Loop groups, coadjoint orbits, and localization formulas

Jean-Michel Bismut

Institut de Mathématique d'Orsay

Cologne, July 25th2023

QUANTIZATION IN GEOMETRY

Jean-Michel Bismut Loop groups, coadjoint orbits 1/25

- 1 Loop groups and coadjoint orbits
- 2 Remarks by Frenkel and Atiyah on the heat kernel of G
- 3 The universal proof of equivariant localization
- 4 A formal proof proof in infinite dimensions
- 5 The rigorous operator theoretic proof
- 6 What is missing?

Remarks by Frenkel and Atiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

A compact Lie group

Remarks by Frenkel and Atiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

A compact Lie group

• G compact connected Lie group, g Lie algebra, B G-invariant scalar product on g.

Remarks by Frenkel and Atiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

A compact Lie group

- G compact connected Lie group, g Lie algebra, B G-invariant scalar product on g.
- S^1 acts on LG, $\widehat{L}G = S^1 \rtimes LG$.

Remarks by Frenkel and Åtiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

A compact Lie group

- G compact connected Lie group, g Lie algebra, B G-invariant scalar product on g.
- S^1 acts on LG, $\widehat{L}G = S^1 \rtimes LG$.
- Lie algebra $\widehat{L}\mathfrak{g} = \left\{ a \frac{d}{ds} + A_s \right\}, a \in \mathbf{R}, A_{\cdot} \in L\mathfrak{g}.$

Remarks by Frenkel and Atiyah on the heat kernel of GThe universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

Remarks by Frenkel and Åtiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

The coadjoint orbits

• In the sequel, we take a = 1, $\left\{\frac{d}{ds} + A_s\right\} = \text{connections}$ on the trivial *G*-bundle over S^1 .

Remarks by Frenkel and Åtiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

- In the sequel, we take a = 1, $\left\{\frac{d}{ds} + A_s\right\}$ = connections on the trivial *G*-bundle over S^1 .
- Two connections gauge equivalent ⇔ they have conjugate holonomies.

Remarks by Frenkel and Åtiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

- In the sequel, we take a = 1, $\left\{\frac{d}{ds} + A_s\right\}$ = connections on the trivial *G*-bundle over S^1 .
- Two connections gauge equivalent ⇔ they have conjugate holonomies.
- If $g \in G$, $O_g \subset G$ adjoint orbit in G.

Remarks by Frenkel and Atiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

- In the sequel, we take a = 1, $\left\{\frac{d}{ds} + A_s\right\} = \text{connections}$ on the trivial *G*-bundle over S^1 .
- Two connections gauge equivalent ⇔ they have conjugate holonomies.
- If $g \in G$, $O_g \subset G$ adjoint orbit in G.
- Coadjoint orbit $\mathcal{O}_g \subset \widehat{L}\mathfrak{g}$ = smooth paths in G connecting 1 and O_g via parallel transport.

Remarks by Frenkel and Åtiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

- In the sequel, we take a = 1, $\left\{\frac{d}{ds} + A_s\right\} = \text{connections}$ on the trivial *G*-bundle over S^1 .
- Two connections gauge equivalent ⇔ they have conjugate holonomies.
- If $g \in G$, $O_g \subset G$ adjoint orbit in G.
- Coadjoint orbit $\mathcal{O}_g \subset \widehat{L}\mathfrak{g}$ = smooth paths in G connecting 1 and O_g via parallel transport.

•
$$\frac{d}{ds} + A \leftrightarrow \frac{dg}{ds} + Ag = 0.$$

Remarks by Frenkel and Atiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

Remarks by Frenkel and Åtiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

The symplectic structure

• \mathcal{O}_g inherits canonical symplectic structure.

Remarks by Frenkel and Åtiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

- \mathcal{O}_g inherits canonical symplectic structure.
- If $\alpha, \beta \in L\mathfrak{g}, \omega_A(D_A\alpha, D_A\beta) = \int_{S^1} \langle D_A\alpha, \beta \rangle.$

Remarks by Frenkel and Åtiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

- \mathcal{O}_g inherits canonical symplectic structure.
- If $\alpha, \beta \in L\mathfrak{g}, \omega_A(D_A\alpha, D_A\beta) = \int_{S^1} \langle D_A\alpha, \beta \rangle.$
- S^1 acts symplectically on \mathcal{O}_g and the corresponding Hamiltonian is $E(A) = \frac{1}{2} \int_{S^1} |A|^2 = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds.$

Remarks by Frenkel and Atiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

- \mathcal{O}_g inherits canonical symplectic structure.
- If $\alpha, \beta \in L\mathfrak{g}, \omega_A(D_A\alpha, D_A\beta) = \int_{S^1} \langle D_A\alpha, \beta \rangle.$
- S^1 acts symplectically on \mathcal{O}_g and the corresponding Hamiltonian is $E(A) = \frac{1}{2} \int_{S^1} |A|^2 = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds.$
- $\widetilde{L}G$ central extension of $\widehat{L}G$.

Remarks by Frenkel and Åtiyah on the heat kernel of G The universal proof of equivariant localization A formal proof proof in infinite dimensions The rigorous operator theoretic proof What is missing? References

- \mathcal{O}_g inherits canonical symplectic structure.
- If $\alpha, \beta \in L\mathfrak{g}, \omega_A(D_A\alpha, D_A\beta) = \int_{S^1} \langle D_A\alpha, \beta \rangle.$
- S^1 acts symplectically on \mathcal{O}_g and the corresponding Hamiltonian is $E(A) = \frac{1}{2} \int_{S^1} |A|^2 = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds.$
- $\widetilde{L}G$ central extension of \widehat{LG} .
- Full coadjoint orbit = $\left\{\frac{d}{ds} + A_s, E(A)\right\}$.

The heat kernel on G

• $p_t(g)$ smooth kernel for $\exp(t\Delta^G/2)$.

- $p_t(g)$ smooth kernel for $\exp(t\Delta^G/2)$.
- $p_t(g)$ Ad-invariant function.

- $p_t(g)$ smooth kernel for $\exp(t\Delta^G/2)$.
- $p_t(g)$ Ad-invariant function.
- $p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\int_{S^1} |\dot{g}|^2 ds/2t\right) \frac{\mathcal{D}_g}{t^{\infty/2}}$ path integral.

- $p_t(g)$ smooth kernel for $\exp(t\Delta^G/2)$.
- $p_t(g)$ Ad-invariant function.
- $p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\int_{S^1} |\dot{g}|^2 ds/2t\right) \frac{\mathcal{D}_g}{t^{\infty/2}}$ path integral.
- Could it be that $p_t(g)$ is a Duistermaat-Heckman, Berline-Vergne integral

$$p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E+\omega\right)/t\right).$$

The heat kernel on G

- $p_t(g)$ smooth kernel for $\exp(t\Delta^G/2)$.
- $p_t(g)$ Ad-invariant function.
- $p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\int_{S^1} |\dot{g}|^2 ds/2t\right) \frac{\mathcal{D}_g}{t^{\infty/2}}$ path integral.
- Could it be that $p_t(g)$ is a Duistermaat-Heckman, Berline-Vergne integral

$$p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E + \omega\right)/t\right).$$

• Are the corresponding localization formulas correct?

The approach by I. Frenkel via geometric quantization

• Class of representations of \widetilde{LG} with positive energy and geometric quantization of \mathcal{O}_{g} .

- Class of representations of \widetilde{LG} with positive energy and geometric quantization of \mathcal{O}_q .
- I. Frenkel proved that: $p_t(g)$ numerator of Kac character's formula for \widetilde{LG} .

- Class of representations of \widetilde{LG} with positive energy and geometric quantization of \mathcal{O}_q .
- I. Frenkel proved that: $p_t(g)$ numerator of Kac character's formula for \widetilde{LG} .
- Proof: Kac's ch. formula with coroot lattice,

- Class of representations of \widetilde{LG} with positive energy and geometric quantization of \mathcal{O}_q .
- I. Frenkel proved that: $p_t(g)$ numerator of Kac character's formula for \widetilde{LG} .
- Proof: Kac's ch. formula with coroot lattice,
- ... and Fourier analysis to pass to the root lattice and obtain $p_t(g)$ via spectral theory.

- Class of representations of \widetilde{LG} with positive energy and geometric quantization of \mathcal{O}_q .
- I. Frenkel proved that: $p_t(g)$ numerator of Kac character's formula for \widetilde{LG} .
- Proof: Kac's ch. formula with coroot lattice,
- ... and Fourier analysis to pass to the root lattice and obtain $p_t(g)$ via spectral theory.
- Application of Kirillov to Lefschetz principle gives a formal understanding of the appearance of $p_t(g)$ in the numerator.

The formula by Frenkel: the spectral side

The formula by Frenkel: the spectral side

By spectral theory,

$$\int_{G} p_t \left(g_1 g g_2^{-1} g^{-1} \right) dg$$

= $\sum_{\lambda \in \underbrace{P_{++}}_{\text{positive roots}}} \chi_\lambda \left(g_1 \right) \chi_\lambda \left(g_2^{-1} \right) \exp \left(-\frac{t}{2} \left(\left| \lambda + \rho \right|^2 - \left| \rho \right|^2 \right) \right).$

The formula by Frenkel: the geometric side

The formula by Frenkel: the geometric side

Via Poisson formula,

$$e^{-4\pi^{2}|\rho|^{2}t/2} \int_{G} p_{t} \left(ge^{t_{1}}g^{-1}e^{-t_{2}}\right) dg = \frac{\operatorname{Vol}\left(T\right)}{\left(2\pi t\right)^{m/2}} \sigma^{-1}\left(t_{1}\right) \sigma^{-1}\left(-t_{2}\right)$$
$$\sum_{(w,\gamma)\in W\times\underbrace{\overline{CR}}_{\operatorname{coroot lattice}}} \epsilon_{w} \exp\left(-\frac{|t_{2}-wt_{1}+\gamma|^{2}}{2t}\right).$$

The formula by Frenkel: the geometric side

Via Poisson formula,

$$e^{-4\pi^{2}|\rho|^{2}t/2} \int_{G} p_{t} \left(ge^{t_{1}}g^{-1}e^{-t_{2}}\right) dg = \frac{\operatorname{Vol}\left(T\right)}{\left(2\pi t\right)^{m/2}} \sigma^{-1}\left(t_{1}\right) \sigma^{-1}\left(-t_{2}\right)$$
$$\sum_{(w,\gamma)\in W\times \underbrace{\overline{CR}}_{\text{corot lattice}}} \epsilon_{w} \exp\left(-\frac{|t_{2}-wt_{1}+\gamma|^{2}}{2t}\right).$$

•This is the numerator of Kac's character formula for \widetilde{LG} .

The formula by Frenkel: the geometric side

Via Poisson formula,

$$e^{-4\pi^{2}|\rho|^{2}t/2} \int_{G} p_{t} \left(ge^{t_{1}}g^{-1}e^{-t_{2}}\right) dg = \frac{\operatorname{Vol}\left(T\right)}{\left(2\pi t\right)^{m/2}} \sigma^{-1}\left(t_{1}\right) \sigma^{-1}\left(-t_{2}\right)$$
$$\sum_{(w,\gamma)\in W\times\underbrace{\overline{CR}}_{\operatorname{coroot lattice}}} \epsilon_{w} \exp\left(-\frac{|t_{2}-wt_{1}+\gamma|^{2}}{2t}\right).$$

This is the numerator of Kac's character formula for LG.
Interpreted by Frenkel as Kirillov-Lefschetz.

The formula by Frenkel: the geometric side

Via Poisson formula,

$$e^{-4\pi^{2}|\rho|^{2}t/2} \int_{G} p_{t} \left(ge^{t_{1}}g^{-1}e^{-t_{2}}\right) dg = \frac{\operatorname{Vol}\left(T\right)}{\left(2\pi t\right)^{m/2}} \sigma^{-1}\left(t_{1}\right) \sigma^{-1}\left(-t_{2}\right)$$
$$\sum_{(w,\gamma)\in W\times\underbrace{\overline{CR}}_{\operatorname{coroot lattice}}} \epsilon_{w} \exp\left(-\frac{|t_{2}-wt_{1}+\gamma|^{2}}{2t}\right).$$

- •This is the numerator of Kac's character formula for LG.
- Interpreted by Frenkel as Kirillov-Lefschetz.
- View this identity as direct consequence of DH, BV?

9/25

The approach by Atiyah

The approach by Atiyah

• Atiyah explained the formal relation of index theory for the Dirac operator on X to equivariant cohomology of LX.

The approach by Atiyah

- Atiyah explained the formal relation of index theory for the Dirac operator on X to equivariant cohomology of LX.
- Atiyah takes for granted the formal formula

$$p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E+\omega\right)/t\right)\dots$$

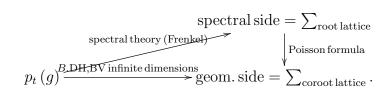
The approach by Atiyah

- Atiyah explained the formal relation of index theory for the Dirac operator on X to equivariant cohomology of LX.
- Atiyah takes for granted the formal formula

$$p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E+\omega\right)/t\right)\dots$$

• He guesses that application of Duistermaat-Heckman, Berline-Vergne to this formula gives a correct formula for $p_t(g)$!

A diagram



Proof of DH, BV

Proof of DH, BV

• X compact Riemannian manifold, K Killing vector field, $X_K = (K = 0)$.

Proof of DH, BV

• X compact Riemannian manifold, K Killing vector field, $X_K = (K = 0)$.

•
$$d_K = d + i_K, \, d_K^2 = L_K.$$

Proof of DH, BV

• X compact Riemannian manifold, K Killing vector field, $X_K = (K = 0)$.

•
$$d_K = d + i_K, \ d_K^2 = L_K.$$

Theorem (BV 83)

If μ form such that $d_K \mu = 0$, then

$$\int_{X} \mu = \int_{X_{K}} \frac{\mu}{e_{K} \left(N_{X_{K}/X} \right)}.$$

A Gaussian proof of DH, BV (B86)

• K' 1-form dual to K, $L_K K' = 0$.

- K' 1-form dual to K, $L_K K' = 0$.
- $d_K K' = |K|^2 + dK', \ d_K d_K K' = 0.$

- K' 1-form dual to K, $L_K K' = 0$.
- $d_K K' = |K|^2 + dK', \, d_K d_K K' = 0.$
- $\alpha_t = \exp\left(-d_K K'/2t\right), \, d_K \alpha_t = 0, \frac{\partial}{\partial t} \alpha_t = \frac{1}{2t^2} d_K \left[K' \alpha_t\right].$

- K' 1-form dual to K, $L_K K' = 0$.
- $d_K K' = |K|^2 + dK', \, d_K d_K K' = 0.$
- $\alpha_t = \exp\left(-d_K K'/2t\right), \, d_K \alpha_t = 0, \frac{\partial}{\partial t} \alpha_t = \frac{1}{2t^2} d_K \left[K' \alpha_t\right].$
- $\int_X \mu = \int_X \alpha_t \mu.$

•
$$K'$$
 1-form dual to K , $L_K K' = 0$.
• $d_K K' = |K|^2 + dK'$, $d_K d_K K' = 0$.
• $\alpha_t = \exp\left(-d_K K'/2t\right)$, $d_K \alpha_t = 0$, $\frac{\partial}{\partial t} \alpha_t = \frac{1}{2t^2} d_K [K'\alpha_t]$.
• $\int_X \mu = \int_X \alpha_t \mu$.

Proof :
$$\frac{\partial}{\partial t} \int_X \alpha_t \mu = \frac{1}{2t^2} \int_X d_K \left[K' \alpha_t \mu \right] = 0.$$

•
$$K'$$
 1-form dual to K , $L_K K' = 0$.
• $d_K K' = |K|^2 + dK'$, $d_K d_K K' = 0$.
• $\alpha_t = \exp\left(-d_K K'/2t\right)$, $d_K \alpha_t = 0$, $\frac{\partial}{\partial t} \alpha_t = \frac{1}{2t^2} d_K [K' \alpha_t]$.
• $\int_X \mu = \int_X \alpha_t \mu$.
• Proof : $\frac{\partial}{\partial t} \int_X \alpha_t \mu = \frac{1}{2t^2} \int_X d_K [K' \alpha_t \mu] = 0$.
• B86 As $t \to 0$, $\alpha_t \to \frac{\delta_{X_K}}{e_K \left(N_{X_K/X}, \nabla^{N_X_K/X}\right)}$ as a current.

- K' 1-form dual to K, $L_K K' = 0$. • $d_K K' = |K|^2 + dK', d_K d_K K' = 0.$ • $\alpha_t = \exp\left(-d_K K'/2t\right), d_K \alpha_t = 0, \frac{\partial}{\partial t} \alpha_t = \frac{1}{2t^2} d_K [K' \alpha_t].$ • $\int_{\mathbf{V}} \mu = \int_{\mathbf{V}} \alpha_t \mu.$ ۲ Proof : $\frac{\partial}{\partial t} \int_{\mathbf{Y}} \alpha_t \mu = \frac{1}{2t^2} \int_{\mathbf{Y}} d_K [K' \alpha_t \mu] = 0.$ • B86 As $t \to 0$, $\alpha_t \to \frac{\delta_{X_K}}{e_K(N_{X_K/X}, \nabla^{N_{X_K/X}})}$ as a current.
- 'Explains' fantastic cancellations in local index theory.

Formal proof of DH, BV on \mathcal{O}_g

Formal proof of DH, BV on \mathcal{O}_g

 $p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E + \omega\right)/t\right)\dots$

Formal proof of DH, BV on \mathcal{O}_g

 $p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E + \omega\right)/t\right)\dots$

• L_2 metric on \mathcal{O}_g : $|\delta A_s|^2 = \int_{S^1} |\delta A|^2 ds$.

Formal proof of DH, BV on \mathcal{O}_g

٩

$$p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E+\omega\right)/t\right)\dots$$

- L_2 metric on \mathcal{O}_g : $|\delta A_s|^2 = \int_{S^1} |\delta A|^2 ds$.
- S^1 acts isometrically on $\mathcal{O}_g: A_{\cdot} \to A_{\cdot+h}$.
- $K = \dot{A}, |K|^2 = \int_{S^1} |\dot{A}_s|^2 ds.$

Formal proof of DH, BV on \mathcal{O}_g

$$p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E+\omega\right)/t\right)\dots$$

- L_2 metric on \mathcal{O}_g : $|\delta A_s|^2 = \int_{S^1} |\delta A|^2 ds$.
- S^1 acts isometrically on $\mathcal{O}_g: A_{\cdot} \to A_{\cdot+h}$.
- $K = \dot{A}, |K|^2 = \int_{S^1} |\dot{A}_s|^2 ds.$
- Replace DH, BV integral for $p_t(g)$ by $p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E+\omega\right)/t\right) \exp\left(-b^4 d_K K'/2\right).$

Formal proof of DH, BV on \mathcal{O}_g

 $p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E + \omega\right)/t\right)\dots$

- L_2 metric on \mathcal{O}_g : $|\delta A_s|^2 = \int_{S^1} |\delta A|^2 ds$.
- S^1 acts isometrically on $\mathcal{O}_g: A_{\cdot} \to A_{\cdot+h}$.
- $K = \dot{A}, |K|^2 = \int_{S^1} |\dot{A}_s|^2 ds.$
- Replace DH, BV integral for $p_t(g)$ by $p_t(g) = \int_{\mathcal{O}_g} \exp\left(-\left(E+\omega\right)/t\right) \exp\left(-b^4 d_K K'/2\right).$
- As $b \to +\infty$, the integral should localize on $(K = 0) = (\dot{A} = 0) =$ geodesics in \mathcal{O}_g .

• Recall that
$$\dot{g} = dgg^{-1} = -A$$
.

• Recall that
$$\dot{g} = dgg^{-1} = -A$$
.

•
$$E = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds, |K|^2 = \int_{S^1} |\ddot{g}|^2 ds.$$

• Recall that
$$\dot{g} = dgg^{-1} = -A$$
.
• $E = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds$, $|K|^2 = \int_{S^1} |\ddot{g}|^2 ds$.
• $E + b^4 |K|^2 / 2 = \frac{1}{2} \int_{S^1} \left(|\dot{g}|^2 + \frac{b^4}{2} |\ddot{g}|^2 \right) ds \dots$

• Recall that
$$\dot{g} = dgg^{-1} = -A$$
.
• $E = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds, |K|^2 = \int_{S^1} |\ddot{g}|^2 ds$.
• $E + b^4 |K|^2 / 2 = \frac{1}{2} \int_{S^1} \left(|\dot{g}|^2 + \frac{b^4}{2} |\ddot{g}|^2 \right) ds \dots$
• $\dots = \frac{1}{2} \int_{S^1} |b^2\ddot{g} + \dot{g}|^2 ds$.

• Recall that
$$\dot{g} = dgg^{-1} = -A$$
.
• $E = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds, |K|^2 = \int_{S^1} |\ddot{g}|^2 ds$.
• $E + b^4 |K|^2 / 2 = \frac{1}{2} \int_{S^1} \left(|\dot{g}|^2 + \frac{b^4}{2} |\ddot{g}|^2 \right) ds \dots$
• $\dots = \frac{1}{2} \int_{S^1} |b^2\ddot{g} + \dot{g}|^2 ds$.
• $\dots b \to +\infty$ localizes integral on $\ddot{g} = 0$.

• Recall that
$$\dot{g} = dgg^{-1} = -A$$
.
• $E = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds, |K|^2 = \int_{S^1} |\ddot{g}|^2 ds$.
• $E + b^4 |K|^2 / 2 = \frac{1}{2} \int_{S^1} \left(|\dot{g}|^2 + \frac{b^4}{2} |\ddot{g}|^2 \right) ds \dots$
• $\dots = \frac{1}{2} \int_{S^1} |b^2\ddot{g} + \dot{g}|^2 ds$.
• $\dots b \to +\infty$ localizes integral on $\ddot{g} = 0$.
• $b^2\ddot{g} + \dot{g} = \dot{w}$ Gaussian.

The Gaussian proof in infinite dimensions

• Recall that
$$\dot{g} = dgg^{-1} = -A$$
.
• $E = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds, |K|^2 = \int_{S^1} |\ddot{g}|^2 ds$.
• $E + b^4 |K|^2 / 2 = \frac{1}{2} \int_{S^1} \left(|\dot{g}|^2 + \frac{b^4}{2} |\ddot{g}|^2 \right) ds \dots$
• $\dots = \frac{1}{2} \int_{S^1} |b^2\ddot{g} + \dot{g}|^2 ds$.
• $\dots b \to +\infty$ localizes integral on $\ddot{g} = 0$.
• $b^2\ddot{g} + \dot{g} = \dot{w}$ Gaussian.

• If this method works, we will get the required formula!

• Recall that
$$\dot{g} = dgg^{-1} = -A$$
.
• $E = \frac{1}{2} \int_{S^1} |\dot{g}|^2 ds, |K|^2 = \int_{S^1} |\ddot{g}|^2 ds$.
• $E + b^4 |K|^2 / 2 = \frac{1}{2} \int_{S^1} \left(|\dot{g}|^2 + \frac{b^4}{2} |\ddot{g}|^2 \right) ds \dots$
• $\dots = \frac{1}{2} \int_{S^1} |b^2\ddot{g} + \dot{g}|^2 ds$.
• $\dots b \to +\infty$ localizes integral on $\ddot{g} = 0$.
• $b^2\ddot{q} + \dot{q} = \dot{w}$ Gaussian.

- If this method works, we will get the required formula!
- To make it rigorous, we need to introduce counterpart as operators.

The Dirac operator of Kostant

The Dirac operator of Kostant

- B invariant scalar product on \mathfrak{g} .
- $C^{\mathfrak{g}} = -\sum e_i^* e_i$ Casimir (differential operator on G).

The Dirac operator of Kostant

- B invariant scalar product on \mathfrak{g} .
- $C^{\mathfrak{g}} = -\sum e_i^* e_i$ Casimir (differential operator on G).
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$ acts on $\Lambda^{\cdot}(\mathfrak{g}^*)$.

- B invariant scalar product on \mathfrak{g} .
- $C^{\mathfrak{g}} = -\sum e_i^* e_i$ Casimir (differential operator on G).
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$ acts on $\Lambda^{\cdot}(\mathfrak{g}^*)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).

- B invariant scalar product on \mathfrak{g} .
- $C^{\mathfrak{g}} = -\sum e_i^* e_i$ Casimir (differential operator on G).
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$ acts on $\Lambda^{\cdot}(\mathfrak{g}^*)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).
- $\widehat{D}^{\mathrm{Ko}} \in \widehat{c}(\mathfrak{g}) \otimes U(\mathfrak{g})$ Dirac operator of Kostant.

- B invariant scalar product on \mathfrak{g} .
- $C^{\mathfrak{g}} = -\sum e_i^* e_i$ Casimir (differential operator on G).
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$ acts on $\Lambda^{\cdot}(\mathfrak{g}^*)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).
- $\widehat{D}^{\mathrm{Ko}} \in \widehat{c}(\mathfrak{g}) \otimes U(\mathfrak{g})$ Dirac operator of Kostant.
- $\kappa^{\mathfrak{g}}(U, V, W) = B([U, V], W)$ closed 3-form.

- B invariant scalar product on \mathfrak{g} .
- $C^{\mathfrak{g}} = -\sum e_i^* e_i$ Casimir (differential operator on G).
- $\widehat{c}(\mathfrak{g})$ Clifford algebra of $(\mathfrak{g}, -B)$ acts on $\Lambda^{\cdot}(\mathfrak{g}^*)$.
- $U(\mathfrak{g})$ enveloping algebra (left-invariant differential operators on G).
- $\widehat{D}^{\mathrm{Ko}} \in \widehat{c}(\mathfrak{g}) \otimes U(\mathfrak{g})$ Dirac operator of Kostant.
- $\kappa^{\mathfrak{g}}\left(U,V,W\right) = B\left(\left[U,V\right],W\right)$ closed 3-form.
- $\widehat{D}^{\mathrm{Ko}} = \widehat{c}(e_i^*) e_i + \frac{1}{2}\widehat{c}(-\kappa^{\mathfrak{g}}).$

Casimir and Kostant

Casimir and Kostant

• \widehat{D}^{Ko} elliptic first order operator on G.

Casimir and Kostant

D^{Ko} elliptic first order operator on G.
 D^{Ko,2} = Δ^G − 4π² |ρ|².

Casimir and Kostant

- \widehat{D}^{Ko} elliptic first order operator on G.
- $\widehat{D}^{\text{Ko},2} = \Delta^G 4\pi^2 |\rho|^2$.
- Δ^{G} acts on $C^{\infty}(G, \mathbf{R}), \ \widehat{D}^{\mathrm{Ko}}$ on $C^{\infty}(G, \mathbf{R}) \otimes \Lambda^{\cdot}(\mathfrak{g}^{*}).$

Casimir and Kostant

• \widehat{D}^{Ko} elliptic first order operator on G.

•
$$\widehat{D}^{\mathrm{Ko},2} = \Delta^G - 4\pi^2 |\rho|^2$$
.

- Δ^{G} acts on $C^{\infty}(G, \mathbf{R}), \ \widehat{D}^{\mathrm{Ko}}$ on $C^{\infty}(G, \mathbf{R}) \otimes \Lambda^{\cdot}(\mathfrak{g}^{*}).$
- We will delete Λ[·] (g^{*}) by tensoring with S[·] (g^{*}), and use Bargmann isomorphism.

de Rham, Witten, and Bargmann

• $\mathcal{A}^{\cdot}(\mathfrak{g}^*) = S^{\cdot}(\mathfrak{g}^*) \otimes \Lambda^{\cdot}(\mathfrak{g}^*)$ polynomial forms on \mathfrak{g} .

de Rham, Witten, and Bargmann

• $\mathcal{A}^{\cdot}(\mathfrak{g}^*) = S^{\cdot}(\mathfrak{g}^*) \otimes \Lambda^{\cdot}(\mathfrak{g}^*)$ polynomial forms on \mathfrak{g} .

• $(\mathcal{A}^{\cdot}(\mathfrak{g}^*), d^{\mathfrak{g}})$ algebraic de Rham complex.

- $\mathcal{A}^{\cdot}(\mathfrak{g}^*) = S^{\cdot}(\mathfrak{g}^*) \otimes \Lambda^{\cdot}(\mathfrak{g}^*)$ polynomial forms on \mathfrak{g} .
- $(\mathcal{A}^{\cdot}(\mathfrak{g}^*), d^{\mathfrak{g}})$ algebraic de Rham complex.

•
$$d^{\mathfrak{g}^*} = i_Y, \ [d^{\mathfrak{g}}, i_Y] = L_Y = N^{\mathcal{A}^{\cdot}(\mathfrak{g}^*)}.$$

de Rham, Witten, and Bargmann

- $\mathcal{A}^{\cdot}(\mathfrak{g}^*) = S^{\cdot}(\mathfrak{g}^*) \otimes \Lambda^{\cdot}(\mathfrak{g}^*)$ polynomial forms on \mathfrak{g} .
- $(\mathcal{A}^{\cdot}(\mathfrak{g}^{*}), d^{\mathfrak{g}})$ algebraic de Rham complex.

•
$$d^{\mathfrak{g}^*} = i_Y, \ [d^{\mathfrak{g}}, i_Y] = L_Y = N^{\mathcal{A}^{\cdot}(\mathfrak{g}^*)}.$$

• Poincaré lemma and Hodge theory hold.

- $\mathcal{A}^{\cdot}(\mathfrak{g}^*) = S^{\cdot}(\mathfrak{g}^*) \otimes \Lambda^{\cdot}(\mathfrak{g}^*)$ polynomial forms on \mathfrak{g} .
- $(\mathcal{A}^{\cdot}(\mathfrak{g}^{*}), d^{\mathfrak{g}})$ algebraic de Rham complex.

•
$$d^{\mathfrak{g}^*} = i_Y, \ [d^{\mathfrak{g}}, i_Y] = L_Y = N^{\mathcal{A}^{\cdot}(\mathfrak{g}^*)}.$$

- Poincaré lemma and Hodge theory hold.
- Via Bargmann, $\overline{S}^{\cdot}(\mathfrak{g}^*) \simeq L^2(\mathfrak{g}), d^{\mathfrak{g}} + d^{\mathfrak{g}^*}$ maps to $\frac{1}{\sqrt{2}} \left(d^{\mathfrak{g}} + Y \wedge + d^{\mathfrak{g}^*} + i_Y \right) \dots$

- $\mathcal{A}^{\cdot}(\mathfrak{g}^*) = S^{\cdot}(\mathfrak{g}^*) \otimes \Lambda^{\cdot}(\mathfrak{g}^*)$ polynomial forms on \mathfrak{g} .
- $(\mathcal{A}^{\cdot}(\mathfrak{g}^{*}), d^{\mathfrak{g}})$ algebraic de Rham complex.

•
$$d^{\mathfrak{g}^*} = i_Y, \ [d^{\mathfrak{g}}, i_Y] = L_Y = N^{\mathcal{A}^{\cdot}(\mathfrak{g}^*)}.$$

- Poincaré lemma and Hodge theory hold.
- Via Bargmann, $\overline{S}^{\cdot}(\mathfrak{g}^{*}) \simeq L^{2}(\mathfrak{g}), d^{\mathfrak{g}} + d^{\mathfrak{g}^{*}}$ maps to $\frac{1}{\sqrt{2}} \left(d^{\mathfrak{g}} + Y \wedge + d^{\mathfrak{g}^{*}} + i_{Y} \right) \dots$

• ... and
$$L_Y$$
 to $H + N^{\Lambda^{\cdot}(\mathfrak{g}^*)}$.

- $\mathcal{A}^{\cdot}(\mathfrak{g}^*) = S^{\cdot}(\mathfrak{g}^*) \otimes \Lambda^{\cdot}(\mathfrak{g}^*)$ polynomial forms on \mathfrak{g} .
- $(\mathcal{A}^{\cdot}(\mathfrak{g}^{*}), d^{\mathfrak{g}})$ algebraic de Rham complex.

•
$$d^{\mathfrak{g}^*} = i_Y, \ [d^{\mathfrak{g}}, i_Y] = L_Y = N^{\mathcal{A}^{\cdot}(\mathfrak{g}^*)}.$$

- Poincaré lemma and Hodge theory hold.
- Via Bargmann, $\overline{S}^{\cdot}(\mathfrak{g}^*) \simeq L^2(\mathfrak{g}), d^{\mathfrak{g}} + d^{\mathfrak{g}^*}$ maps to $\frac{1}{\sqrt{2}} \left(d^{\mathfrak{g}} + Y \wedge + d^{\mathfrak{g}^*} + i_Y \right) \dots$
- ... and L_Y to $H + N^{\Lambda^{\cdot}(\mathfrak{g}^*)} \dots$
- with $H = \frac{1}{2} \left(-\Delta^{\mathfrak{g}} + |Y|^2 n \right)$ harmonic oscillator.

- $\mathcal{A}^{\cdot}(\mathfrak{g}^*) = S^{\cdot}(\mathfrak{g}^*) \otimes \Lambda^{\cdot}(\mathfrak{g}^*)$ polynomial forms on \mathfrak{g} .
- $(\mathcal{A}^{\cdot}(\mathfrak{g}^{*}), d^{\mathfrak{g}})$ algebraic de Rham complex.

•
$$d^{\mathfrak{g}^*} = i_Y, \ [d^{\mathfrak{g}}, i_Y] = L_Y = N^{\mathcal{A}^{\cdot}(\mathfrak{g}^*)}.$$

- Poincaré lemma and Hodge theory hold.
- Via Bargmann, $\overline{S}^{\cdot}(\mathfrak{g}^*) \simeq L^2(\mathfrak{g}), d^{\mathfrak{g}} + d^{\mathfrak{g}^*}$ maps to $\frac{1}{\sqrt{2}} \left(d^{\mathfrak{g}} + Y \wedge + d^{\mathfrak{g}^*} + i_Y \right) \dots$
- ... and L_Y to $H + N^{\Lambda^{\cdot}(\mathfrak{g}^*)} \dots$
- with $H = \frac{1}{2} \left(-\Delta^{\mathfrak{g}} + |Y|^2 n \right)$ harmonic oscillator.
- These operators act on $C^{\infty}(\mathfrak{g}) \otimes \Lambda^{\cdot}(\mathfrak{g}^{*})$.

A deformed Dirac operator

A deformed Dirac operator

• Operators will act on $C^{\infty}(G) \otimes \mathcal{A}(\mathfrak{g}^*) \simeq C^{\infty}(G \times \mathfrak{g}) \otimes \Lambda^{\cdot}(\mathfrak{g}^*).$

A deformed Dirac operator

A deformed Dirac operator

• Operators will act on $C^{\infty}(G) \otimes \mathcal{A}(\mathfrak{g}^*) \simeq C^{\infty}(G \times \mathfrak{g}) \otimes \Lambda^{\cdot}(\mathfrak{g}^*).$

•
$$\mathfrak{D}_b = \widehat{D}^{\mathrm{Ko}} + \frac{1}{\sqrt{2b}} \left(d^{\mathfrak{g}} + Y \wedge + d^{\mathfrak{g}*} + i_Y \right).$$

• As $b \to 0$, \mathfrak{D}_b deforms 0 operator acting on $C^{\infty}(G, \mathbf{R})$.

A deformed Dirac operator

• Operators will act on

$$C^{\infty}(G) \otimes \mathcal{A}(\mathfrak{g}^*) \simeq C^{\infty}(G \times \mathfrak{g}) \otimes \Lambda^{\cdot}(\mathfrak{g}^*).$$

•
$$\mathfrak{D}_b = \widehat{D}^{\mathrm{Ko}} + \frac{1}{\sqrt{2b}} \left(d^{\mathfrak{g}} + Y \wedge + d^{\mathfrak{g}*} + i_Y \right).$$

A deformed Dirac operator

Operators will act on C[∞](G) ⊗ A(g*) ≃ C[∞](G × g) ⊗ Λ[·](g*).
D_b = D^{Ko} + ¹/_{√2b}(d^g + Y ∧ +d^{g*} + i_Y).
As b → 0, D_b deforms 0 operator acting on C[∞](G, R).
L_b = ¹/₂ (-D^{Ko,2} + D²_b).
L_b = ¹/_{2b²} (-Δ^g + |Y|² - n) + ¹/_b (∇_Y + ĉ(ad(Y))).

A deformed Dirac operator

Operators will act on C[∞](G) ⊗ A(g*) ≃ C[∞](G × g) ⊗ Λ'(g*).
D_b = D^{Ko} + 1/√2b (d^g + Y ∧ +d^{g*} + i_Y).
As b → 0, D_b deforms 0 operator acting on C[∞](G, R).
L_b = 1/2 (-D^{Ko,2} + D²_b).
L_b = 1/2b² (-Δ^g + |Y|² - n) + 1/b (∇_Y + ĉ(ad(Y))).
L_b hypoelliptic Laplacian.

A deformed Dirac operator

• Operators will act on $C^{\infty}(G) \otimes \mathcal{A}(\mathfrak{a}^*) \simeq C^{\infty}(G \times \mathfrak{a}) \otimes \Lambda^{\cdot}(\mathfrak{a}^*).$ • $\mathfrak{D}_b = \widehat{D}^{\mathrm{Ko}} + \frac{1}{\sqrt{2b}} \left(d^{\mathfrak{g}} + Y \wedge + d^{\mathfrak{g}*} + i_Y \right).$ • As $b \to 0$, \mathfrak{D}_b deforms 0 operator acting on $C^{\infty}(G, \mathbf{R})$. • $\mathcal{L}_b = \frac{1}{2} \left(-\widehat{D}^{\mathrm{Ko},2} + \mathfrak{D}_b^2 \right).$ • $\mathcal{L}_b = \frac{1}{2b^2} \left(-\Delta^{\mathfrak{g}} + |Y|^2 - n \right) + \frac{1}{b} \left(\nabla_Y + \widehat{c} \left(\operatorname{ad} \left(Y \right) \right) \right).$ • \mathcal{L}_b hypoelliptic Laplacian. • As $b \to 0$, by collapsing, \mathcal{L}_b deforms $\frac{1}{2}(-\Delta^G + c)$.

The invariance of the trace under deformation

The invariance of the trace under deformation

•
$$\int_{G} p_t \left(g_1 g g_2^{-1} g^{-1} \right) dg = \operatorname{Tr} \left[L_{g_1} R_{g_2}^{-1} \exp \left(t \Delta^G / 2 \right) \right].$$

The invariance of the trace under deformation

•
$$\int_{G} p_t \left(g_1 g g_2^{-1} g^{-1} \right) dg = \operatorname{Tr} \left[L_{g_1} R_{g_2}^{-1} \exp \left(t \Delta^G / 2 \right) \right].$$

Theorem (B08)

For $t > 0, g_1, g_2 \in G$,

$$\operatorname{Tr}\left[L_{g_1}R_{g_2}^{-1}\exp\left(t\left(\Delta^G-c\right)/2\right)\right] = \operatorname{Tr}_{\mathrm{s}}\left[L_{g_1}R_{g_2}^{-1}\exp\left(-t\mathcal{L}_b\right)\right].$$

The invariance of the trace under deformation

•
$$\int_{G} p_t \left(g_1 g g_2^{-1} g^{-1} \right) dg = \operatorname{Tr} \left[L_{g_1} R_{g_2}^{-1} \exp \left(t \Delta^G / 2 \right) \right].$$

Theorem (B08)

For $t > 0, g_1, g_2 \in G$,

$$\operatorname{Tr}\left[L_{g_1}R_{g_2}^{-1}\exp\left(t\left(\Delta^G-c\right)/2\right)\right] = \operatorname{Tr}_{\mathrm{s}}\left[L_{g_1}R_{g_2}^{-1}\exp\left(-t\mathcal{L}_b\right)\right].$$

Independence of b like in index theorem, and convergence as $b \to 0.$

The invariance of the trace under deformation

•
$$\int_{G} p_t \left(g_1 g g_2^{-1} g^{-1} \right) dg = \operatorname{Tr} \left[L_{g_1} R_{g_2}^{-1} \exp \left(t \Delta^G / 2 \right) \right].$$

Theorem (B08)

For $t > 0, g_1, g_2 \in G$,

$$\operatorname{Tr}\left[L_{g_1}R_{g_2}^{-1}\exp\left(t\left(\Delta^G-c\right)/2\right)\right] = \operatorname{Tr}_{\mathrm{s}}\left[L_{g_1}R_{g_2}^{-1}\exp\left(-t\mathcal{L}_b\right)\right].$$

Independence of b like in index theorem, and convergence as $b \to 0$.

Remark

Hamiltonian counterpart to Lagrangian deformation for DH, BV formulas.

The limit as $b \to +\infty$

The limit as $b \to +\infty$

• $\mathcal{L}_b \simeq \frac{1}{2} \left(-\frac{\Delta^{\mathfrak{g}}}{b^4} + |Y|^2 - \frac{n}{b^2} \right) + \nabla_Y + \widehat{c} \left(\operatorname{ad} \left(Y \right) \right).$

The limit as $b \to +\infty$

•
$$\mathcal{L}_b \simeq \frac{1}{2} \left(-\frac{\Delta^{\mathfrak{g}}}{b^4} + |Y|^2 - \frac{n}{b^2} \right) + \nabla_Y + \widehat{c} \left(\operatorname{ad} \left(Y \right) \right).$$

• As $b \to +\infty$, geodesic flow dominates.

The limit as $b \to +\infty$

- $\mathcal{L}_b \simeq \frac{1}{2} \left(-\frac{\Delta^{\mathfrak{g}}}{b^4} + |Y|^2 \frac{n}{b^2} \right) + \nabla_Y + \widehat{c} \left(\operatorname{ad} \left(Y \right) \right).$
- As $b \to +\infty$, geodesic flow dominates.
- Forces localization of trace on geodesics.

The limit as $b \to +\infty$

- $\mathcal{L}_b \simeq \frac{1}{2} \left(-\frac{\Delta^{\mathfrak{g}}}{b^4} + |Y|^2 \frac{n}{b^2} \right) + \nabla_Y + \widehat{c} \left(\operatorname{ad} \left(Y \right) \right).$
- As $b \to +\infty$, geodesic flow dominates.
- Forces localization of trace on geodesics.
- We get the required formulas for the above trace in terms of the coroot lattice.

Applications

Applications

• If G is instead a reductive group, we get geometric formulas for semi-simple orbital integrals...

Applications

- If G is instead a reductive group, we get geometric formulas for semi-simple orbital integrals...
- ... by following a similar strategy.

Applications

- If G is instead a reductive group, we get geometric formulas for semi-simple orbital integrals...
- ... by following a similar strategy.
- The geometric and analytic difficulties are bigger!

The Dirac operator on \widetilde{LG}

• Like in index theory, we have been able to deal with DH,BV infinite dimensional analogues.

- Like in index theory, we have been able to deal with DH,BV infinite dimensional analogues.
- What is needed now is infinite dimensional index theory!

- Like in index theory, we have been able to deal with DH,BV infinite dimensional analogues.
- What is needed now is infinite dimensional index theory!
- More precisely, we would need a good Dirac operator on \mathcal{O}_g ...

- Like in index theory, we have been able to deal with DH,BV infinite dimensional analogues.
- What is needed now is infinite dimensional index theory!
- More precisely, we would need a good Dirac operator on \mathcal{O}_g ...
- ... to obtain an index theoretic construction of the representations of \widetilde{LG} .

- Like in index theory, we have been able to deal with DH,BV infinite dimensional analogues.
- What is needed now is infinite dimensional index theory!
- More precisely, we would need a good Dirac operator on \mathcal{O}_g ...
- ... to obtain an index theoretic construction of the representations of \widetilde{LG} .
- Connections with Verlinde formulas...

- I. B. Frenkel, Orbital theory for affine Lie algebras, Invent. Math. 77 (1984), no. 2, 301–352. MR MR752823 (86d:17014)
- M. F. Atiyah, Circular symmetry and stationary-phase approximation, Astérisque (1985), no. 131, 43–59, Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983). MR 87h:58206
- J.-M. Bismut, The hypoelliptic Laplacian on a compact Lie group, J. Funct. Anal. 255 (2008), no. 9, 2190–2232. MR MR2473254

> Hypoelliptic Laplacian and orbital integrals, Annals of Mathematics Studies, vol. 177, Princeton University Press, Princeton, NJ, 2011. MR 2828080