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Heisenberg Uncertainty Principle

• ψ = ψ
|ψ| ∈ Hilbert space H pure quantum state

• O ∈ {hermitian operators on H} quantum observable
• 〈O〉 := 〈ψ|O|ψ〉 expectation value
• 4O :=

√
〈O2〉 − 〈O〉2 standard deviation (uncertainty)

H = L2(Rn) suitable function space ⇒ 4O14O2 ≥ 1
2〈[O1,O2]〉

When O1 = q̂1, O2 = p̂1 = h̄
i
∂
∂q1

(O1 and O2 are conjugated)

Heisenberg Uncertainty Principle:

4q̂14p̂1 ≥
h̄
2
← independent of ψ

deduced from noncommutativity relation [q̂1, p̂1] = i h̄.
Noncommutativity=Obstruction for simultaneous measurement.
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Conservation Law

Noether Theorem: for conjugated physical quantities O1,O2, if the
physical law does not depend on O1, then the quantity O2 is conserved
under system evolution.
• Translation-Symmetry ⇒ Conservation of Linear Momentum
• Rotation-Symmetry ⇒ Conservation of Angular Momentum
• Phase-Symmetry ⇒ Conservation of Charge
• Time-Symmetry ⇒ Conservation of Total Energy

Heisenberg Uncertainty Principle is a statistical variant of Noether
Conservation Law. So it is natural to ask

What is Energy-Time Uncertainty ?
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Mysterious Energy-Time Uncertainty

When it comes to Energy-Time Uncertainty, the notion of simultaneous
measurement becomes troublesome because:

1 Time is not a quantum observable
2 All observables can be measured with arbitrary accuracy in arbitrary

short time
In the famous Bohr-Einstein Debates, Einstein demonstrated that fixed
small 4t, we could measure E precisely using E = mc2. But Bohr argued
that the physical measurement of the mass m relies on a mechanical
design against the gravity of Earth. Therefore, by General Relativity, such
displacement in the gravitational field yields an intrinsic uncertainty of
time duration it experiences. (Still problematic, of course)
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Quantum Speed Limit (Mandelstam-Tamm 1945)

The mysterious Energy-Time Uncertainty is not about simultaneous
measurement nor Relativity, but rather speed of quantum evolution!

Let H be the quantum Hamiltonian operator that governs the quantum
evolution of the state ψ(t). Consider the orthogonal time τorth at which
the evolution driven by H dislocates the initial state, that is ψ(τ) ⊥ ψ(0).
They showed that

τorth ≥
πh̄
2

1

4H := τQSL.← independent of ψ
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QSL = Minimal Orthogonal Time
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Quantum Speed Limit (Margolus-Levitin 1998)

4H may diverge. They showed that for 〈H〉 > 0 with zero ground energy,

τorth ≥
πh̄
2

max{ 1

4H ,
1

〈H〉} := τQSL.← independent of ψ

1 Without referring to noncommutativity relation
2 τQSL sets an universal bound of minimal time for the system to

evolves from one state to an orthogonal state with given energy
3 Being orthogonal = being distinguishable
4 τQSL sets an intrinsic scale for quantum computational capability
5 Both MT and ML limits have been tested for single atom in an

optical trap (Sci. Adv., 2021)
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Quantum-Classical Mechanics (after 2018)

The formation

τorth ≥ τQSL :=
πh̄
2

max{ 1

4H ,
1

〈H〉}

leads to limh̄→0 τQSL = 0. But it does not mean τorth vanishes as h̄→ 0 !
Two surprising papers on Phys.Rev.Lett.:

1 QSL Is Not Quantum (Okuyama-Ohzeki)
2 QSL Across Quantum-Classical Transition

(Shanahan-Chenu-Margolus-del Campo)
As many-particle effects they obtained nontrivial Speed Limits for
Liouville equations and Wigner representations respectively. Both speed
limits can be derived from dynamical properties of Hilbert space under
unitary evolution.
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Displacement Problem in Symplectic Topology

Given A,B ⊂ (M, ω). We say A is displaceable from B if
∃f = (fs)|s=1 ∈ Ham(M) such that

f (A) ∩ B = ∅.

For example M = S2, A = B = S1

1 if A is a big circle then A is not displaceable from itself
2 if A is a small circle then A is displaceable from itself

Sheng-Fu Chiu Categorified E-T Uncertainty 2023 Cologne Quantization 10 / 30



Displacement Energy

More quantitatively, the Hofer displacement energy is defined by

e(A,B) := inf{‖F‖ : F ⇝ f , f (A) ∩ B = ∅},

where the norm of Hamiltonian function F : M × I → R is defined by

‖F‖ :=
∫ 1

0
(max

M
Fs −min

M
Fs)ds

which is L1 in time and L∞ in phase space.

When A is not displaceable from B we denote by e(A,B) =∞.
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Quantitative Displacement in Symplectic Topology

Some facts for closed submanifolds A,B ⊂ M:
1 if dim A + dim B < dim M then e(A,B) = 0

2 if dim(A) = 1
2 dim M but A is not Lagrangian and there is no

topological obstruction, then e(A,A) = 0

3 if A,B are Lagrangians and HF •(A,B) 6= 0, then e(A,B) =∞

On the other hand, if B ⊂ M has non-empty interior then

e(B,B) > 0.
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QSL and Self-displacement (Charles-Polterovich 2018)

Charles and Polterovich discover (Ann. Henri Poincaré) a link between
QSL and self-displacement energy e(B,B) where they represent
• B by the support supp(θ) of a pre-quantized state θ
• Hamiltonian diffeomorphism f by a pre-quantized unitary evolution
• Displacement of B by orthogonality (dislocation) of quantum

states,
and ask for the least energy for any flow to displace B = supp(θ) in a
unit of time.
Dually, QSL asks for the minimal orthogonal time (in terms of
Hamiltonian) universal for any initial quantum state.
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Coherent Berezin–Toeplitz Quantization

(M, ω) quantizable closed Kähler manifold. For 1/h̄ ∈ N, there exists
Hilbert space Hh̄ and quantization maps Qh̄ : Prob(M)→ S(Hh̄),
Th̄ : C∞(M)→ L(Hh̄).

Table Classical
Dynamics

Quantum
Dynamics

State supp(θ) = B ⊂ M Qh̄(θ) ∈ S(Hh̄)

Evolution
Hamiltonian

diffeomorphism
F ⇝ f : M → M

Unitary operator
Th̄(F )⇝ Uh̄(F ) : Hh̄ → Hh̄

Energy
∫ 1
0 ‖fs‖ds

∫ 1
0 ‖Th̄,s(F )‖opds.

Charles and Polterovich establish connections between the followings:
1. f displaces supp(θ).
2. Th̄(F ) h̄-asymptotically dislocates Qh̄(θ).
3. Quantum energy

∫ 1
0 ‖Th̄,s(F )‖opds ≥ e(B,B) h̄-asymptotically.
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Quantitative Displacement of Mixed Type

When A is Lagrangian and B is open,

Question
Given A ∩ B 6= ∅. What can we say about e(A,B)?

Oh (2018) proves the strictly positivity of e(A,B) for more general (M, ω)
using techniques of pseudo-holomorphic disks. Here we would like to focus
on the case of cotangent bundles, using a QSL-like argument to
characterize the energy e(A,B) where we represent
• Lagrangian A by a quantum-like state
• Open B by a collection of quantum-like states
• Hamiltonian diffeomorphism f by a unitary-like system evolution
• Displacement by orthogonality of states.

We ask for the least energy to dislocate a given state from a given
collection of states in a unit of time.
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What we actually do

(Cartoon provided by Andy Singer)
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Modeling with Derived Categories

Fix a ground ring k.
D(Q) = derived category of sheaves of k-modules over manifold Q.
Work in a slightly refined dg-triangulated category D (described later).

1 D is our derived space of states
2 Rhom : Dop ×D → D(k-mod) is our derived inner product which

measures mutual overlapping of states
3 Instead of orthogonality we have left/right semiorthogonality
4 A natural distance d on D
5 Any f ∈ Ham(T ∗Q) induces an autoequivalence S(f ) : D → D.
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Microsupport à la Kashiwara-Schapira
Quantum
Dynamics

Classical
Dynamics

Sheaf
Theory

State ψ ∈ H Lagrangian L ⊂ T ∗Q G ∈ D(Q ×R)

Subsystem Subspace V ⊂ H Open set B ⊂ T ∗Q Subcategory
DB(Q ×R) ⊂ D(Q ×R)

Evolution Unitary operator
U : H → H

Hamiltonian
diffeomorphism

f : T ∗Q → T ∗Q

Convolution functor
•S : D(Q ×R)→ D(Q ×R)

Fidelity L2-inner product Set-theoretic
intersection Derived homomorphisms Rhom

A bridge between algebra and geometry SS : {sheaves} → {sets}.
For G ∈ D(Q), define its microsupport SS(G) ⊂ T ∗Q by the closure of those (q0, p0) such
that ∃ϕ : Q C1

−→ R and dϕ(q0) = p0 satisfying

(RΓ{q∈Q|ϕ(q)≥ϕ(q0)}G)q0 ≇ 0.

SS(G) is the closed conic subset consists of singular codirections, i.e., codirections along
which the derived sections of G cease to propagate. SS(G) is cone-coisotropic in general.
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Subcategory as collection of states

For geometric reason instead of D(Q) we choose to work in a more
"faithful" category D(Q ×R). Let

ρ : T ∗(Q × R) = {(q, p, z , ζ)} → {(q, p
ζ
)} = T ∗Q

and
Dζ≤0 = {G ∈ D(Q × R)|SS(G) ⊂ {ζ ≤ 0}}.

Definition (Tamarkin Category)
• D := Dζ≤0(Q × R)left⊥ w.r.t. Rhom in D(Q × R)

• DA := {G ∈ D|SS(G) ⊂ ρ−1(A)}, ∀A
cls
⊂ T ∗Q

• DB := DT∗Q\B
left⊥ w.r.t Rhom in D, ∀B

open
⊂ T ∗Q.
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Interleaving Distance on D

Let Ta : z 7→ z + a acting on D(Q × R). A remarkable feature of D is we
have for a ≥ 0, a natural transformation between endofunctors

τa : Id ⇒ Ta.

Let F ,G ∈ D(Q ×R) and a, b ≥ 0. We say the pair (F ,G) is

(a, b)-interleaved if there exists morphisms F
α
⇒
δ

TaG and G
β

⇒
γ

TbF

satisfying [F α−→ TaG
Taβ−−→ Ta+bF ] = τa+b(F),

[G γ−→ TbF
Tbδ−−→ Ta+bG] = τa+b(G).

The interleaving distance is defined by

d(F ,G) := inf{a + b | (F ,G) is (a, b)-interleaved}.

Sheng-Fu Chiu Categorified E-T Uncertainty 2023 Cologne Quantization 21 / 30



Glossary

Quantum
Dynamics

Classical
Dynamics

Sheaf
Theory

State ψ ∈ H Lagrangian L ⊂ T ∗Q G ∈ D(Q ×R)

Subsystem Subspace V ⊂ H Open set B ⊂ T ∗Q Subcategory
DB(Q ×R) ⊂ D(Q ×R)

Evolution Unitary operator
U : H → H

Hamiltonian
diffeomorphism

f : T ∗Q → T ∗Q

Convolution functor
•S : D(Q ×R)→ D(Q ×R)

Fidelity L2-inner product Set-theoretic
intersection

Derived homomorphisms
Rhom

Displacement
from given
subsystem

U(ψ) ∈ V⊥ f (A) ∩ B = ∅ F • S ∈ DB
left⊥

Energy of
given

evolution

Operator norm∫ 1
0 ‖Us‖opds

Hofer norm∫ 1
0 ‖fs‖Hoferds

Interleaving distance
(−) 7→ d((−) • S,−)
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Microlocal Projector

The advantage of modelling in microlocal sheaf theory is the following
existence theorem of microlocal projector:

Theorem (C.)
Let B be a bounded open subset of T ∗Q, then in D(Q × Q × R) there
exists an exact triangle (PB → K∆ → QB

+1−−→) such that the convolution
with the above triangle gives rise to the semiorthogonal decomposition
with respect to the triple of subset categories
(DB(Q × R),D(Q × R),DT∗Q\B(Q × R)).
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Fantastic Beasts and Where to Find Them

PB admits a right-adjoint functor EB:

Rhom(F • PB,G) ∼= Rhom(F , EB(G)).

∪D•PB

~~

EB

!!
DT∗Q\B

left⊥ DB DT∗Q\B
right⊥

The functor EB is Lipshitz with respect to the interleaving distance:

d(EB(F), EB(G)) ≤ d(F ,G).
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Categorical Energy

Definition (Categorical Energy relative to B)
For G ∈ D(Q ×R) we define eB(G) := d(0, EB(G)).

For suitable choice of G ∈ DA a nontrivial lower bound estimate of eB(G)
is available.

In T ∗Rn, let B = B(r) = {q2 + p2 < r2} be a standand open ball and let
G = kRn×R≥0

∈ D(Rn ×R) be the sheaf quantization of the zero section
Rn × {p = 0}. Our knowledge of PB and EB enables us to compute:

Proposition (Capacity-like Property)
For such G and B, eB(G) ≥ 1

2πr2.
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Energy Comparison

Recall the definition of Hofer displacement energy

e(A,B) := inf
F⇝f
{
∫ 1

0
(max

M
Fs −min

M
Fs)ds : f (A) ∩ B = ∅}.

Theorem (Comparison with Hofer Energy)
Given A closed and B open. Then for any G ∈ DA(Q ×R) one has

e(A,B) ≥ eB(G).
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Energy Comparison sketch of proof

Theorem (Comparison with Hofer Energy)
Given A closed and B open. Then for any G ∈ DA(Q ×R) one has

e(A,B) ≥ eB(G).

Suppose f (A) ∩ B = ∅ for some F ⇝ f ∈ Ham(T ∗Q).
By Df (A) = DA • S(f ) one has EB(G • S(f )) = 0.
Therefore

eB(G) = d(0, EB(G)) = d(EB(G • S(f )), EB(G)) ≤ d(G • S(f ),G) ≤ ‖F‖.

The last inequality is Asano-Ike’s inequality (J. Symplectic Geom., 2020).
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Quantitative Displacement of Mixed Type

Theorem (Relative Energy-Capacity Inequality)
Given A smooth manifold and B = ȷ(B(r)) symplectically embedded ball
of T ∗A relative to A (that is ȷ−1(A) = Rn ∩ B(r)). Then e(A,B) ≥ 1

2πr2.

We expect future applications of eB to the study of Viterbo’s γ-distance
and Guillermou-Viterbo’s γ-coisotropic sets.
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Quantum Footprints à la Polterovich

Some examples of Quantum Footprints in symplectic geometry and
topology:

1 Uncertainty Principle ⇝ Nonsqueezing of Symplectic Balls
2 Quantized Phase-Energy Levels ⇝ Nonsqueezing of Contact Balls
3 Quantum Unsharpness ⇝ Rigidity of Partition of Unity
4 Quantum Speed Limit ⇝ Symplectic Displacement Energy
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Thank You !
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