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Heisenberg Uncertainty Principle

® )= le € Hilbert space H
® O € {hermitian operators on #}

* (0) := (¥[O]y)

e NO:=,/(0?) — (0)?
H = L%(R") suitable function space = AO;AOy > £([01, Os])
When O = G1, Os = p1 = ?aiql (01 and Oy are conjugated)

Heisenberg Uncertainty Principle:
. _h
AqiApy > 5

deduced from noncommutativity relation [qy, p1] = ih.
Noncommutativity=0bstruction for simultaneous measurement.
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Conservation Law

Noether Theorem: for conjugated physical quantities O, Os, if the
physical law does not depend on Oy, then the quantity Os is conserved
under system evolution.

® Translation-Symmetry = Conservation of Linear Momentum
® Rotation-Symmetry = Conservation of Angular Momentum

Phase-Symmetry = Conservation of Charge

® Time-Symmetry = Conservation of Total Energy

Heisenberg Uncertainty Principle is a statistical variant of Noether
Conservation Law. So it is natural to ask

What is Energy-Time Uncertainty ?
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Mysterious Energy-Time Uncertainty

When it comes to Energy-Time Uncertainty, the notion of simultaneous
measurement becomes troublesome because:

@ Time is not a quantum observable

® All observables can be measured with arbitrary accuracy in arbitrary
short time

In the famous Bohr-Einstein Debates, Einstein demonstrated that fixed
small At, we could measure E precisely using E = mc?. But Bohr argued
that the physical measurement of the mass m relies on a mechanical
design against the gravity of Earth. Therefore, by General Relativity, such
displacement in the gravitational field yields an intrinsic uncertainty of
time duration it experiences.
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Quantum Speed Limit (Mandelstam-Tamm 1945)

The mysterious Energy-Time Uncertainty is not about simultaneous
measurement nor Relativity, but rather speed of quantum evolution!

Let H be the quantum Hamiltonian operator that governs the quantum
evolution of the state ¢(t). Consider the orthogonal time 7., at which
the evolution driven by H dislocates the initial state, that is ¢(7) L 9(0).
They showed that

Jmh1
Torth = 9 AH ‘= TQSL-
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QSL = Minimal Orthogonal Time

Sheng-Fu Chiu Categorified E-T Uncertainty



Quantum Speed Limit (Margolus-Levitin 1998)

AH may diverge. They showed that for (H) > 0 with zero ground energy,

mh 1 1
Torth 2 ?max{m, m} = TQSL.

@ Without referring to noncommutativity relation

® 7Qs. sets an universal bound of minimal time for the system to
evolves from one state to an orthogonal state with given energy

© Being orthogonal = being distinguishable

O 7(Qs. sets an intrinsic scale for quantum computational capability

® Both MT and ML limits have been tested for single atom in an
optical trap (Sci. Adv., 2021)
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Quantum-Classical Mechanics (after 2018)

The formation

7h 1 1
Torth = TQSL := maX{AH (H >}

leads to limp_,o TQs, = 0. But it does not mean 7o, vanishes as h — 0 !
Two surprising papers on Phys.Rev.Lett.:

® QSL Is Not Quantum (Okuyama-Ohzeki)
® QSL Across Quantum-Classical Transition
(Shanahan-Chenu-Margolus-del Campo)

As many-particle effects they obtained nontrivial Speed Limits for
Liouville equations and Wigner representations respectively. Both speed
limits can be derived from dynamical properties of Hilbert space under
unitary evolution.
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Displacement Problem in Symplectic Topology

Given A, B C (M,w). We say A is displaceable from B if
If = (f5)|s=1 € Ham(M) such that

f(A)Nn B = 0.

For example M = S?, A= B = S!
@ if Ais a big circle then A is not displaceable from itself
® if Ais a small circle then A is displaceable from itself
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Displacement Energy

More quantitatively, the Hofer displacement energy is defined by
e(A, B) :=inf{||F| : F~ f,f(A)N B =10},

where the norm of Hamiltonian function F : M x | — R is defined by
1
IF] ::/0 (mﬂ%x Fs fml\}n Fs)ds
which is L' in time and L in phase space.

When A is not displaceable from B we denote by e(A, B) = occ.
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Quantitative Displacement in Symplectic Topology

Some facts for closed submanifolds A, B C M:
@ if dim A+ dim B < dim M then e(A,B) =0
® if dim(A) = 3 dim M but A is not Lagrangian and there is no
topological obstruction, then e(A, A) =0

© if A, B are Lagrangians and HF*(A, B) # 0, then e(A, B) = o

On the other hand, if B C M has non-empty interior then

e(B,B) > 0.
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QSL and Self-displacement (Charles-Polterovich 2018)

Charles and Polterovich discover (Ann. Henri Poincaré) a link between
QSL and self-displacement energy e(B, B) where they represent
® B by the support supp(#) of a pre-quantized state 6
® Hamiltonian diffeomorphism f by a pre-quantized unitary evolution
¢ Displacement of B by orthogonality (dislocation) of quantum
states,

and ask for the least energy for any flow to displace B = supp(f) in a
unit of time.

Dually, QSL asks for the minimal orthogonal time (in terms of
Hamiltonian) universal for any initial quantum state.
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Coherent Berezin—Toeplitz Quantization

(M,w) quantizable closed Kéhler manifold. For 1/h € N, there exists
Hilbert space Hp and quantization maps Qp : Prob(M) — S(Hs),
T : C°(M) — L(Hp).

Classical Quantum
Table . .
Dynamics Dynamics
State | supp()=BC M Qn(0) € S(Hr)
Hamiltonian Unitary operator
Evolution diffeomorphism _
Foasf:M— M TH(F) ~ Us(F) : Hp — Hp
Energy Jo If:llds Jo IThs(F)llopds.

Charles and Polterovich establish connections between the followings:
1. f displaces supp(6).

2. Tx(F) h-asymptotically dislocates Qx(6).

3. Quantum energy fol | Tr,s(F)||opds > e(B, B) h-asymptotically.
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Quantitative Displacement of Mixed Type

When A is Lagrangian and B is open,

Question
Given AN B # (). What can we say about e(A, B)? J

Oh (2018) proves the strictly positivity of e(A, B) for more general (M, w)
using techniques of pseudo-holomorphic disks. Here we would like to focus
on the case of cotangent bundles, using a QSL-like argument to
characterize the energy e(A, B) where we represent

® | agrangian A by a quantum-like state

Open B by a collection of quantum-like states

Hamiltonian diffeomorphism f by a unitary-like system evolution
¢ Displacement by orthogonality of states.

We ask for the least energy to dislocate a given state from a given
collection of states in a unit of time.
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What we actually do
PLATO'S MAN CAVE

Symplectic
Contactl

’_’i..-;mrw-
11

(Cartoon provided by Andy Singer)
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Modeling with Derived Categories

Fix a ground ring k.
D(Q) = derived category of sheaves of k-modules over manifold Q.
Work in a slightly refined dg-triangulated category D (described later).

@ D is our derived space of states

® Rhom : D x D — D(k-mod) is our derived inner product which
measures mutual overlapping of states

© Instead of orthogonality we have left/right semiorthogonality
® A natural distance d on D

@ Any f € Ham(T*Q) induces an autoequivalence S(f) : D — D.
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Microsupport a la Kashiwara-Schapira

Quantum Classical Sheaf
Dynamics Dynamics Theory
State YEH Lagrangian L C T*Q GeD(QxR)
Subcategory

Subsystem | Subspace V C H | Openset BC T*Q Ds(Q x R)  D(Q x R)
B

. Hamiltonian .
Evolution Unitary operator diffeomorphism Convolution functor
viroH F:7Qo T | * PR =2 DQXR)

Set-theoretic

Fidelity L%-inner product . .
intersection

Derived homomorphisms Rhom

A bridge between algebra and geometry SS : {sheaves} — {sets}.
For G € D(Q), define its microsupport 55(G) C T*Q by the closure of those (qo, po) such

that 3¢ : Q < R and do(qo) = po satisfying

(RT (4eQlé(a)>(a0)} G ) a0 Z O-

S5(G) is the closed conic subset consists of singular codirections, i.e., codirections along
which the derived sections of G cease to propagate. SS(G) is cone-coisotropic in general.
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Subcategory as collection of states

For geometric reason instead of D(Q) we choose to work in a more
"faithful" category D(Q x R). Let

p: T*(QxR) = {(q.p.2,()} - {(q,§>} = T*Q

and

D<o = {G € D(Q x B)|SS(G) € {¢ < 0}}.

Definition (Tamarkin Category)
® D:= Dr<o(Q x R)"*™ w.r.t. Rhom in D(Q x R)

e Da:={G € DISSG) C p~Y(A)}, VAT T*Q

left L : OPEN
®* Dg:=Dr-q\B w.r.t Rhomin D, VB C T*Q.
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Interleaving Distance on D

Let T,:z+ z+ a acting on D(Q x R). A remarkable feature of D is we
have for a > 0, a natural transformation between endofunctors

Ty ld = T,

Let 7,G € D(Q x R) and a, b > 0. We say the pair (F,G) is

(a, b)-interleaved if there exists morphisms F % T,G and G g Ty F
satisfying ’ k

F 2 1.6 L5 T, F) = rapn(F),

6 5 ToF 2% To16G) = 7216(G).

The interleaving distance is defined by

d(F,G) :=inf{a+ b|(F,G) is (a, b)-interleaved}.
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Glossary

Quantum Classical Sheaf
Dynamics Dynamics Theory
State v eEH Lagrangian L C T*Q GeD(QxR)
” Subcategory
Subsystem Subspace V C H | Openset BC T*Q Dg(Q x R) € D(Q x R)
. Hamiltonian )
Evolution Unitary operator diffeomorphism Convolution functor
U:H—-H F:T°Q 5 T*Q eS:D(QxR)—D(QxR)
Fidelity [2-inner product Set-theoretic Derived homomorphisms

intersection

Rhom

Displacement

from given U(y) e v+ F(ANB=0 FeS e Dgleftt
subsystem
En:i;ge):‘ of Operator norm Hofer norm Interleaving distance
evolution fOl ”USHOPds fol (| fs IHoferds (=)= d((—)eS,—)
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Microlocal Projector

The advantage of modelling in microlocal sheaf theory is the following
existence theorem of microlocal projector:

Theorem (C.)

Let B be a bounded open subset of T*Q, then in D(Q x Q x R) there

exists an exact triangle (Pg — Ka — QOp AN ) such that the convolution
with the above triangle gives rise to the semiorthogonal decomposition
with respect to the triple of subset categories

(De(@ x R),D(Q x R), D1\ 5(Q X R)).
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Fantastic Beasts and Where to Find Them

Pg admits a right-adjoint functor £g:

Rhom(F e Pg,G) = Rhom(F,Es(G)).

D
oPp &g
/ U \

left L ight L
ol —— D —=——="Dr1.q 5"

The functor £g is Lipshitz with respect to the interleaving distance:

d(€s(F),E8(9)) < d(F,9).
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Categorical Energy

Definition (Categorical Energy relative to B)
For G € D(Q x R) we define eg(G) := d(0,E5(G)). J

For suitable choice of G € Dy a nontrivial lower bound estimate of eg(G)
is available.

In T*R", let B = B(r) = {q* + p? < r?} be a standand open ball and let
G = kroxRs, € D(R" x R) be the sheaf quantization of the zero section
R" x {p = 0}. Our knowledge of Pg and £g enables us to compute:
Proposition (Capacity-like Property)

For such G and B, eg(G) > %wrz. J
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Energy Comparison

t'(lx)\“ﬁ ,
LY
[~ )

Recall the definition of Hofer displacement energy

e(A, B) :Enff{/ maxF mmF)d f(A)n B = 0}.

Theorem (Comparison with Hofer Energy)
Given A closed and B open. Then for any G € Da(Q x R) one has

e(A, B) > eg(G).
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Energy Comparison sketch of proof

Theorem (Comparison with Hofer Energy)
Given A closed and B open. Then for any G € Da(Q x R) one has

e(A, B) > eg(G).

Suppose f(A) N B = for some F ~~ f € Ham(T*Q).
By Df(a) = Da o S(f) one has Eg(G @ S(f)) = 0.
Therefore

eg(G) = d(0,€8(9)) = d(€s(G 0 S(f)),€8(9)) < d(G e S(f),G) < [IF||.

The last inequality is Asano-lke's inequality (J. Symplectic Geom., 2020).
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Quantitative Displacement of Mixed Type

Theorem (Relative Energy-Capacity Inequality)

Given A smooth manifold and B = j(B(r)) symplectically embedded ball
of T*A relative to A (that is 5 1(A) = R"N B(r)). Then ¢(A. B) > %wrQ.

We expect future applications of eg to the study of Viterbo's «-distance
and Guillermou-Viterbo's ~-coisotropic sets.
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Quantum Footprints a la Polterovich

Some examples of Quantum Footprints in symplectic geometry and
topology:
@ Uncertainty Principle ~» Nonsqueezing of Symplectic Balls
® Quantized Phase-Energy Levels ~~ Nonsqueezing of Contact Balls
©® Quantum Unsharpness ~ Rigidity of Partition of Unity
O Quantum Speed Limit ~~ Symplectic Displacement Energy
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Thank You !

Sheng-Fu Chiu Categorified E-T Uncertainty 2023 Cologne Quantization 30/30



