Submultiplicative norms on section rings

Siarhei Finski École Polytechnique, CNRS, France

27 July 2023

Quantization in Geometry Cologne, Germany X complex projective manifold, dim X = n; L ample line bundle

section ring $R(X, L) = \bigoplus_{k=0}^{\infty} H^0(X, L^k)$ has graded ring structure

X complex projective manifold, dim X = n; L ample line bundle

section ring $R(X, L) = \bigoplus_{k=0}^{\infty} H^0(X, L^k)$ has graded ring structure

X complex projective manifold, dim *X* = *n*; *L* ample line bundle section ring $R(X, L) = \bigoplus_{k=0}^{\infty} H^0(X, L^k)$ has graded ring structure

X complex projective manifold, dim *X* = *n*; *L* ample line bundle section ring $R(X, L) = \bigoplus_{k=0}^{\infty} H^0(X, L^k)$ has graded ring structure

Today's goal : Understand better the correspondence

Metrics on
$$L \rightarrow$$
 norms on $R(X, L)$

Hermitian metric
$$h^L$$
 on L
 $\stackrel{\S}{\stackrel{>}{\downarrow}}$
 L^∞ -norms $\mathrm{Ban}^\infty_k(h^L):=\|\cdot\|_{L^\infty(X)}$ on $H^0(X,L^k),\,k\in\mathbb{N}^*$

$$\|f\|_{L^{\infty}(X)} := \sup_{x \in X} |f(x)|_{(h^{L})^{k}}, \quad f \in H^{0}(X, L^{k})$$

"Ban" stands for Banach

Main example : $\operatorname{Ban}^{\infty}(h^{L}) = \sum \operatorname{Ban}_{k}^{\infty}(h^{L}).$

Main example : $\operatorname{Ban}^{\infty}(h^{L}) = \sum \operatorname{Ban}_{k}^{\infty}(h^{L}).$

Main theorem (preliminary version)

For any submultiplicative graded norm *N* on *R*(*X*, *L*) [satisfying some hypotheses] there is a unique^{*} metric h^L on *L* such that $N \sim \text{Ban}^{\infty}(h^L)$

Main example : $\operatorname{Ban}^{\infty}(h^{L}) = \sum \operatorname{Ban}_{k}^{\infty}(h^{L}).$

Main theorem (preliminary version)

For any submultiplicative graded norm *N* on *R*(*X*, *L*) [satisfying some hypotheses] there is a unique^{*} metric h^L on *L* such that $N \sim \text{Ban}^{\infty}(h^L)$

Plan for the rest of the talk

A what is \sim ? how to construct h^L ? hypotheses? **B** examples. motivations and applications. **C** proof. Sequences of norms N_k , N'_k on $H^0(X, L^k)$, $k \in \mathbb{N}$, are equivalent (~) if $\forall \epsilon > 0$, $\exists k_0 \in \mathbb{N}$ such that $\forall k \ge k_0$

$$\exp(-\epsilon k) \cdot N_k \leq N'_k \leq \exp(\epsilon k) \cdot N_k$$

Sequences of norms N_k , N'_k on $H^0(X, L^k)$, $k \in \mathbb{N}$, are equivalent (~) if $\forall \epsilon > 0$, $\exists k_0 \in \mathbb{N}$ such that $\forall k \ge k_0$

$$\exp(-\epsilon k) \cdot N_k \leq N'_k \leq \exp(\epsilon k) \cdot N_k$$

Lemma : Ban^{∞}(h_0^L) $\not\sim$ Ban^{∞}(h_1^L) for $h_0^L \neq h_1^L$ continuous psh

 h^{L} is **psh** if locally $h^{L} = e^{-\phi}$, where ϕ is plurisubharmonic (psh), h^{L} is **positive** if it is smooth and ϕ is strictly plurisubharmonic.

 $\begin{array}{l} \textbf{Defn}: \text{let } I \in L_x^k, \, x \in X, \, \text{we define } |I|_{\textit{FS}(N_k)}:= \inf_{\substack{s \in H^0(X, L^k) \\ s(x)=I}} \|s\|_k. \end{array} \end{array}$

Defn : let
$$I \in L_x^k$$
, $x \in X$, we define $|I|_{FS(N_k)} := \inf_{\substack{s \in H^0(X, L^k) \\ s(x) = I}} ||s||_k$.

Geometric description through Kodaira embeddings

$$\operatorname{Kod}_k : X \hookrightarrow \mathbb{P}(H^0(X, L^k)^*)$$
isomorphism
$$\operatorname{Kod}_k^* \mathscr{O}(1) \simeq L^k,$$

Defn : let
$$I \in L_x^k$$
, $x \in X$, we define $|I|_{FS(N_k)} := \inf_{\substack{s \in H^0(X, L^k) \\ s(x) = I}} ||s||_k$.

Geometric description through Kodaira embeddings

Norm N_k on $H^0(X, L^k) \rightsquigarrow$ metric on $\mathcal{O}(1) \rightsquigarrow$ metric $FS(N_k)$ on L^k

Observation : If $N = \sum N_k$ submultiplicative, then $FS(N_k)$ is submultiplicative, i.e. $FS(N_{k+1}) \leq FS(N_k) \cdot FS(N_l)$.

Observation : If $N = \sum N_k$ submultiplicative, then $FS(N_k)$ is submultiplicative, i.e. $FS(N_{k+1}) \leq FS(N_k) \cdot FS(N_l)$.

Observation : If $N = \sum N_k$ submultiplicative, then $FS(N_k)$ is submultiplicative, i.e. $FS(N_{k+1}) \leq FS(N_k) \cdot FS(N_l)$.

$$|a^{k+l}|_{FS(N_{k+l})} = \inf_{\substack{s \in H^0(X, L^{k+l}) \\ s(x) = a^{k+l}}} ||s||_{k+l}$$

Observation : If $N = \sum N_k$ submultiplicative, then $FS(N_k)$ is submultiplicative, i.e. $FS(N_{k+1}) \leq FS(N_k) \cdot FS(N_l)$.

$$|a^{k+l}|_{FS(N_{k+l})} = \inf_{\substack{s \in H^0(X, L^{k+l}) \\ s(x) = a^{k+l}}} \|s\|_{k+l}$$

$$\leq \inf_{f \in H^0(X, L^k), g \in H^0(X, L^l) \\ f(x) = a^k, g(x) = a^l} \|f \cdot g\|_{k+l}$$

Observation : If $N = \sum N_k$ submultiplicative, then $FS(N_k)$ is submultiplicative, i.e. $FS(N_{k+1}) \leq FS(N_k) \cdot FS(N_l)$.

$$|a^{k+l}|_{FS(N_{k+l})} = \inf_{\substack{s \in H^{0}(X, L^{k+l}) \\ s(x) = a^{k+l}}} \|s\|_{k+l}$$

$$\leq \inf_{\substack{f \in H^{0}(X, L^{k}), g \in H^{0}(X, L^{l}) \\ f(x) = a^{k}, g(x) = a^{l}}} \|f \cdot g\|_{k+l}$$

$$\leq \inf_{\substack{f \in H^{0}(X, L^{k}) \\ f(x) = a^{k}}} \|f\|_{k} \cdot \inf_{\substack{g \in H^{0}(X, L^{l}) \\ g(x) = a^{l}}} \|g\|_{l}$$

Observation : If $N = \sum N_k$ submultiplicative, then $FS(N_k)$ is submultiplicative, i.e. $FS(N_{k+1}) \leq FS(N_k) \cdot FS(N_l)$.

$$\begin{aligned} a^{k+l}|_{FS(N_{k+l})} &= \inf_{\substack{s \in H^{0}(X, L^{k+l}) \\ s(x) = a^{k+l}}} \|s\|_{k+l} \\ &\leq \inf_{\substack{f \in H^{0}(X, L^{k}), g \in H^{0}(X, L^{l}) \\ f(x) = a^{k}, g(x) = a^{l}}} \|f \|_{k} \cdot \inf_{\substack{g \in H^{0}(X, L^{l}) \\ f(x) = a^{k}}} \|g\|_{l} \\ &\leq \inf_{\substack{f \in H^{0}(X, L^{k}) \\ f(x) = a^{k}}} \|f\|_{k} \cdot \inf_{\substack{g \in H^{0}(X, L^{l}) \\ g(x) = a^{l}}} \|g\|_{l} \\ &= |a^{k}|_{FS(N_{k})} \cdot |a^{l}|_{FS(N_{l})}. \end{aligned}$$

Observation : If $N = \sum N_k$ submultiplicative, then $FS(N_k)$ is submultiplicative, i.e. $FS(N_{k+1}) \leq FS(N_k) \cdot FS(N_l)$.

Proof : for $a \in L_x$, we need $|a^{k+l}|_{FS(N_{k+l})} \leq |a^k|_{FS(N_k)} \cdot |a^l|_{FS(N_l)}$.

$$\begin{aligned} a^{k+l}|_{FS(N_{k+l})} &= \inf_{\substack{s \in H^{0}(X, L^{k+l}) \\ s(x) = a^{k+l}}} \|s\|_{k+l} \\ &\leq \inf_{f \in H^{0}(X, L^{k}), g \in H^{0}(X, L^{l})} \|f \cdot g\|_{k+l} \\ &\quad f(x) = a^{k}, g(x) = a^{l} \end{aligned}$$
$$\leq \inf_{\substack{f \in H^{0}(X, L^{k}) \\ f(x) = a^{k}}} \|f\|_{k} \cdot \inf_{\substack{g \in H^{0}(X, L^{l}) \\ g(x) = a^{l}}} \|g\|_{l} \\ &= |a^{k}|_{FS(N_{k})} \cdot |a^{l}|_{FS(N_{l})}.\end{aligned}$$

Fekete's lemma : For $N = \sum N_k$ submultiplicative, as $k \to \infty$, $FS(N_k)^{\frac{1}{k}}$ converge. Let $FS(N) := \lim_{k\to\infty} FS(N_k)^{\frac{1}{k}}$

Observation : If $N = \sum N_k$ submultiplicative, then $FS(N_k)$ is submultiplicative, i.e. $FS(N_{k+l}) \leq FS(N_k) \cdot FS(N_l)$.

Proof : for $a \in L_x$, we need $|a^{k+l}|_{FS(N_{k+l})} \leq |a^k|_{FS(N_k)} \cdot |a^l|_{FS(N_l)}$.

$$\begin{aligned} a^{k+l}|_{FS(N_{k+l})} &= \inf_{\substack{s \in H^{0}(X, L^{k+l}) \\ s(x) = a^{k+l} \\ \leq \inf_{f \in H^{0}(X, L^{k}), g \in H^{0}(X, L^{l}) \\ f(x) = a^{k}, g(x) = a^{l} \\ \leq \inf_{\substack{f \in H^{0}(X, L^{k}) \\ f(x) = a^{k} \\ g(x) = a^{l} \\ = |a^{k}|_{FS(N_{k})} \cdot |a^{l}|_{FS(N_{l})}. \end{aligned}$$

Fekete's lemma : For $N = \sum N_k$ submultiplicative, as $k \to \infty$, $FS(N_k)^{\frac{1}{k}}$ converge. Let $FS(N) := \lim_{k\to\infty} FS(N_k)^{\frac{1}{k}}$

Attention ! FS(N) is only upper-semicontinuous; probably zero

For any submultiplicative graded norm N on R(X, L) such that FS(N) is continuous and non-zero $N \sim \text{Ban}^{\infty}(FS(N))$

For any submultiplicative graded norm N on R(X, L) such that FS(N) is continuous and non-zero $N \sim \text{Ban}^{\infty}(FS(N))$

Remark :a) It is a complex-geometric analogue of a theorem from non-Archimedean geometry of Boucksom-Jonsson, 2021

For any submultiplicative graded norm N on R(X, L) such that FS(N) is continuous and non-zero $N \sim \text{Ban}^{\infty}(FS(N))$

Remark :a) It is a complex-geometric analogue of a theorem from non-Archimedean geometry of Boucksom-Jonsson, 2021 submultiplicative norm \leftrightarrow submultiplicative filtration metric on $(L, X) \leftrightarrow$ metric on Berkovich analytification (L^{an}, X^{an})

For any submultiplicative graded norm N on R(X, L) such that FS(N) is continuous and non-zero $N \sim \text{Ban}^{\infty}(FS(N))$

Remark :a) It is a complex-geometric analogue of a theorem from non-Archimedean geometry of Boucksom-Jonsson, 2021 submultiplicative norm \leftrightarrow submultiplicative filtration metric on $(L, X) \leftrightarrow$ metric on Berkovich analytification (L^{an}, X^{an})

b) Theorem fails with no assumption on FS(N).

For any submultiplicative graded norm N on R(X, L) such that FS(N) is continuous and non-zero $N \sim \text{Ban}^{\infty}(FS(N))$

Remark :a) It is a complex-geometric analogue of a theorem from non-Archimedean geometry of Boucksom-Jonsson, 2021 submultiplicative norm \leftrightarrow submultiplicative filtration metric on $(L, X) \leftrightarrow$ metric on Berkovich analytification (L^{an}, X^{an})

b) Theorem fails with no assumption on FS(N). But it can be remedied by a weaker equivalence relation \sim .

Examples

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

For
$$P \in \text{Sym}^{k}(V)$$
, $P(z) = \sum_{\substack{\alpha \in \mathbb{N}^{n} \\ |\alpha| = k}} a_{\alpha} z^{\alpha}$, for $N_{k} := \| \cdot \|_{k}^{\pi}$, we let

$$\| {m P} \|_k^\pi = \sum_{\substack{lpha \in \mathbb{N}^n \ |lpha| = k}} |{m a}_lpha|$$

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

For
$$P \in \text{Sym}^{k}(V)$$
, $P(z) = \sum_{\substack{\alpha \in \mathbb{N}^{n} \\ |\alpha| = k}} a_{\alpha} z^{\alpha}$, for $N_{k} := \| \cdot \|_{k}^{\pi}$, we let

$$\| oldsymbol{P} \|_k^\pi = \sum_{\substack{lpha \in \mathbb{N}^n \ |lpha| = k}} |oldsymbol{a}_lpha|$$

Easy observation : $N = \sum N_k$ is submultiplicative

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

For
$$P \in \text{Sym}^k(V)$$
, $P(z) = \sum_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| = k}} a_{\alpha} z^{\alpha}$, for $N_k := \| \cdot \|_k^{\pi}$, we let
$$\|P\|_{-\infty}^{\pi} = \sum_{\alpha \in \mathbb{N}^n} |a_{\alpha}|$$

$$\|P\|_k^{\pi} = \sum_{\substack{lpha \in \mathbb{N}^n \ |lpha| = k}} |a_{lpha}|$$

Easy observation : $N = \sum N_k$ is submultiplicative

One can also verify that

$$\|P\|_{L^{\infty}(FS(N))} = \sup_{\substack{z \in \mathbb{C}^n \\ |z_i| \leq 1}} |P(z_1, \cdots, z_n)|$$

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

For
$$P \in \text{Sym}^k(V)$$
, $P(z) = \sum_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| = k}} a_{\alpha} z^{\alpha}$, for $N_k := \| \cdot \|_k^{\pi}$, we let
$$\|P\|_{\alpha}^{\pi} = \sum_{\alpha \in \mathbb{N}^n} |a_{\alpha}|$$

$$\|m{P}\|_k^\pi = \sum_{\substack{lpha \in \mathbb{N}^n \ |lpha| = k}} |m{a}_lpha|$$

Easy observation : $N = \sum N_k$ is submultiplicative

One can also verify that

$$\|P\|_{L^{\infty}(FS(N))} = \sup_{\substack{z \in \mathbb{C}^n \\ |z_i| \leq 1}} |P(z_1, \cdots, z_n)|$$

Clearly, we have $\|\cdot\|_{L^{\infty}(FS(N))} \leq \|\cdot\|_{k}^{\pi}$

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

For
$$P \in \text{Sym}^k(V)$$
, $P(z) = \sum_{\substack{\alpha \in \mathbb{N}^n \\ |\alpha| = k}} a_\alpha z^\alpha$, for $N_k := \| \cdot \|_k^{\pi}$, we let

$$\| oldsymbol{P} \|_k^\pi = \sum_{\substack{lpha \in \mathbb{N}^n \ |lpha| = k}} |oldsymbol{a}_lpha|$$

Easy observation : $N = \sum N_k$ is submultiplicative

One can also verify that

$$\|P\|_{L^{\infty}(FS(N))} = \sup_{\substack{z \in \mathbb{C}^n \\ |z_i| \leq 1}} |P(z_1, \cdots, z_n)|$$

Clearly, we have $\|\cdot\|_{L^{\infty}(F\mathcal{S}(N))} \leq \|\cdot\|_{k}^{\pi}$

Our theorem gives the opposite (nontrivial!) inequality : $\forall \epsilon > 0, \exists k_0, \text{ so that } \forall k \ge k_0, \| \cdot \|_{L^{\infty}(FS(N))} \ge \exp(-\epsilon k) \cdot \| \cdot \|_k^{\pi}$
Are there natural examples of submultiplicative norms?

Are there natural examples of submultiplicative norms?

- 1. $L^{\frac{1}{k}}$ -(pseudo)norms : $||f||_{k} := (\int_{x \in X} |f(x)|_{h^{L}}^{\frac{1}{k}} \cdot dv)^{k}$
- 2. Mahler (pseudo)norms : $||f||_k := \exp(\int_{x \in X} \log |f(x)|_{h^L} \cdot dv)$
- 3. Complex interpolation between submultiplicative norms
- 4. Projective tensor norms on symmetric algebras
- 5. Quotients of submultiplicative norms
- 6. Interpolations of submultiplicative filtrations

 $(V_i, N_i := \| \cdot \|_i), i = 1, 2$, normed vector spaces. There is no canonical norm on $V_1 \otimes V_2$

 $(V_i, N_i := \| \cdot \|_i), i = 1, 2$, normed vector spaces. There is no canonical norm on $V_1 \otimes V_2$

Projective tensor norm $N_1 \otimes_{\pi} N_2 = \|\cdot\|_{\otimes_{\pi}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\pi}} = \inf \left\{ \sum \|x_i\|_1 \cdot \|y_i\|_2; \quad f = \sum x_i \otimes y_i \right\}$

 $(V_i, N_i := \| \cdot \|_i), i = 1, 2$, normed vector spaces. There is no canonical norm on $V_1 \otimes V_2$

Projective tensor norm $N_1 \otimes_{\pi} N_2 = \|\cdot\|_{\otimes_{\pi}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\pi}} = \inf \left\{ \sum \|x_i\|_1 \cdot \|y_i\|_2; \quad f = \sum x_i \otimes y_i \right\}$ Injective tensor norm $N_1 \otimes_{\epsilon} N_2 = \|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\epsilon}} = \sup \left\{ \left| (\phi \otimes \psi)(f) \right|; \quad \phi \in V_1^*, \psi \in V_2^*, \|\phi\|_1^* = \|\psi\|_2^* = 1 \right\}$

 $(V_i, N_i := \| \cdot \|_i), i = 1, 2$, normed vector spaces. There is no canonical norm on $V_1 \otimes V_2$

Projective tensor norm $N_1 \otimes_{\pi} N_2 = \|\cdot\|_{\otimes_{\pi}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\pi}} = \inf \left\{ \sum \|x_i\|_1 \cdot \|y_i\|_2; \quad f = \sum x_i \otimes y_i \right\}$ Injective tensor norm $N_1 \otimes_{\epsilon} N_2 = \|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\epsilon}} = \sup \left\{ |(\phi \otimes \psi)(f)|; \quad \phi \in V_1^*, \psi \in V_2^*, \|\phi\|_1^* = \|\psi\|_2^* = 1 \right\}$ For any (V, N_V) denote the projective tensor norm by $\operatorname{Sym}^{\pi} N_V$ on $\operatorname{Sym} V = R(\mathbb{P}(V^*), \mathcal{O}(1))$

 $(V_i, N_i := \| \cdot \|_i), i = 1, 2$, normed vector spaces. There is no canonical norm on $V_1 \otimes V_2$

Projective tensor norm $N_1 \otimes_{\pi} N_2 = \|\cdot\|_{\otimes_{\pi}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\pi}} = \inf \left\{ \sum \|x_i\|_1 \cdot \|y_i\|_2; \quad f = \sum x_i \otimes y_i \right\}$ Injective tensor norm $N_1 \otimes_{\epsilon} N_2 = \|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\epsilon}} = \sup \left\{ |(\phi \otimes \psi)(f)|; \quad \phi \in V_1^*, \psi \in V_2^*, \|\phi\|_1^* = \|\psi\|_2^* = 1 \right\}$ For any (V, N_V) denote the projective tensor norm by $\operatorname{Sym}^{\pi} N_V$ on $\operatorname{Sym} V = R(\mathbb{P}(V^*), \mathcal{O}(1))$

Observation :Sym^{π} N_V is submultiplicative. Also, $\|\cdot\|_{k}^{\epsilon} \leq \|\cdot\|_{k}^{\pi}$

 $(V_i, N_i := \| \cdot \|_i), i = 1, 2$, normed vector spaces. There is no canonical norm on $V_1 \otimes V_2$

Projective tensor norm $N_1 \otimes_{\pi} N_2 = \|\cdot\|_{\otimes_{\pi}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\pi}} = \inf \left\{ \sum \|x_i\|_1 \cdot \|y_i\|_2; \quad f = \sum x_i \otimes y_i \right\}$ Injective tensor norm $N_1 \otimes_{\epsilon} N_2 = \|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\epsilon}} = \sup \left\{ \left| (\phi \otimes \psi)(f) \right|; \quad \phi \in V_1^*, \psi \in V_2^*, \|\phi\|_1^* = \|\psi\|_2^* = 1 \right\}$

For any (V, N_V) denote the projective tensor norm by $\text{Sym}^{\pi}N_V$ on $\text{Sym}V = R(\mathbb{P}(V^*), \mathcal{O}(1))$

Observation :Sym^{π} N_V is submultiplicative. Also, $\|\cdot\|_k^{\epsilon} \le \|\cdot\|_k^{\pi}$ If we now apply our theorem for Sym^{π} N_V , it would give : $\forall \epsilon > 0$,

 $\exists k_0$, so that $\forall k \geq k_0$, $P \in \operatorname{Sym}^k V$, $\|P\|_k^{\epsilon} \geq \exp(-\epsilon k) \cdot \|P\|_k^{\pi}$

 $(V_i, N_i := \| \cdot \|_i), i = 1, 2$, normed vector spaces. There is no canonical norm on $V_1 \otimes V_2$

Projective tensor norm $N_1 \otimes_{\pi} N_2 = \|\cdot\|_{\otimes_{\pi}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\pi}} = \inf \left\{ \sum \|x_i\|_1 \cdot \|y_i\|_2; \quad f = \sum x_i \otimes y_i \right\}$ Injective tensor norm $N_1 \otimes_{\epsilon} N_2 = \|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_1 \otimes V_2$ $\|f\|_{\otimes_{\epsilon}} = \sup \left\{ \left| (\phi \otimes \psi)(f) \right|; \quad \phi \in V_1^*, \psi \in V_2^*, \|\phi\|_1^* = \|\psi\|_2^* = 1 \right\}$

For any (V, N_V) denote the projective tensor norm by $\text{Sym}^{\pi}N_V$ on $\text{Sym}V = R(\mathbb{P}(V^*), \mathcal{O}(1))$

Observation :Sym^{π} N_V is submultiplicative. Also, $\|\cdot\|_{k}^{\epsilon} \leq \|\cdot\|_{k}^{\pi}$

If we now apply our theorem for $\operatorname{Sym}^{\pi} N_V$, it would give : $\forall \epsilon > 0$, $\exists k_0$, so that $\forall k \ge k_0$, $P \in \operatorname{Sym}^k V$, $\|P\|_k^{\epsilon} \ge \exp(-\epsilon k) \cdot \|P\|_k^{\pi}$

Surprising ! In full tensor algebra, the analogue is false for any (V, N_V) , dim V > 1, by a result of Pisier, 1980

Res :
$$H^0(X, L^k) \twoheadrightarrow H^0(Y, L^k)$$

is surjective for $k \gg 1$ by Serre's criterion

Res :
$$H^0(X, L^k) \twoheadrightarrow H^0(Y, L^k)$$

is surjective for $k \gg 1$ by Serre's criterion

Observation : If *N* on *R*(*X*, *L*) is submultiplicative, then the quotient norm [*N*] on *R*(*Y*, *L*) is submultiplicative, where $||f||_{[N]} := \inf \{ ||g||_N; g \in R(X, L), \operatorname{Res}(g) = f \}, f \in R(Y, L).$

Res :
$$H^0(X, L^k) \twoheadrightarrow H^0(Y, L^k)$$

is surjective for $k \gg 1$ by Serre's criterion

Observation : If *N* on *R*(*X*, *L*) is submultiplicative, then the quotient norm [*N*] on *R*(*Y*, *L*) is submultiplicative, where $\|f\|_{[N]} := \inf \{\|g\|_{N}; g \in R(X, L), \operatorname{Res}(g) = f\}, f \in R(Y, L).$

If we now take $N = \text{Ban}^{\infty}(h^L)$, our theorem for [*N*] gives us : $\forall \epsilon > 0, \exists k_0$, so that $\forall k \ge k_0, f \in H^0(Y, L^k)$ there is a holomorphic extension $\tilde{f} \in H^0(X, L^k)$ of *f*, such that

 $\|\widetilde{f}\|_{L^{\infty}_{X}(h^{L})} \leq \exp(\epsilon k) \cdot \|f\|_{L^{\infty}_{Y}(h^{L})}$

$$\operatorname{Res}: H^0(X, L^k) \twoheadrightarrow H^0(Y, L^k)$$

is surjective for $k \gg 1$ by Serre's criterion

Observation : If *N* on *R*(*X*, *L*) is submultiplicative, then the quotient norm [*N*] on *R*(*Y*, *L*) is submultiplicative, where $\|f\|_{[N]} := \inf \{\|g\|_{N}; g \in R(X, L), \operatorname{Res}(g) = f\}, f \in R(Y, L).$

If we now take $N = \text{Ban}^{\infty}(h^L)$, our theorem for [*N*] gives us : $\forall \epsilon > 0, \exists k_0$, so that $\forall k \ge k_0, f \in H^0(Y, L^k)$ there is a holomorphic extension $\tilde{f} \in H^0(X, L^k)$ of *f*, such that

$$\|\tilde{f}\|_{L^{\infty}_{X}(h^{L})} \leq \exp(\epsilon k) \cdot \|f\|_{L^{\infty}_{Y}(h^{L})}$$

This is a semiclassical Ohsawa-Takegoshi extension theorem. Established by S.-W. Zhang 1995 and Bost 2003. In (-, 2021), author refined it by replacing $\exp(\epsilon k)$ by $1 + \frac{C}{k}$.

Weight function $w_{\mathcal{F}}(v) := \sup_{v \in \mathcal{F}^{\lambda} V} \lambda$ for $v \in V$

Weight function $w_{\mathcal{F}}(v) := \sup_{v \in \mathcal{F}^{\lambda}V} \lambda$ for $v \in V$

A graded filtration \mathcal{F} on R(X, L) is called submultiplicative if

$$w_{\mathcal{F}}(f \cdot g) \geq w_{\mathcal{F}}(f) + w_{\mathcal{F}}(g)$$

Weight function $w_{\mathcal{F}}(v) := \sup_{v \in \mathcal{F}^{\lambda}V} \lambda$ for $v \in V$

A graded filtration \mathcal{F} on R(X, L) is called submultiplicative if

$$w_{\mathcal{F}}(f \cdot g) \geq w_{\mathcal{F}}(f) + w_{\mathcal{F}}(g)$$

Example : Divisor $D \subset X$, $w_{\mathcal{F}^D}(\cdot)$ =order of vanishing along D.

Weight function $w_{\mathcal{F}}(v) := \sup_{v \in \mathcal{F}^{\lambda}V} \lambda$ for $v \in V$

A graded filtration \mathcal{F} on R(X, L) is called submultiplicative if

 $w_{\mathcal{F}}(f \cdot g) \geq w_{\mathcal{F}}(f) + w_{\mathcal{F}}(g)$

Example : Divisor $D \subset X$, $w_{\mathcal{F}^D}(\cdot)$ =order of vanishing along D.

Motivation : study of submultiplicative filtrations is related to K-stability, itself related with constant scalar curvature metrics

6. Interpolations of submultiplicative filtrations

Let *N* be a submultiplicative norm on R(X, L) and \mathcal{F} is a submultiplicative filtration. Define ray of norms $N_t = \|\cdot\|_t$, $t \ge 0$

$$\|f\|_t = \inf \sum \|f_i\|_N \cdot \exp(-tw_{\mathcal{F}}(f_i)), \quad f = \sum f_i$$

6. Interpolations of submultiplicative filtrations

Let *N* be a submultiplicative norm on R(X, L) and \mathcal{F} is a submultiplicative filtration. Define ray of norms $N_t = \|\cdot\|_t$, $t \ge 0$

$$\|f\|_t = \inf \sum \|f_i\|_N \cdot \exp(-tw_{\mathcal{F}}(f_i)), \quad f = \sum f_i$$

Fact : N_t converges to \mathcal{F} , i.e. $\lim_{t\to\infty} \frac{\log ||f||_t}{t} = -w_{\mathcal{F}}(f)$

Let *N* be a submultiplicative norm on R(X, L) and \mathcal{F} is a submultiplicative filtration. Define ray of norms $N_t = \|\cdot\|_t$, $t \ge 0$

$$\|f\|_t = \inf \sum \|f_i\|_N \cdot \exp(-tw_{\mathcal{F}}(f_i)), \quad f = \sum f_i$$

Fact : N_t converges to \mathcal{F} , i.e. $\lim_{t\to\infty} \frac{\log ||f||_t}{t} = -w_{\mathcal{F}}(f)$

Easy observation : *N_t* is submultiplicative

Let *N* be a submultiplicative norm on R(X, L) and \mathcal{F} is a submultiplicative filtration. Define ray of norms $N_t = \|\cdot\|_t$, $t \ge 0$

$$\|f\|_t = \inf \sum \|f_i\|_N \cdot \exp(-tw_{\mathcal{F}}(f_i)), \quad f = \sum f_i$$

Fact : N_t converges to \mathcal{F} , i.e. $\lim_{t\to\infty} \frac{\log ||f||_t}{t} = -w_{\mathcal{F}}(f)$

Easy observation : *N_t* is submultiplicative

Our theorem (+ a lot of work, see (-, 2023)), applied for N_t , proves a conjecture of Darvas-Lu 2019 and K. Zhang 2021.

Roughly, conjecture says that :

Geometry at infinity on the space of Kähler potentials is related with Asymptotic study of submultiplicative filtrations

Isometry and quantization

 \mathcal{H}^{L} the space of continuous psh metrics on L \mathcal{H}_{k} the space of norms on $H^{0}(X, L^{k})$ \mathcal{H}^{L} the space of continuous psh metrics on L \mathcal{H}_{k} the space of norms on $H^{0}(X, L^{k})$ Tian, 1990 : $\mathcal{H}^{L} = \overline{\cup FS(\mathcal{H}_{k})^{\frac{1}{k}}}$. In fact, $FS(\operatorname{Ban}^{\infty}(h^{L})) = h^{L}$. $\mathcal{H}^{L} \text{ the space of continuous psh metrics on } L$ $\mathcal{H}_{k} \text{ the space of norms on } H^{0}(X, L^{k})$ Tian, 1990 : $\mathcal{H}^{L} = \overline{\cup FS(\mathcal{H}_{k})^{\frac{1}{k}}}. \text{ In fact, } FS(\text{Ban}^{\infty}(h^{L})) = h^{L}.$ $\mathcal{H}^{L} \xrightarrow[FS]{} \Pi \mathcal{H}_{k}$

Question : to which extent, Ban^{∞} and *FS* preserve geometry?

Question : to which extent, Ban^{∞} and *FS* preserve geometry?

Remark : We understand Ban^{∞} much better than *FS*.

Natural metric structures on \mathcal{H}^L and \mathcal{H}_k

We fix $p \in [1, +\infty[$, let H_0, H_1 Hermitian norms on $H^0(X, L^k)$ let $A \in \operatorname{End}^h(H^0(X, L^k))$ be such that $\langle \cdot, \cdot \rangle_{H_1} = \langle A \cdot, \cdot \rangle_{H_0}$

Natural metric structures on \mathcal{H}^L and \mathcal{H}_k

We fix $p \in [1, +\infty[$, let H_0, H_1 Hermitian norms on $H^0(X, L^k)$ let $A \in \text{End}^h(H^0(X, L^k))$ be such that $\langle \cdot, \cdot \rangle_{H_1} = \langle A \cdot, \cdot \rangle_{H_0}$

$$d_{\rho}(H_0, H_1) := \sqrt[\rho]{\frac{\operatorname{Tr}\left[|\log A|^{\rho}\right]}{\dim V}}$$

For $N = \sum N_k, N = \sum N'_k$, we let

$$d_{
ho}(N,N') := \limsup_{k o \infty} rac{d_{
ho}(N_k,N_k')}{k}$$

This gives a (pseudo)metric on $\prod \mathcal{H}_k$

Natural metric structures on \mathcal{H}^L and \mathcal{H}_k

We fix $p \in [1, +\infty[$, let H_0, H_1 Hermitian norms on $H^0(X, L^k)$ let $A \in \text{End}^h(H^0(X, L^k))$ be such that $\langle \cdot, \cdot \rangle_{H_1} = \langle A \cdot, \cdot \rangle_{H_0}$

$$d_{p}(H_{0}, H_{1}) := \sqrt[p]{\frac{\operatorname{Tr}\left[|\log A|^{p}\right]}{\dim V}}$$

For $N = \sum N_{k}, N = \sum N_{k}'$, we let

$$d_p(N,N') := \limsup_{k o \infty} rac{d_p(N_k,N_k')}{k}$$

This gives a (pseudo)metric on $\prod \mathcal{H}_k$

Mabuchi : distance on \mathcal{H}^{L} , for a \mathcal{C}^{1} -path $\gamma = h_{t}^{L} \in \mathcal{H}^{L}$, $t \in [0, 1]$

$$\begin{split} & \operatorname{len}_{p}(\gamma) = \int_{0}^{1} \sqrt[p]{} \int_{X} \left| \frac{\dot{h}_{t}^{L}}{h_{t}^{L}} \right|^{p} \cdot \frac{c_{1}(L,h_{t}^{L})^{n}}{c_{1}(L)^{n}} \\ & d_{p}(h_{0}^{L},h_{1}^{L}) := \inf_{\gamma} \operatorname{len}_{p}(\gamma). \end{split}$$

 $\operatorname{Ban}^\infty$ is an isometry

 $\operatorname{Ban}^\infty$ is an isometry

What about FS?

 $\operatorname{Ban}^{\infty}$ is an isometry

What about FS?

Let $N = \sum N_k$, $N' = \sum N'_k$ two graded norms on R(X, L)Let $h_0^L := \lim_{k \to \infty} FS(N_k)^{\frac{1}{k}}$ and $h_1^L := \lim_{k \to \infty} FS(N'_k)^{\frac{1}{k}}$ exist

 $\operatorname{Ban}^{\infty}$ is an isometry

What about *FS*?

Let $N = \sum N_k$, $N' = \sum N'_k$ two graded norms on R(X, L)Let $h_0^L := \lim_{k \to \infty} FS(N_k)^{\frac{1}{k}}$ and $h_1^L := \lim_{k \to \infty} FS(N'_k)^{\frac{1}{k}}$ exist

Fact (-, 2023) : No relation between $d_p(N, N')$ and $d_p(h_0^L, h_1^L)$

 $\operatorname{Ban}^{\infty}$ is an isometry

What about *FS*? Let $N = \sum N_k$, $N' = \sum N'_k$ two graded norms on R(X, L)Let $h_0^L := \lim_{k\to\infty} FS(N_k)^{\frac{1}{k}}$ and $h_1^L := \lim_{k\to\infty} FS(N'_k)^{\frac{1}{k}}$ exist **Fact** (-, 2023) : No relation between $d_p(N, N')$ and $d_p(h_0^L, h_1^L)$

Theorem (-, 2023)

If N, N' are submultiplicative, FS(N), FS(N') are bounded, then $d_p(N, N') = d_p(FS(N), FS(N'))$
Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson, 2012, Darvas-Lu-Rubinstein 2020)

 $\operatorname{Ban}^{\infty}$ is an isometry

What about *FS*? Let $N = \sum N_k$, $N' = \sum N'_k$ two graded norms on R(X, L)Let $h_0^L := \lim_{k\to\infty} FS(N_k)^{\frac{1}{k}}$ and $h_1^L := \lim_{k\to\infty} FS(N'_k)^{\frac{1}{k}}$ exist **Fact** (-, 2023) : No relation between $d_p(N, N')$ and $d_p(h_0^L, h_1^L)$

Theorem (-, 2023)

If N, N' are submultiplicative, FS(N), FS(N') are bounded, then $d_p(N, N') = d_p(FS(N), FS(N'))$

Proof : From the main theorem of the talk, we have $d_p(N, N') = d_p(\text{Ban}^{\infty}(FS(N)), \text{Ban}^{\infty}(FS(N')))$. Then apply previous theorem

Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson, 2012, Darvas-Lu-Rubinstein 2020)

 $\operatorname{Ban}^\infty$ is an isometry

What about *FS*? Let $N = \sum N_k$, $N' = \sum N'_k$ two graded norms on R(X, L)Let $h_0^L := \lim_{k\to\infty} FS(N_k)^{\frac{1}{k}}$ and $h_1^L := \lim_{k\to\infty} FS(N'_k)^{\frac{1}{k}}$ exist **Fact** (-, 2023) : No relation between $d_p(N, N')$ and $d_p(h_0^L, h_1^L)$

Theorem (-, 2023)

If N, N' are submultiplicative, FS(N), FS(N') are bounded, then $d_p(N, N') = d_p(FS(N), FS(N'))$

Proof : From the main theorem of the talk, we have $d_p(N, N') = d_p(\text{Ban}^{\infty}(FS(N)), \text{Ban}^{\infty}(FS(N')))$. Then apply previous theorem **Conclusion** : pluripotential theory \rightsquigarrow study of filtrations

Proof of the main result

Theorem (-, 2022)

N submultiplicative such that FS(N) is continuous and non-zero

 $N \sim \operatorname{Ban}^{\infty}(FS(N))$

Theorem (-, 2022)

N submultiplicative such that FS(N) is continuous and non-zero $N \sim \text{Ban}^{\infty}(FS(N))$

Idea of the proof : Step 1 : $N \ge Ban^{\infty}(FS(N))$.

Theorem (-, 2022)

N submultiplicative such that FS(N) is continuous and non-zero $N \sim \operatorname{Ban}^{\infty}(FS(N))$

Idea of the proof : Step 1 : $N \ge \operatorname{Ban}^{\infty}(FS(N))$. Indeed : $\forall f \in H^0(X, L^k), x \in X, \|f\|_k \ge \inf_{\substack{s \in H^0(X, L^k) \\ s(x) = f(x)}} \|s\|_k = |f(x)|_{FS(N_k)}.$

Theorem (-, 2022)

N submultiplicative such that FS(N) is continuous and non-zero $N \sim \operatorname{Ban}^{\infty}(FS(N))$

Idea of the proof : Step 1 : $N \ge \operatorname{Ban}^{\infty}(FS(N))$. Indeed : $\forall f \in H^{0}(X, L^{k}), x \in X, \|f\|_{k} \ge \inf_{\substack{s \in H^{0}(X, L^{k}) \\ s(x) = f(x)}} \|s\|_{k} = |f(x)|_{FS(N_{k})}$. Fekete's : $FS(N) = \inf FS(N_{k})^{\frac{1}{k}}$, so $\|f\|_{k} \ge \|f\|_{L^{\infty}(FS(N))}$.

Theorem (-, 2022)

N submultiplicative such that FS(N) is continuous and non-zero $N \sim \operatorname{Ban}^{\infty}(FS(N))$

Idea of the proof : Step 1 : $N \ge \operatorname{Ban}^{\infty}(FS(N))$. Indeed : $\forall f \in H^{0}(X, L^{k}), x \in X, \|f\|_{k} \ge \inf_{\substack{s \in H^{0}(X, L^{k}) \\ s(x) = f(x)}} \|s\|_{k} = |f(x)|_{FS(N_{k})}$. Fekete's : $FS(N) = \inf FS(N_{k})^{\frac{1}{k}}$, so $\|f\|_{k} \ge \|f\|_{L^{\infty}(FS(N))}$. Step 2 : Consider $\operatorname{Mult}_{k,l} : H^{0}(X, L^{k})^{\otimes l} \twoheadrightarrow H^{0}(X, L^{kl})$ From submultiplicativity, we have $N_{kl} \le [N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}]$.

Theorem (-, 2022)

N submultiplicative such that FS(N) is continuous and non-zero $N \sim \operatorname{Ban}^{\infty}(FS(N))$

Idea of the proof : Step 1 : $N \ge \operatorname{Ban}^{\infty}(FS(N))$. Indeed : $\forall f \in H^{0}(X, L^{k}), x \in X, \|f\|_{k} \ge \inf_{\substack{s \in H^{0}(X, L^{k}) \\ s(x) = f(x)}} \|s\|_{k} = |f(x)|_{FS(N_{k})}$. Fekete's : $FS(N) = \inf FS(N_{k})^{\frac{1}{k}}$, so $\|f\|_{k} \ge \|f\|_{L^{\infty}(FS(N))}$. Step 2 : Consider $\operatorname{Mult}_{k,l} : H^{0}(X, L^{k})^{\otimes l} \twoheadrightarrow H^{0}(X, L^{kl})$ From submultiplicativity, we have $N_{kl} \le [N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}]$.

Central lemma (-, 2023)

Let N_k norm on $H^0(X, L^k)$, then over $H^0(X, L^{kl})$: $[N_k \otimes_{\pi} \cdots \otimes_{\pi} N_k] \sim \operatorname{Ban}_{kl}^{\infty}(FS(N_k)^{\frac{1}{k}})$

Theorem (-, 2022)

N submultiplicative such that FS(N) is continuous and non-zero $N \sim \mathrm{Ban}^\infty(FS(N))$

Idea of the proof : Step 1 : $N \ge \operatorname{Ban}^{\infty}(FS(N))$. Indeed : $\forall f \in H^{0}(X, L^{k}), x \in X, \|f\|_{k} \ge \inf_{\substack{s \in H^{0}(X, L^{k}) \ s(x) = f(x)}} \|s\|_{k} = |f(x)|_{FS(N_{k})}$. Fekete's : $FS(N) = \inf FS(N_{k})^{\frac{1}{k}}$, so $\|f\|_{k} \ge \|f\|_{L^{\infty}(FS(N))}$. Step 2 : Consider $\operatorname{Mult}_{k,l} : H^{0}(X, L^{k})^{\otimes l} \twoheadrightarrow H^{0}(X, L^{kl})$ From submultiplicativity, we have $N_{kl} \le [N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}]$.

Central lemma (-, 2023)

Let N_k norm on $H^0(X, L^k)$, then over $H^0(X, L^{kl})$:

 $[N_k \otimes_{\pi} \cdots \otimes_{\pi} N_k] \sim \operatorname{Ban}_{kl}^{\infty}(FS(N_k)^{\frac{1}{k}})$

 $\forall \epsilon > 0, \exists k_0, \text{ so that } \forall k \ge k_0, N_{kl} \le \exp(\epsilon kl) \cdot \operatorname{Ban}_{kl}^{\infty}(FS(N_k)^{\frac{1}{k}}).$ By Dini, FS(N) continuous $\Rightarrow FS(N_k)^{\frac{1}{k}}$ converge uniformly

Proof : Step 1 : verify for $X = \mathbb{P}(V^*), L = \mathcal{O}(1)$.

Proof : **Step 1** : verify for $X = \mathbb{P}(V^*), L = \mathcal{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide)

Proof : **Step 1** : verify for $X = \mathbb{P}(V^*), L = \mathcal{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide) **Step 2** : deduce the general case from the one for $\mathbb{P}(V^*)$ by semiclassical Ohsawa-Takegoshi extension theorem, applied to Kodaira embedding

From step 1, the quotient of $N_k \otimes_{\pi} \cdots \otimes_{\pi} N_k$ under Sym is $\sim \operatorname{Ban}_{kl}^{\infty,\mathbb{P}(H^0(X,L)^*)}(FS(N_k)^{\frac{1}{k}})$ under =.

Proof : **Step 1** : verify for $X = \mathbb{P}(V^*), L = \mathcal{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide) **Step 2** : deduce the general case from the one for $\mathbb{P}(V^*)$ by semiclassical Ohsawa-Takegoshi extension theorem, applied to Kodaira embedding

From step 1, the quotient of $N_k \otimes_{\pi} \cdots \otimes_{\pi} N_k$ under Sym is ~ Ban $_{kl}^{\infty,\mathbb{P}(H^0(X,L)^*)}(FS(N_k)^{\frac{1}{k}})$ under =. From semiclassical OT, the quotient under Res_{Kod,k} of Ban $_{kl}^{\infty,\mathbb{P}(H^0(X,L)^*)}(FS(N_k)^{\frac{1}{k}})$ is ~ Ban $_{kl}^{\infty,X}(FS(N_k)^{\frac{1}{k}})$.

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

 N_V any norm on V. $N_k = \text{Sym}_k^{\pi} N_V$ projective tensor norm

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

 N_V any norm on V. $N_k = \operatorname{Sym}_k^{\pi} N_V$ projective tensor norm

$$\|P\|_{L^{\infty}(FS(N))} = \sup_{\substack{w \in V^* \\ \|w\|_{N_{V}}^{*} \le 1}} |P(w)|$$

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

 N_V any norm on V. $N_k = \operatorname{Sym}_k^{\pi} N_V$ projective tensor norm

$$\|P\|_{L^{\infty}(FS(N))} = \sup_{\substack{w \in V^* \\ \|w\|_{N_{V}}^{*} \le 1}} |P(w)|$$

For $N_V = I_1$, Step 1 corresponds to the first example.

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

 N_V any norm on V. $N_k = \operatorname{Sym}_k^{\pi} N_V$ projective tensor norm

$$\|P\|_{L^{\infty}(FS(N))} = \sup_{\substack{w \in V^* \\ \|w\|_{N_{V}}^* \le 1}} |P(w)|$$

For $N_V = l_1$, Step 1 corresponds to the first example. We reduce the Step 1 for general N_V to l_1 .

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

 N_V any norm on V. $N_k = \operatorname{Sym}_k^{\pi} N_V$ projective tensor norm

$$\|P\|_{L^{\infty}(FS(N))} = \sup_{\substack{w \in V^* \\ \|w\|_{N_{V}}^* \le 1}} |P(w)|$$

For $N_V = l_1$, Step 1 corresponds to the first example. We reduce the Step 1 for general N_V to l_1 .

Folklore lemma

For any $(V, \|\cdot\|_V)$, $\epsilon > 0$, $\exists l \in \mathbb{N}^*$ and surjection $\pi : \mathbb{C}^l \to V :$ $\exp(-\epsilon) \cdot [l_1] \leq \|\cdot\|_V \leq [l_1].$

V finitely dim. \mathbb{C} -vector space, $X = \mathbb{P}(V^*)$, $L = \mathcal{O}(1)$. $R(X, L) = \text{Sym}(V) = \text{space of polynomials on } V^*$

 N_V any norm on V. $N_k = \operatorname{Sym}_k^{\pi} N_V$ projective tensor norm

$$\|P\|_{L^{\infty}(FS(N))} = \sup_{\substack{w \in V^* \\ \|w\|_{N_{V}}^* \le 1}} |P(w)|$$

For $N_V = l_1$, Step 1 corresponds to the first example. We reduce the Step 1 for general N_V to l_1 .

Folklore lemma

For any $(V, \|\cdot\|_V)$, $\epsilon > 0$, $\exists l \in \mathbb{N}^*$ and surjection $\pi : \mathbb{C}^l \to V :$ $\exp(-\epsilon) \cdot [l_1] \leq \|\cdot\|_V \leq [l_1].$

Apply semiclassical OT extension theorem for the embedding $\mathbb{P}(V^*) \to \mathbb{P}((\mathbb{C}')^*)$

Thank you!