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Lipschitz Approximation and UC symbols

On a metric space (X , d) we consider function spaces:

• Lip(X )=”Lipschitz continuous functions”.

• UC(X )=”uniformly continuous functions”.

Note

Both spaces may contain unbounded functions and

Lip(X ) ⊂ UC(X ). (∗)

Define:

BUC(X ) =”bounded functions in UC(X )”.

Question: Is the inclusion (∗) uniformly dense? If so: how to
uniformly approximate UC -functions by Lip-functions?
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A very general answer

Definition (Metrically Convex Space)

A metric space (X , d) is called metrically convex if:

Two closed balls B(x , s) and B(y , t) around x ∈ X and y ∈ X and
with radii s ≥ 0 and t ≥ 0 intersect iff d(x , y) ≤ s + t.

Example: Complete Riemannian manifolds are metrically convex.

Theorem

Let (X , d) be metrically convex. Then the space of all Lipschitz
functions Lip(X ) is uniformly dense in UC(X ) a

UC(X ) = Lipc(X ) = uniform closure of Lipschitz functions.

ae.g. see: Y. Benyamini, J. Lindenstrauss, Geometric non-linear
functional analysis, AMS Colloquium Publication vol. 48, 2000.

See L.A. Coburn, Approximation by Lipschitz functions, ArXiv 21.
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Bounded mean oscillation

Aim: Approximation by real analytic Lipschitz functions. Explicit
and with a control of the remainder in the case X = Cn.

With t > 0 consider the heat transform of a (suitable) f : Cn → C:

f̃ (t)(w) : =
1

(4πt)n

∫
Cn

f (w − z)e−
‖z‖2

4t dv(z).

Semi-group-property: {̃f̃ (s)}
(t)

= f̃ (t+s), (if defined).

Definition

Mean oscillation of f for t > 0 at w ∈ Cn:

MOt(f ,w) : = |̃f |2
(t)

(w)− |f̃ (t)(w)|2

=
{
|f − f̃ (t)(w)|2

}̃(t)

(w) ≥ 0.
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Definition

The functions having bounded mean oscillation are given by:

BMO2
t (Cn) :=

{
f : ‖f ‖BMOt := sup

z∈Cn

√
MOt(f , z) <∞

}
. (∗)

Remarks:

• The spaces (∗) are linear and independent of t > 0. Hence we
denote them by BMO2(Cn).

• ‖ · ‖BMOt depends on t > 0 and only defines a semi-norm.

• The following inclusions hold (for all t > 0)

BUC(Cn) ⊂ UC(Cn) ⊂ BMO2(Cn) ⊂ L2(Cn, dµt).

where dµt(z) = (πt)−
n
2 e−

‖z‖2

t dv(z).

In particular: BMO2(Cn) contains unbounded functions.
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Bounded oscillation versus bounded mean oscillation

Definition: A continuous function f ∈ C (Cn) is of bounded
oscillation, if there is C > 0 such that for all z ,w ∈ Cn:

|f (z)− f (w)| ≤ C + C‖z − w‖.

BO(Cn) = functions of bounded oscillation.

Lemma

One has the inclusion BO(Cn) ⊂ BMO2(Cn). More precisely,

BMO2(Cn)
↑

f =

= BO(Cn)
↑

f̃ (t) +

+ BA(Cn)
↑

(f−f̃ (t))

,

where BA(Cn) := {f ∈ BMO2(Cn) : |̃f |2
(t)

is bounded}.

More inclusions: For all t > 0:

BUC(Cn) ⊂ UC(Cn) ⊂ BO(Cn) ⊂ BMO2(Cn) ⊂ L2(Cn, dµt).
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Bounded oscillation versus bounded mean oscillation

Lemma

Let z ,w ∈ Cn and f ∈ BMO2(Cn), then for all t > 0:∣∣f̃ (t)(z)− f̃ (t)(w)
∣∣ ≤ 2‖f ‖BMOt‖z − w‖.

Conclusion: f ∈ BMO2(Cn) =⇒ f̃ (t) ∈ Lip(Cn).

Lemma

Let t > 0 and f ∈ UC(Cn) ⊂ BMO2(Cn), then

f̃ (t) ∈ Lip(Cn),

f − f̃ (t) ∈ BUC(Cn).

Lip(Cn) is the ”difference” between UC(Cn) and BUC(Cn):

UC(Cn) = Lip(Cn) + BUC(Cn)

In particular: If f ∈ UC(Cn) is unbounded, then the heat
transform f̃ (t) remains unbounded for all t > 0.
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Theorem A (W.B., L.A. Coburn)

Let f ∈ UC(Cn), then the heat transform {f̃ (t)}t>0 defines a flow
of real analytic functions in Lip(Cn) with

lim
t→0

f̃ (t) = f

uniformly on Cn. A Lipschitz constant of f̃ (t) is:

Ct := t−
1
2 ‖f (· 2

√
t)‖BMO1/4

.

In particular, the following inclusion is dense:

Lip(Cn) ∩ Cω(Cn)
↑

real analytic functions

⊂ UC(Cn).

Remark: In the theorem one can replace Cn by Rn.
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Heat transform and Berezin-Toeplitz quantization

Let t > 0 and again consider a family of Gaussian measures on Cn.

dµt(z) =
1

(πt)
n
2

e−
‖z‖2

t dv(z).

Definition:

The Fock space is defined as:

H2
t := H2(Cn, µt) := O(Cn) ∩ L2(Cn, µt).

With the orthogonal projection

Pt : L2(Cn, µt)→ H2(Cn, µt)

and a symbol f : Cn → C the Toeplitz operator T t
f is defined as:

T t
f := PtMf

↑
multiplication by f

: H2
t → H2

t .
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Heat transform and Berezin Toeplitz Quantization

Toeplitz quantization and Berezin transform

Berezin-Toeplitz quantization: For all t > 0:

{functions on Cn} 3 f 7→ T t
f = PtMf ∈ {operators on H2

t }.

Berezin transform:

{operators on H2
t } 3 A 7→ Ã(t)(z) :=

〈
Aktz , k

t
z

〉
∈ {functions on Cn}.

Notation: We write:

ktz := ‖Kt(·, z)‖−1Kt(·, z), z ∈ Cn

with Kt being the reproducing kernel of H2
t .

Example: Let A = T t
f , then Ã(t) = f̃ (t) = heat transform on Cn.
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Generalization to the ball (or BSD)

Remark:

If we replace Cn by the unit ball Bn ⊂ Cn or any BSD Ω ⊂ Cn

equipped with the Bergman metric. Similar ideas apply.

Example

Consider the open unit ball Bn ⊂ Cn. Let α > 0 with
λ = n + 1 + α > 0. Then, with g : Bn → C:

Bn+1+α(g)(w) =

=
1

πn
Γ(n + 1 + α)

Γ(α + 1)

∫
Bn

g(z)
(1− ‖w‖2)n+1+α(1− ‖z‖2)α

|1− z · w |2(n+1+α)
dv(z).

In this case Bn+1+α(g) also is called α-Berezin transform of g .
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Theorem (W.-B. and L.A. Coburn, 2012)

Let Ω ⊂ Cn be a BSD of genus p equipped with the Bergman
metric and let f ∈ UC(Ω).

There is a family of integral transforms {Bλ(f )}λ≥p defining a
”flow” of real analytic functions in Lip(Ω) with

lim
λ→∞

Bλ(f ) = f

uniformly on Ω. The Lipschitz constant of Bλ(f ) is dominated by

Cλ := 2

√
λ

p
‖f ‖BMOλ .

In particular, the inclusion Lip(Ω) ∩ Cω(Ω) ⊂ UC(Ω) is dense.

Idea: Let Bλ(f ) be the Berezin transform of the Toeplitz operator
Tλ
f acting on standard weighted Bergman spaces A2

λ.
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1. Application: deformation estimates

Estimates in deformation quantization (M. Rieffel):

lim
t→0
‖T t

f ‖t = ‖f ‖∞, (1)

lim
t→0
‖T t

f T
t
g − T t

fg‖t = 0, (2)

lim
t→0
‖ 1

it
[T t

f ,T
t
g ]− T t

{f ,g}‖t = 0, (3)

where

t ∼ ~ > 0 corresponds to Plancks constant ∼= weight,

{f , g} =
∑n

i=1
∂f
∂zi

∂g
∂z i
− ∂f

∂z i
∂g
∂zi

= Poisson bracket.

Theorem (D. Borthwick, 1989)

(1) - (3) hold for f , g ∈ C 4n+6
b (Cn).

Proof: Techniques from pseudo-differential operator theory.
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Relation to Hankel operators

Problem: The limits (1) and (2) do not require derivatives. Can
we relax the regularity of f and g?

We start with (2): Consider the big Hankel operator

Ht
f =

(
I − Pt

)
Mf : H2

t → (H2
t )⊥.

Standard identity:

T t
f T

t
g − T t

fg = −(Ht
f̄
)∗Ht

g .

Corollary

Let f and g be symbols s.t. t 7→ ‖Ht
g‖t is bounded as t → 0 and

lim
t→0
‖Ht

f̄
‖t = 0.

Then (2) holds, i.e. limt→0 ‖T t
f T

t
g − T t

fg‖t = 0.

Consequence: We need to estimate the norm of Ht
f as t → 0.
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Theorem D (W. -B., L. Coburn, R. Hagger)

Let f ∈ BMO2(Cn) and assume that there is c > 0 such that for
all t ∈ (α, β) where 0 ≤ α < β:

‖f − f̃ (2t)‖∞ ≤ c . (∗)

Then there is C > 0 independent of t such that for all t ∈ (α, β)

‖Ht
f ‖t ≤ C

{√
‖f ‖BMO2

2t
+ ‖f ‖BMO2

2t

}
. (∗∗)

Remark: The condition (∗) holds for f ∈ L∞(Cn) or f ∈ UC(Cn).

Consequence: A problem on operators is reduced to a problem on
functions. We need to decide for which symbols with (∗) we have

lim
t→0
‖f ‖BMO2

2t=0.
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Theorem E (W. -B., L. Coburn, R. Hagger)

Let f ∈ UC(Cn). Then

f̃ (t) → f uniformly on Cn as t → 0 (approximate UC by Lip)

‖f ‖BMO2
t
→ 0 as t → 0.

In particular: (by Theorem D):

limt→0 ‖Ht
f ‖t = 0.

In particular, (by the Corollary)

For all g ∈ L∞(Cn) or g ∈ UC(Cn) we have (2), i.e.

lim
t→0
‖T t

f T
t
g − T t

fg‖t = 0.

Note: The Toeplitz operators T t
f or T t

g above may be unbounded.
However, the semi-commutator

T t
f T

t
g − T t

fg

necessarily is bounded for all t > 0.
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Remarks

Theorem E also holds for bounded operator symbols in

VMO(Cn) = function of vanishing mean oscillation.

Recall: f ∈ VMO(Cn) iff for all cubes E in Cn:

lim
a→0

{ 1

|E |

∫
E
|f − fE | : |E | ≤ a

}
= 0, with fE =

1

|E |

∫
E
f .

The space VMO(Cn) contains non-continuous functions.
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Remarks

Theorem E does not hold i.g. for symbols of high
oscillation, e.g.

lim
t→0

(T t
gT

t
f − T t

gf )1 = −1

if f , g ∈ L∞(Cn) are chosen as follows:

f (z) = g(z) =

{
1 if z = 0,

e
i

|z|2 if z 6= 0

The asymptotic relation (1) is always true, i.e. without any
further conditions on f :

lim
t→0
‖T t

f ‖t = ‖f ‖∞ for all f ∈ L∞(Cn).
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Fock Quantization Algebras

There is a kind of converse of Theorem E, which I describe next:

Consider direct integrals and operators:

L2 =

∫ ⊕
R+

L2(Cn, µt)

X = ⊕t>0X
(t) where X (t) ∈ L

(
L2(Cn, µt)

)
with norm

‖X‖ = sup
t>0
‖X (t)‖ <∞.

Definition

The algebra of such operators is denoted by Op(L2). Define

I :=
{
X ∈ Op(L2) : lim

t→0
‖X (t)‖ = 0

}
,

which is a closed two-sided ideal in Op(L2).
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Fock Quantization Algebras

Similarly: H2 =
∫ ⊕
R+

H2
t and Op(H2).

Example

Let f ∈ L∞(Cn), then:

Tf = ⊕t>0T
t
f ∈ Op(H2) and Hf := ⊕t>0H

t
f ∈ Op(L2),

Lemma: The set

A =
{
f ∈ L∞(Cn) : TfTg − Tfg,TgTf − Tfg ∈ I, ∀ g ∈ L∞(Cn)

}
is a closed, conjugate-closed subalgebra of L∞(Cn) and coincides
with

A =
{
f ∈ L∞(Cn) : Hf ,Hf ∈ I

}
.
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Fock Quantization algebras

Consider a second set of bounded functions:

B :=
{
f ∈ L∞(Cn) : lim

t→0
‖f ‖BMO2

t
= 0
}
.

Then one can show that:

Theorem (W.B., L. Coburn, R. Hagger)

A = B = VMO(Cn) ∩ L∞(Cn). In particular, B is a C ∗ function
algebra.

Remarks: In the above sense VMO ∩ L∞(Cn) is the largest C ∗

symbol algebra for which the quantization estimates (2) hold.
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2. Application: Toeplitz algebras over the two ball

Let Bn ⊂ Cn denote the open unit ball. Let λ > −1 (weight).

dvλ(z) = cλ(1− |z |2)λdv(z)

= weighted (probability) measure.

Definition (weighted Bergman space)

A2
λ(Bn) := O(Bn) ∩ L2(Bn, dvλ).

Consider the orthogonal projection:

Pλ : L2(Bn, dvλ)→ A2
λ(Bn).

Definition (Toeplitz operator)

Let f ∈ L∞(Bn). The Toeplitz operator with symbol f is defined by

Tλ
f : A2

λ(Bn)→ A2
λ(Bn) : g 7→ Pλ(f · g).
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Quantization estimates on the ball

We equipp Bn with the Bergman metric distance β and consider
the corresponding function spaces

UC(Bn) and VMO(Bn).

Theorem, (W.B., R. Hagger, N. Vasilevski)

Let f ∈ UC(Bn), (or f ∈ VMO(Bn)), then

lim
λ→∞

∥∥Tλ
f T

λ
g − Tλ

fg

∥∥
λ

= 0

for all g ∈ L∞(Bn) or all g ∈ UC(Bn).

Remark: Similarly for any bounded symmetric domains.
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Toeplitz algebras over the two-ball

From now on: Put n = 2.

With weight λ > −1 we consider the standard ONB of A2
λ(B2):

Bλ :=
{ zα

‖zα‖λ
: α = (α1, α2) ∈ Z2

+

}
.

Consider a sequence of Hilbert subspaces of A2
λ(B2) defined by:

Hα2 := span
{ zα

‖zα‖λ
: α = (α1, α2), α1 ∈ Z+, α2 ∈ Z+ fixed

}
.

Decomposition

One obtains an orthogonal decomposition of the Bergman space:

A2
λ(B2) :=

⊕
α2∈Z+

Hα2 .
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Reduction of dimension

For each α2 ∈ Z+ there is a well-defined and unitary map:

uα2 : Hα2 → A2
α2+λ+1(D) : f (z1) ·

zα2
2

‖zα2
2 ‖λ+1

7→ f (z1).

Note: zα

‖zα‖λ =
z
α1
1

‖zα1‖λ+α2+1
· z

α2
2

‖zα2‖λ+1
, where α = (α1, α2) ∈ Z2

+.

Proposition

The operator U below is an isometric isomorphism:

U =
⊕
α2∈Z+

uα2 : A2
λ(B2)→

⊕
α2∈Z+

A2
α2+λ+1(D).

Question:

Which Toeplitz operators on A2
λ(B2) leave - after conjugation with

U - the space A2
α2+λ+1(D) invariant for all α2 ∈ Z+?
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Proposition

Let a ∈ L∞(D) and b ∈ L∞(0, 1) and put:

fab(z) := a(z1) · b

(
|z2|√

1− |z2|2

)
.

The Toeplitz operator Tλ
fab

on A2
λ(B2) decomposes as

UTλ
fab
U∗ =

⊕
α2∈Z+

γλb (α2)Tα2+λ+1
a ,

(a) Tα2+λ+1
a = Toeplitz operator acting on A2

α2+λ+1(D).

(b) Moreover, for all α2 ∈ Z+:

γλb (α2) =
Γ(α2 + λ+ 2)

Γ(α2 + 1)Γ(λ+ 1)

∫ 1

0
b(
√
s)sα2(1− s)λds.
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Goal: Study C ∗ algebras generated by Toeplitz operators which
leave the above decomposition of A2

λ(B2) invariant.

Construction of operator algebras:

Chose subclasses S1 ⊂ L∞(D) and S2 ⊂ L∞(0, 1) and consider the
C ∗ algebra:

T B2

λ

(
S1,S2

)
:= C ∗

{
Tλ

fab
: a ∈ S1 and b ∈ S2

}
.

Notation: Let S denote a set of bounded operators. Put:

C ∗
(
S
)

:= C ∗ algebra generated by the operators in S.

Example: Special (commutative) case

T B2

λ

(
{1}, L∞(0, 1)

) ∼= SO(Z+),

where

SO(Z+) =
{

(aj)j∈Z+ : lim
j+1
k+1
→1
|aj − ak | = 0

}
.

W. Bauer Uniform continuity and Toeplitz quantization



A non-commutative case

Consider the C ∗ algebra:

T B2

λ

(
C (D), {1}

)
= C ∗

{
Tλ

fa : a ∈ C (D)
}
.

Theorem (W. B., N. Vasilevski, 2017)

Each Tλ in T B2

λ

(
C (D), {1}

)
has a unique sum decomposition:

UTλU∗ =
⊕
α2∈Z+

(
Tα2+λ+1
a + Kα2

)
, (∗)

where a ∈ C (D) and Kα2 is compact with norm convergence:

K
(
A2
α2+λ+1(D)

)
3 Kα2 → 0 as α2 →∞.

Question: How can we recover the symbol a of Tλ in (∗)?
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The symbol map ”via Quantization”

Theorem

The map ρ : T B2

λ (C (D), {1})→ C (D):

ρ : Tλ 7→ UTλU∗ =
⊕
α2∈Z+

Tα2+λ+1

7→ lim
α2→∞

Bα2+λ+1

(
Tα2+λ+1

)︸ ︷︷ ︸
Berezin transform

∈ C
(
D
)

is a continuous and surjective ∗-homomorphism of C ∗ algebras.

Answer: The homomorphism ρ recovers the function

a = ρ(Tλ) ∈ C (D)

in the representation (∗) of Tλ:

UTλU∗ =
⊕
α2∈Z+

(
Tα2+λ+1
a + Kα2

)
. (∗)
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Fredholm property and index

Theorem

Let Tλ ∈ T B2

λ (C (D), {1}). The following are equivalent:

(1) Tλ is a Fredholm operator,

(2) ρ(Tλ) ∈ C (D) is invertible, i.e. pointwise non-vanishing.

If (1) and (2) are true then

Ind(Tλ) = 0.

The essential spectrum of Tλ is given by:

σess

(
Tλ
)

= Range ρ
(
Tλ
)
.
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Irreducible representations

Theorem (W.B., N. Vasilevski, 2017)

A complete list of irreducible representations of the C ∗ algebra

T B2

λ (C (D), {1})

is given as follows:

(i) infinite dimensional repr. (non-equivalent for different α2):

ια2 : Tλ 7→ UTλU∗ =
⊕
β2∈Z+

T β2+λ+1
a + Kβ2 7→ Tα2+λ+1

a + Kα2 .

(ii) The one-dimensional representations: Let t ∈ D, then put:

πt(Tλ) = ρ
(
Tλ
)
(t) ∈ C.

W. Bauer Uniform continuity and Toeplitz quantization



Further problems:

(a) How does the above analysis generalizes to the larger algebra

Aλ := T B2

λ (C (D), L∞(0, 1))?

Some new effects:

Representations of elements in the form⊕
α2∈Z+

(
Tλ
c(z1,α2) + Kα2

)
∈ Aλ

are not unique anymore.

Aλ contains Toeplitz operators with non-zero index.

index formulas exist (W.B., R. Hagger, N. Vasilevski).
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Further problems:

(b) What happens if we further enlarge the algebra by replacing
C (D) with a bigger function algebras Sa, e.g.

S = VO∂(D) = ”vanishing oscillation at the boundary”,

S = BUC?

Some results:

Based on the quantization results of the first part and compactness
of semi-commutators we treat the algebras

T B2

λ

(
{1},VO∂(D)

)
and even T B2

λ

(
L∞k-qr(B`),VO∂(Bn−`)

)
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Theorem

Let c(ρ, z ′′) ∈
(
SO(Zm

+)⊗VO∂(Bn−`)
)
⊗Matp(C). Then the

Toeplitz operator

Tλ �
⊕
ρ∈Zm

+

I⊗(T
λ+|ρ|+`
c +Kρ) ∈ T λ(L∞k-qr ,VO∂(Bn−`))⊗Matp(C)

is Fredholm if and only if the restriction of the matrix c(η) onto

(M∞ ×M(VO)) ∪ (Zm
+ ×M∂)

is invertible. The essential spectrum and index are given by

σess(Tλ) = Range det c |M∞×M(VO)∪Zm
+×M∂

.

Ind
(
Tλ
)

=
∑
ρ∈Zm

+

dimHρ × Ind
(
T
λ+|ρ|+`
csρ

)
.
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Figure: M.C. Escher: Circle Limit IV

Thank you for 
your attention!
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