the leading order term is of order log k and is rather
trivial. The geometry is in the constant order term. In the case of
sums of i.i.d. real-valued random variables, i.e. convolution powers
of probability measures on R, Dyachkov proved that

H(µ∗k) ' 1

2
(log k) +

1

2
log(2πeσ2) + o(1).



Large deviations principle and entropy asymptotics

The entropy asymptotics are based on an LDP due to J.Song and
S.Z.(2010) : that µzk satisfy a large deviations principle (LDP).
Heuristically, an LDP means that the measure µzk(A) of a Borel set
A is obtained asymptotically by integrating e−kI

z (x) over A, where
I z is known as the rate functional and k is the rate. The rate
functions I z for {dµzk} depend on whether z lies in the open orbit
Mo of M or on the divisor at infinity D; equivalently, they depend
on whether the image µ0(z) of z under the moment map for ω0

lies in the interior Po of the polytope P or along a face F of its
boundary ∂P.



Precise definition

A function I : E → [0,∞] is called a rate function if it is proper
and lower semicontinuous. A sequence µk (k = 1, 2, . . .) of
sequence of probability measures on a space E is said to satisfy the
large deviation principle with the rate function I (and with the
speed k) if the following conditions are satisfied:

(1) The level set I−1[0, c] is compact for every c ∈ R.

(2) For each closed set F in E ,
lim supk→∞

1
k logµk(F ) ≤ − infx∈F I (x).

(3) For each open set U in E ,
lim infk→∞

1
k logµk(U) ≥ − infx∈U I (x).

Heuristically, in the sense of logarithmic asymptotics, the measure
µk is a kind of integral of e−kI (x) over the set.



Laplace LDP
Dupuis-Ellis gave an alternative definition in terms of Laplace type
integrals. . Put:

F (z , h) = − inf
x∈P

(h(x) + I z(x)). (16)

Then dµzk satisfies the Laplace principle on P with rate function I z

uniformly on M if, for all compact subsets K ⊂ M and all
h ∈ Cb(P) we have:

(1) For all c ∈ R,
⋃

z∈M(I z)−1[0, c] is compact for every c ∈ R.

(2) For each h ∈ Cb(P),
lim supk→∞ supz∈M

(
1
k log

∫
P e−khdµzk − F (z , h)

)
≤ 0.

(3) For each h ∈ Cb(P),
lim infk→∞ infz∈M

(
1
k log

∫
P e−kh(x)dµzk(x)− F (z , h)

)
≥ 0.

The upper and lower bounds of course imply, for each h ∈ Cb(P),

lim
k→∞

sup
z∈M

(
1

k
log

∫
P

e−kh(x)dµzk(x)− F (z , h)

)
= 0.



The LDP

Theorem
For any z ∈ M, the probability measures µzk satisfy a uniform
Laplace large deviations principle with rate k and with convex rate
functions I z ≥ 0 on P defined as follows:

I If z ∈ M0, the open orbit, then
I z(x) = u0(x)− 〈x , log |z |〉+ ϕ(z), where ϕ is the canonical
Kähler potential of the open orbit and u0 is its Legendre
transform, the symplectic potential;

I When z ∈ µ−1
0 (F ) for some face F of ∂P, then I z(x)

restricted to x ∈ F is given by
I z(x) = uF (x)− 〈x ′, log |z ′|〉+ ϕF (z), where log |z ′| are orbit
coordinates along F , ϕF is the canonical Kähler potential for
the subtoric variety defined by F and uF is its Legendre
transform. On the complement of F̄ it is defined to be +∞.

I When z is a fixed point then I z(v) = 0 and elsewhere
I z(x) =∞.



Spectral subspaces

We now return to scalar Hamiltonians and their Toeplitz
quantizatins Ĥk on general Kähler manifolds. The sequences of
probability measures are defined by partial Bergman kernels,
namely the projections

Πhk ,[E1,E2] : H0(M, Lk)→ Hk:[E1,E2]. (17)

onto the subspaces

Sk := Hk:[E1,E2] :=
⊕

µk,j∈H−1([E1,E2])

Vµk,j (18)

where µk,j are the eigenvalues of Ĥk and

Vk(µk,j) := {s ∈ H0(M, Lk) : Ĥks = µk,js}. (19)



Single Toeplitz operators on Kähler manifolds

For any (L, h)→ (M, ω) and H : M → R we define three sequences
of probability measures on R analogous to µ∗k ,D√kµ

∗k ,Dkµ
∗k :



(i) dµzk(x) =
∑

j Πk,j(z)δµk,j (x),

(ii) dµ
z, 1

2
k (x) =

∑
j Πk,j(z)δ√k(µk,j−H(z))(x),

(iii) dµz,1,τk (x) =
∑

j Πk,j(z)δk(µk,j−H(z))+
√
kτ (x),

(20)

The weak LLN says that dµzk → δH(z). The variance is of order 1
k .

Next we give the CLT.



Interface result for smoothed partial Bergman kernel in a
1√
k

tube around a regular level

The CLT pertains to the family of measures

dµ
z, 1

2
k (x) =

∑
j Πk,j(z)δ√k(µk,j−E)(x) when z lies in k−

1
2 -tube

around {H = E}, i.e. |H(z)− E | = O(k−
1
2 ). We let Φβ denote

the gradient flow of H, moving us off {H = E} in the normal

direction. Then z = Φβ/
√
kz0.

Since it is a weak* convergence result, we let f ∈ Cb(R), let

z = Φβ/
√
kz0 and consider

〈f , dµz,
1
2

k 〉 =
∑
j

f (
√

k(µk,j − E ))Πk,j(Φβ/
√
kz0).



ERF

Erf(x) =
∫ x
−∞ e−s

2/2 ds√
2π

is the cumulative distribution function of

the Gaussian, i.e., PX∼N(0,1)(X < x). The usual Gaussian error

function erf(x) = (2π)−1/2
∫ x
−x e

−s2/2ds is related to Erf by

Erf(x) = 1
2(1 + erf( x√

2
)).

Theorem(
Πk,Sk

Πk

)
(Φ(z , t/

√
k)) = Erf (2

√
πt) + O(k−1/2), (21)



The CLT

Theorem
If z0 ∈ {H = E}, a non-critical level, then there exists a complete
asymptotic expansion,∑
j

f (
√

k(µk,j−E ))Πk,j(Φβ/
√
kz0) ' kmIm(f ,E )+km− 1

2 Im− 1
2
(f ,E )+· · · ,

in descending powers of k
1
2 , with leading coefficient

[Im(f ,E ) = lim
k→∞

k−m
∑

j :µk,j∈P0

f (
√

k(µk,j − E ))Πk,j(F β/
√
kz0)

=

∫ ∞
−∞

f (x)e
− 1

2

(
2x
√
π

|∇H(z0)|−β
|∇H(z0)|√

π

)2
2dx√

2|∇H|(z0)
,

a Gaussian measure centered at β|∇H(z0)|.



CLT

The usual CLT would consider D√kT−H(z)µ
z
k , i.e.∑

j

f (
√

k(µk,j − H(z)))Πk,j(z).

Effectively, this puts z ∈ H−1(E ) and puts β = 0, so∫
fdD√kT−H(z)µ

z
k =

∫ ∞
−∞

f (x)e
− 1

2

(
2x
√
π

|∇H(z)|

)2
2dx√

2|∇H|(z
.

The variance is |∇H(z)|2.



Interface result for smoothed partial Bergman kernel in a

k−1/4 tube around a singular level
The formula in the smooth case is un-defined if ∇H(z0) = 0, i.e. if
the point z0 is a critical point of H. In this case one gets a
degenerate Gaussian. Its type depends on what kind of critical
point z0 is. The next result gives the CLT when z0 is a
non-degenerate (Morse) critical point. E.g. a non-degenerate
minimum point, the ground state of the Hamiltonian.

In this case, we need to use a different scaling in the normal
direction. Integrated against a test function f ∈ Cb(R) we consider

Πk,E ,f ,1/2(zc + k−1/4u) :=
∑
j

Πk,j(zc + k−1/4u) · f (k1/2(µk,j −E ))

rather than ∑
j

f (
√

k(µk,j − E ))Πk,j(Φβ/
√
kz0).



Interface result for smoothed partial Bergman kernel in a

k−1/4 tube around a singular level

Theorem
Let zc be a non-degenerate Morse critical point of H, E = H(zc),
u ∈ Tzc M. Then for any f ∈ S(R), we have

Πk,E ,f ,1/2(zc + k−1/4u) :=
∑
j

Πk,j(zc + k−1/4u) · f (k1/2(µk,j −E ))

= kmf (HesszcH(u,u)/2) + Of(k
m−1/4).

In particular, the normalized rescaled pointwise spectral measure

d µ̂
(zc ,u,1/4),1/2
k (x) :=

∑
j ‖sk,j(zc + k−1/4u)‖2 δk1/2(µk,j−E)(x)∑

j ‖sk,j(zc + k−1/4u)‖2

converges weakly

µ̂
(zc ,u,1/4),1/2
k (x) ⇀ δ 1

2
HesszcH(u,u)(x).



Brief idea of methods

Given a function f ∈ S(R) (Schwartz space) one defines

f (Ĥk) =

∫
R

f̂ (τ)e ikτ Ĥk dτ =

∫
R

f̂ (t)Uk(t)dt, (22)

to be the operator on H0(M, Lk) with the same eigensections as
Ĥk and with eigenvalues f (µk,j). Here,

Uk(t) = exp itkĤk . (23)

is the unitary group on H0(M, Lk) generated by kĤk . Thus, if sk,j
is an eigensection of Ĥk , then

f (Ĥk)ŝk,j = f (µk,j) ŝk,j (24)



Toeplitz quantization of maps

A key step in the analysis is to construct

Uk(t) = exp iktĤk

ias a Toeplitz Fourier integral operator quantizing the Hamilton
flow of H. .

Proposition
(S.Z. ' 1988) Ûk(t, x , y) is a semi-classical Fourier integral
operator. There exists an analytic symbol σk,t so that if π(x) = z,
the unitary group (23) has the form

Uk(t, z , z) = Ûk(t, x , x) := Π̂k(ĝ−t)∗σk,tΠ̂k(x , x)

= Π̂ke2πik
∫ t

0 H(exp sXH(z))ds) (exp tX h
H)∗σk,tΠ̂k(x , x).

(25)



Scaling in t and scaling in z

To prove the interface results we rescale Uk(t, z , z) both in t and
in z . For the CLT, we rescale to the kernel Uk( t√

k
, z , z). Since the

relevant time interval The time interval is now ‘infinitesimal’ (of
the order k−1/2), and the result can be proved by linearizing. The
smoothed interface asymptotics thus amount to the asymptotics of
the dilated sums,∑

j

f (
√

k(µk,j − E ))Πk,j(F β/
√
k(z0))

=

∫
R

f̂ (t)e−iE
√
ktUk(t/

√
k, zk , zk)

dt

2π

where z ∈ ∂A = H−1(E ) and where f̂ ∈ L1(R), so that the
integral on the right side converges.



Time scaled propagator

We employ the Boutet-de-Monvel-Sjostrand parametrix to give an
explicit formula for the right side.

Proposition
If z0 ∈ M such that dH(z0) 6= 0, then for any τ ∈ R,

Ûk(τ/
√

k , ẑ0, ẑ0) =

(
k

2π

)m

e iτ
√
kH(z0)e−τ

2 ‖ξH (z0)‖2

4 (1+O(|τ |3k−1/2)),

where the constant in the error term is uniform as τ varies over
compact subset of R.



End of proof

n the exponent, using E = H(z), we get

−iE
√

kt + it
√

kH(zk) = it
√

k(H(zk)− H(z))

= it
√

k[g(∇H(z), β√
k
∇H(z)) + O((β/

√
k)2)

= itβ‖∇H(z)‖2 + O(|t|k−
1
2 )

Furtheremore, −1
4 |tξH(zk)|2 = −1

4 |tξH(z)|2 + O(k−
1
2 |t|2).

Hence

I =
(

k
2π

)m ∫
R f̂ (t)e itβ‖∇H(z)‖2− 1

4
|t∇H(z)|2 dt

2π [1 + O(k−
1
2 )]

=
(

k
2π

)m ∫
t∈R

∫
x∈R f (x)e−ixte itβ‖∇H(z)‖2− 1

4
|t∇H(z)|2 dxdt

2π [1 + O(k−
1
2 )]

=
(

k
2π

)m ∫
x∈R f (x)e

−
(

x
‖∇H‖−β‖∇H(z)‖

)2

dx√
π‖∇H(z)‖ [1 + O(k−

1
2 )]



Boutet de Monvel-Sjostrand parametrix
Near the diagonal in ∂D∗h × ∂D∗h , the Boutet de Monvel-Sjostrand
parametrix is:

Π̂(x , y) =

∫ ∞
0

e−σψ(x ,y)χ(x , y)s(x , y , σ)dσ + R̂(x , y). (26)

Here, χ(x , y) is a smooth cutoff to the diagonal; s(x , y , σ) is a
semi-classical symbol of order m = dimC M. The phase ψ is
constructed from the Kähler potential ϕ(z) of ω0 by

ψ(x , y) = ψ((z , λ), (w , µ)) = 1− λµ̄eϕ(z,w̄) (27)

where ϕ(z , w̄) is the analytic extension of ϕ(z) = ϕ(z , z̄) into the
complexification M × M̄ of M. Also,

s ∼
∞∑
n=0

σm−nsn(x , y) (28)

is an analytic symbol in the sense of Boutet de Monvel. Finally,
the remainder term R̂(x , y) is real analytic in a neighborhood of
the diagonal.



Osculating Bargmann Fock representations

At each z ∈ M there is an osculating Bargmann-Fock or
Heisenberg model associated to (TzM, Jz , hz). We denote the
model Heisenberg Bergman kernel on the tangent space by

ΠTzM
hz ,Jz

(u, θ1, v , θ2) : L2(TzM)→ H(TzM, Jz , hz) = HJ . (29)

In K-coordinates with respect to a K-frame,

ΠTzM
hz ,Jz

(u, θ1, v , θ2) = π−me i(θ1−θ2)eu·v̄−
1
2

(|u|2+|v |2)

= π−me i(θ1−θ2)e i=u·v̄−
1
2

(|u−v |2

Note that =u · v̄ = ω(u, v).



Unknown probabilistic theorems

I An LDP for {µzk} ⊂ M1(R). It would give the exponential
decay rate for µzk([E1,E2]) when z /∈ [E1,E2]. Why: We would
need to understand

1

k
log

∑
j :µk,j∈[E1,E2]

Πk,j(z)

Πk(z)
.

I The entropy asymptotics of {µzk}.

By comparison with the toric case, the problem is that we have no
explicit formulae for Πk,j(z). The eigensections are not known. We
need to understand much more than just norming constants. On
CP1 one can use WKB or Bohr-Sommerfeld. The result reduces to
the toric case when H is a perfect Morse function.


