Submultiplicative norms on section rings

Siarhei Finski
École Polytechnique, CNRS, France

27 July 2023
Quantization in Geometry
Cologne, Germany

Setting for the talk

X complex projective manifold, $\operatorname{dim} X=n ; L$ ample line bundle section ring $R(X, L)=\oplus_{k=0}^{\infty} H^{0}\left(X, L^{k}\right)$ has graded ring structure

Setting for the talk

X complex projective manifold, $\operatorname{dim} X=n ; L$ ample line bundle section ring $R(X, L)=\oplus_{k=0}^{\infty} H^{0}\left(X, L^{k}\right)$ has graded ring structure

Setting for the talk

X complex projective manifold, $\operatorname{dim} X=n ; L$ ample line bundle section ring $R(X, L)=\oplus_{k=0}^{\infty} H^{0}\left(X, L^{k}\right)$ has graded ring structure

Setting for the talk

X complex projective manifold, $\operatorname{dim} X=n ; L$ ample line bundle section ring $R(X, L)=\oplus_{k=0}^{\infty} H^{0}\left(X, L^{k}\right)$ has graded ring structure

Today's goal : Understand better the correspondence metrics

From metrics to norms

Metrics on $L \rightarrow$ norms on $R(X, L)$

Hermitian metric h^{L} on L

$$
\begin{gathered}
L^{\infty} \text {-norms } \operatorname{Ban}_{k}^{\infty}\left(h^{L}\right):=\|\cdot\|_{L^{\infty}(X)} \text { on } H^{0}\left(X, L^{k}\right), k \in \mathbb{N}^{*} \\
\|f\|_{L^{\infty}(X)}:=\sup _{x \in X}|f(x)|_{\left(h^{\iota}\right)^{k}}, \quad f \in H^{0}\left(X, L^{k}\right)
\end{gathered}
$$

"Ban" stands for Banach

Submultiplicative norms

Graded norm $N=\sum N_{k}, N_{k}:=\|\cdot\|_{k}$, on $R(X, L)$ is submultiplicative if $\|f \cdot g\|_{k+1} \leq\|f\|_{k} \cdot\|g\|_{I}$.

Submultiplicative norms

Graded norm $N=\sum N_{k}, N_{k}:=\|\cdot\|_{k}$, on $R(X, L)$ is submultiplicative if $\|f \cdot g\|_{k+1} \leq\|f\|_{k} \cdot\|g\|_{/}$.

Main example : $\operatorname{Ban}^{\infty}\left(h^{L}\right)=\sum \operatorname{Ban}_{k}^{\infty}\left(h^{L}\right)$.

Submultiplicative norms

Graded norm $N=\sum N_{k}, N_{k}:=\|\cdot\|_{k}$, on $R(X, L)$
is submultiplicative if $\|f \cdot g\|_{k+l} \leq\|f\|_{k} \cdot\|g\|_{/}$.
Main example : $\operatorname{Ban}^{\infty}\left(h^{L}\right)=\sum \operatorname{Ban}_{k}^{\infty}\left(h^{L}\right)$.

Main theorem (preliminary version)

For any submultiplicative graded norm N on $R(X, L)$ [satisfying some hypotheses] there is a unique* metric h^{L} on L such that

$$
N \sim \operatorname{Ban}^{\infty}\left(h^{L}\right)
$$

Submultiplicative norms

Graded norm $N=\sum N_{k}, N_{k}:=\|\cdot\|_{k}$, on $R(X, L)$
is submultiplicative if $\|f \cdot g\|_{k+l} \leq\|f\|_{k} \cdot\|g\|_{I}$.
Main example : $\operatorname{Ban}^{\infty}\left(h^{L}\right)=\sum \operatorname{Ban}_{k}^{\infty}\left(h^{L}\right)$.

Main theorem (preliminary version)

For any submultiplicative graded norm N on $R(X, L)$ [satisfying some hypotheses] there is a unique* metric h^{L} on L such that

$$
N \sim \operatorname{Ban}^{\infty}\left(h^{L}\right)
$$

Plan for the rest of the talk
A what is \sim ? how to construct h^{L} ? hypotheses?
B examples. motivations and applications.
C proof.

Equivalence of norms

Sequences of norms N_{k}, N_{k}^{\prime} on $H^{0}\left(X, L^{k}\right), k \in \mathbb{N}$, are equivalent (\sim) if $\forall \epsilon>0, \exists k_{0} \in \mathbb{N}$ such that $\forall k \geq k_{0}$

$$
\exp (-\epsilon k) \cdot N_{k} \leq N_{k}^{\prime} \leq \exp (\epsilon k) \cdot N_{k}
$$

Equivalence of norms

Sequences of norms N_{k}, N_{k}^{\prime} on $H^{0}\left(X, L^{k}\right), k \in \mathbb{N}$, are equivalent (\sim) if $\forall \epsilon>0, \exists k_{0} \in \mathbb{N}$ such that $\forall k \geq k_{0}$

$$
\exp (-\epsilon k) \cdot N_{k} \leq N_{k}^{\prime} \leq \exp (\epsilon k) \cdot N_{k}
$$

Lemma : $\operatorname{Ban}^{\infty}\left(h_{0}^{L}\right) \nsim \operatorname{Ban}^{\infty}\left(h_{1}^{L}\right)$ for $h_{0}^{L} \neq h_{1}^{L}$ continuous psh
h^{L} is psh if locally $h^{L}=e^{-\phi}$, where ϕ is plurisubharmonic (psh),
h^{L} is positive if it is smooth and ϕ is strictly plurisubharmonic.

From norms to metrics

Norm N_{k} on $H^{0}\left(X, L^{k}\right) \rightarrow$ Fubini-Study metric $F S\left(N_{k}\right)$ on L^{k}

Norm N_{k} on $H^{0}\left(X, L^{k}\right) \rightarrow$ Fubini-Study metric $F S\left(N_{k}\right)$ on L^{k}

Defn : let $I \in L_{x}^{k}, x \in X$, we define $\mid\left\|_{F S\left(N_{k}\right)}:=\underset{\substack{\left.s \in H^{0}(X), L^{k}\right) \\ s(x)=1}}{ }\right\| s \|_{k}$.

Norm N_{k} on $H^{0}\left(X, L^{k}\right) \rightarrow$ Fubini-Study metric $F S\left(N_{k}\right)$ on L^{k}

Defn : let $I \in L_{x}^{k}, x \in X$, we define $\mid I_{F S\left(N_{k}\right)}:=\underset{\substack{\left.s \in H^{0}(x)=L^{k}\right) \\ s(x)=1}}{ }\|s\|_{k}$.

Geometric description through Kodaira embeddings

$$
\begin{aligned}
& \operatorname{Kod}_{k}: X \hookrightarrow \underset{~}{\underset{P}{P}}\left(H^{0}\left(X, L^{k}\right)^{*}\right) \\
& \text { isomorphism } \operatorname{Kod}_{k}^{*} \mathscr{O}(1) \simeq L^{k},
\end{aligned}
$$

Norm N_{k} on $H^{0}\left(X, L^{k}\right) \rightarrow$ Fubini-Study metric $F S\left(N_{k}\right)$ on L^{k}

Defn : let $I \in L_{x}^{k}, x \in X$, we define $\mid\| \|_{F S\left(N_{k}\right)}:=\inf _{\substack{s \in H^{0}\left(X, L^{k}\right) \\ s(x)=I}}\|s\|_{k}$.

Geometric description through Kodaira embeddings

$$
\begin{gathered}
\operatorname{Kod}_{k}: X \hookrightarrow \underset{\underset{\sim}{\mathbb{P}}\left(H^{0}\left(X, L^{k}\right)^{*}\right)}{\vdots} \\
\text { isomorphism } \operatorname{Kod}_{k}^{*} \mathcal{O}(1) \simeq L^{k},
\end{gathered}
$$

Norm N_{k} on $H^{0}\left(X, L^{k}\right) \rightsquigarrow$ metric on $\mathscr{O}(1) \rightsquigarrow$ metric $F S\left(N_{k}\right)$ on L^{k}

Submultiplicative norms and Fubini-Study metrics

Observation : If $N=\sum N_{k}$ submultiplicative, then $F S\left(N_{k}\right)$ is submultiplicative, i.e. $\overparen{F S}\left(N_{k+1}\right) \leq F S\left(N_{k}\right) \cdot F S\left(N_{l}\right)$.

Submultiplicative norms and Fubini-Study metrics

Observation : If $N=\sum N_{k}$ submultiplicative, then $F S\left(N_{k}\right)$ is submultiplicative, i.e. $\overparen{F S}\left(N_{k+1}\right) \leq F S\left(N_{k}\right) \cdot F S\left(N_{l}\right)$.
Proof : for $a \in L_{x}$, we need $\left|a^{k+\prime}\right|_{F S\left(N_{k+1}\right)} \leq\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{l}\right)}$.

Submultiplicative norms and Fubini-Study metrics

Observation : If $N=\sum N_{k}$ submultiplicative, then $F S\left(N_{k}\right)$ is submultiplicative, i.e. $\overparen{F S}\left(N_{k+1}\right) \leq F S\left(N_{k}\right) \cdot F S\left(N_{l}\right)$.
Proof : for $a \in L_{x}$, we need $\left|a^{k+\prime}\right|_{F S\left(N_{k+1}\right)} \leq\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{l}\right)}$.

$$
\left|a^{k+l}\right|_{F S\left(N_{k+1}\right)}=\inf _{\substack{ \\s(x)=H^{0}\left(X, L^{k+1}\right)}}\|S\|_{k+1}
$$

Submultiplicative norms and Fubini-Study metrics

Observation : If $N=\sum N_{k}$ submultiplicative, then $F S\left(N_{k}\right)$ is submultiplicative, i.e. $F S\left(N_{k+1}\right) \leq F S\left(N_{k}\right) \cdot F S\left(N_{l}\right)$.
Proof : for $a \in L_{x}$, we need $\left|a^{k+\prime}\right|_{F S\left(N_{k+1}\right)} \leq\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{l}\right)}$.

$$
\begin{aligned}
&\left|a^{k+\prime}\right|_{F S\left(N_{k+1}\right)}=\inf _{s \in H^{0}\left(X, L^{k+1}\right)}^{s(x)=a^{k+1}} \boldsymbol{N}\|s\|_{k+1} \\
& \leq \inf _{f \in H^{0}\left(X, L^{k}\right), g \in H^{0}\left(X, L^{\prime}\right)}\|f \cdot g\|_{k+1} \\
& f(x)=a^{k}, g(x)=a^{\prime}
\end{aligned}
$$

Submultiplicative norms and Fubini-Study metrics

Observation : If $N=\sum N_{k}$ submultiplicative, then $F S\left(N_{k}\right)$ is submultiplicative, i.e. $F S\left(N_{k+1}\right) \leq F S\left(N_{k}\right) \cdot F S\left(N_{l}\right)$.

Proof : for $a \in L_{x}$, we need $\left|a^{k+\prime}\right|_{F S\left(N_{k+1}\right)} \leq\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{l}\right)}$.

$$
\left.\begin{array}{rl}
\left|a^{k+\prime}\right|_{F S\left(N_{k+1}\right)} & =\inf _{s \in H^{0}\left(X, L^{k+\prime}\right)}\|s\|_{k+\prime} \\
& \leq \inf _{f(x)=a^{k+1}}\left(X, L^{k}\right), g \in H^{0}\left(X, L^{\prime}\right) \\
\left.f(x)=a^{k}, g(x)=a^{\prime}\right)
\end{array}\|f \cdot g\|_{k+I}\right)
$$

Submultiplicative norms and Fubini-Study metrics

Observation : If $N=\sum N_{k}$ submultiplicative, then $F S\left(N_{k}\right)$ is submultiplicative, i.e. $F S\left(N_{k+1}\right) \leq F S\left(N_{k}\right) \cdot F S\left(N_{l}\right)$.

Proof : for $a \in L_{X}$, we need $\left|a^{k+l}\right|_{F S\left(N_{k+1}\right)} \leq\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{l}\right)}$.

$$
\begin{aligned}
& \left|a^{k+l}\right|_{F S\left(N_{k+1}\right)}=\inf _{s \in H^{0}\left(X, L^{k+1}\right)}\|S\|_{k+1} \\
& s(x)=a^{k+1} \\
& \leq \inf _{f \in H^{0}\left(X, L^{k}\right), g \in H^{0}\left(X, L^{\prime}\right)}\|f \cdot g\|_{k+1} \\
& f(x)=a^{k}, g(x)=a^{\prime} \\
& \leq \inf _{\substack{\in \in H^{0}\left(X, L^{k}\right) \\
f(x)=a^{k}}}\|f\|_{k} \cdot \inf _{\substack{g \in H^{0}\left(X, L^{\prime}\right) \\
g(x)=a^{\prime}}}\|g\|_{I} \\
& =\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{l}\right)} .
\end{aligned}
$$

Submultiplicative norms and Fubini-Study metrics

Observation : If $N=\sum N_{k}$ submultiplicative, then $F S\left(N_{k}\right)$ is submultiplicative, i.e. $F S\left(N_{k+1}\right) \leq F S\left(N_{k}\right) \cdot F S\left(N_{l}\right)$.

Proof : for $a \in L_{x}$, we need $\left|a^{k+l}\right|_{F S\left(N_{k+1}\right)} \leq\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{l}\right)}$.

$$
\begin{aligned}
\left|a^{k+\prime}\right|_{F S\left(N_{k+1}\right)} & =\inf _{\substack{s \in H^{0}\left(X, L^{k+\prime}\right) \\
s(x)=a^{k+1}}}\|s\|_{k+I} \\
& \leq \inf _{f \in H^{0}\left(X, L^{k}\right), g \in H^{0}\left(X, L^{\prime}\right)}\|f \cdot g\|_{k+I} \\
& \leq \inf _{\substack{\left.f \in H^{0}(X)=a^{k}, g(x)=L^{k}\right) \\
f(x)=a^{k}}}\|f\|_{k} \cdot \inf _{\substack{g \in H^{0}\left(X, L^{\prime}\right) \\
g(x)=a^{\prime}}}\|g\|_{I} \\
& =\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{I}\right)} .
\end{aligned}
$$

Fekete's lemma : For $N=\sum N_{k}$ submultiplicative, as $k \rightarrow \infty$, $F S\left(N_{k}\right)^{\frac{1}{k}}$ converge. Let $F S(N):=\lim _{k \rightarrow \infty} F S\left(N_{k}\right)^{\frac{1}{k}}$

Submultiplicative norms and Fubini-Study metrics

Observation : If $N=\sum N_{k}$ submultiplicative, then $F S\left(N_{k}\right)$ is submultiplicative, i.e. $F S\left(N_{k+1}\right) \leq F S\left(N_{k}\right) \cdot F S\left(N_{l}\right)$.

Proof : for $a \in L_{X}$, we need $\left|a^{k+\prime}\right|_{F S\left(N_{k+1}\right)} \leq\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{l}\right)}$.

$$
\begin{aligned}
& \left|a^{k+\prime}\right|_{F S\left(N_{k+1}\right)}=\inf _{s \in H^{0}\left(X, L^{k+\prime}\right)}\|S\|_{k+1} \\
& s(x)=a^{k+1} \\
& \leq \inf _{f \in H^{0}\left(X, L^{k}\right), g \in H^{0}\left(X, L^{\prime}\right)}\|f \cdot g\|_{k+1} \\
& f(x)=a^{k}, g(x)=a^{\prime} \\
& \leq \inf _{\substack{f \in H^{0}\left(X, L^{k}\right) \\
f(x)=a^{k}}}\|f\|_{k} \cdot \inf _{g \in H^{0}\left(X, L^{\prime}\right)}^{g(x)=a^{\prime}} \mid l g \|_{I} \\
& =\left|a^{k}\right|_{F S\left(N_{k}\right)} \cdot\left|a^{\prime}\right|_{F S\left(N_{l}\right)} .
\end{aligned}
$$

Fekete's lemma : For $N=\sum N_{k}$ submultiplicative, as $k \rightarrow \infty$, $F S\left(N_{k}\right)^{\frac{1}{k}}$ converge. Let $F S(N):=\lim _{k \rightarrow \infty} F S\left(N_{k}\right)^{\frac{1}{k}}$

Attention! $F S(N)$ is only upper-semicontinuous; probably zero

Main theorem of the talk

Theorem (-, 2022)

For any submultiplicative graded norm N on $R(X, L)$ such that $F S(N)$ is continuous and non-zero $N \sim \operatorname{Ban}^{\infty}(F S(N))$

Main theorem of the talk

Theorem (-, 2022)

For any submultiplicative graded norm N on $R(X, L)$ such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Remark :a) It is a complex-geometric analogue of a theorem from non-Archimedean geometry of Boucksom-Jonsson, 2021

Main theorem of the talk

Theorem (-, 2022)

For any submultiplicative graded norm N on $R(X, L)$ such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Remark :a) It is a complex-geometric analogue of a theorem from non-Archimedean geometry of Boucksom-Jonsson, 2021
submultiplicative norm \leftrightarrow submultiplicative filtration
metric on $(L, X) \leftrightarrow$ metric on Berkovich analytification ($L^{a n}, X^{a n}$)

Main theorem of the talk

Theorem (-, 2022)

For any submultiplicative graded norm N on $R(X, L)$ such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Remark :a) It is a complex-geometric analogue of a theorem from non-Archimedean geometry of Boucksom-Jonsson, 2021
submultiplicative norm \leftrightarrow submultiplicative filtration
metric on $(L, X) \leftrightarrow$ metric on Berkovich analytification ($L^{a n}, X^{a n}$)
b) Theorem fails with no assumption on $F S(N)$.

Main theorem of the talk

Theorem (-, 2022)

For any submultiplicative graded norm N on $R(X, L)$ such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Remark :a) It is a complex-geometric analogue of a theorem from non-Archimedean geometry of Boucksom-Jonsson, 2021 submultiplicative norm \leftrightarrow submultiplicative filtration metric on $(L, X) \leftrightarrow$ metric on Berkovich analytification ($L^{a n}, X^{a n}$)
b) Theorem fails with no assumption on $F S(N)$. But it can be remedied by a weaker equivalence relation \sim.

Examples

A norm on homogeneous polynomials

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. $R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}

A norm on homogeneous polynomials

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. $R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}

For $P \in \operatorname{Sym}^{k}(V), P(z)=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}} a_{\alpha} z^{\alpha}$, for $N_{k}:=\|\cdot\|_{k}^{\pi}$, we let

$$
\|P\|_{k}^{\pi}=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}}\left|a_{\alpha}\right|
$$

A norm on homogeneous polynomials

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$.
$R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
For $P \in \operatorname{Sym}^{k}(V), P(z)=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}} a_{\alpha} z^{\alpha}$, for $N_{k}:=\|\cdot\|_{k}^{\pi}$, we let

$$
\|P\|_{k}^{\pi}=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}}\left|a_{\alpha}\right|
$$

Easy observation : $N=\sum N_{k}$ is submultiplicative

A norm on homogeneous polynomials

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$.
$R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
For $P \in \operatorname{Sym}^{k}(V), P(z)=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}} a_{\alpha} z^{\alpha}$, for $N_{k}:=\|\cdot\|_{k}^{\pi}$, we let

$$
\|P\|_{k}^{\pi}=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}}\left|a_{\alpha}\right|
$$

Easy observation : $N=\sum N_{k}$ is submultiplicative
One can also verify that

$$
\|P\|_{L^{\infty}(F S(N))}=\sup _{\substack{z \in \mathbb{C}^{n} \\\left|z_{i}\right| \leq 1}}\left|P\left(z_{1}, \cdots, z_{n}\right)\right|
$$

A norm on homogeneous polynomials

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$.
$R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
For $P \in \operatorname{Sym}^{k}(V), P(z)=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}} a_{\alpha} z^{\alpha}$, for $N_{k}:=\|\cdot\|_{k}^{\pi}$, we let

$$
\|P\|_{k}^{\pi}=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}}\left|a_{\alpha}\right|
$$

Easy observation : $N=\sum N_{k}$ is submultiplicative
One can also verify that

$$
\|P\|_{L^{\infty}(F S(N))}=\sup _{\substack{z \in \mathbb{C}^{n} \\\left|z_{i}\right| \leq 1}}\left|P\left(z_{1}, \cdots, z_{n}\right)\right|
$$

Clearly, we have $\|\cdot\|_{L^{\infty}(F S(N))} \leq\|\cdot\|_{k}^{\pi}$

A norm on homogeneous polynomials

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$.
$R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
For $P \in \operatorname{Sym}^{k}(V), P(z)=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}} a_{\alpha} z^{\alpha}$, for $N_{k}:=\|\cdot\|_{k}^{\pi}$, we let

$$
\|P\|_{k}^{\pi}=\sum_{\substack{\alpha \in \mathbb{N}^{n} \\|\alpha|=k}}\left|a_{\alpha}\right|
$$

Easy observation : $N=\sum N_{k}$ is submultiplicative
One can also verify that

$$
\|P\|_{L^{\infty}(F S(N))}=\sup _{\substack{z \in \mathbb{C}^{n} \\\left|z_{i}\right| \leq 1}}\left|P\left(z_{1}, \cdots, z_{n}\right)\right|
$$

Clearly, we have $\|\cdot\|_{L^{\infty}(F S(N))} \leq\|\cdot\|_{k}^{\pi}$
Our theorem gives the opposite (nontrivial !) inequality :
$\forall \epsilon>0, \exists k_{0}$, so that $\forall k \geq k_{0},\|\cdot\|_{L^{\infty}(F S(N))} \geq \exp (-\epsilon k) \cdot\|\cdot\|_{k}^{\pi}$

Ubiquitous submultiplicative norms

Are there natural examples of submultiplicative norms?

Ubiquitous submultiplicative norms

Are there natural examples of submultiplicative norms?

1. $L^{\frac{1}{k}}$-(pseudo)norms : $\|f\|_{k}:=\left(\int_{x \in X}|f(x)|_{h^{L}}^{\frac{1}{k}} \cdot d v\right)^{k}$
2. Mahler (pseudo)norms : $\|f\|_{k}:=\exp \left(\int_{x \in X} \log |f(x)|_{h^{L}} \cdot d v\right)$
3. Complex interpolation between submultiplicative norms
4. Projective tensor norms on symmetric algebras
5. Quotients of submultiplicative norms
6. Interpolations of submultiplicative filtrations

4. Projective tensor norms on symmetric algebra

$\left(V_{i}, N_{i}:=\|\cdot\|_{i}\right), i=1,2$, normed vector spaces. There is no canonical norm on $V_{1} \otimes V_{2}$

4. Projective tensor norms on symmetric algebra

$\left(V_{i}, N_{i}:=\|\cdot\|_{i}\right), i=1,2$, normed vector spaces.
There is no canonical norm on $V_{1} \otimes V_{2}$
Projective tensor norm $N_{1} \otimes_{\pi} N_{2}=\|\cdot\|_{\otimes_{\pi}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\pi}}=\inf \left\{\sum\left\|x_{i}\right\|_{1} \cdot\left\|y_{i}\right\|_{2} ; \quad f=\sum x_{i} \otimes y_{i}\right\}$
$\left(V_{i}, N_{i}:=\|\cdot\|_{i}\right), i=1,2$, normed vector spaces.
There is no canonical norm on $V_{1} \otimes V_{2}$
Projective tensor norm $N_{1} \otimes_{\pi} N_{2}=\|\cdot\|_{\otimes_{\pi}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\pi}}=\inf \left\{\sum\left\|x_{i}\right\|_{1} \cdot\left\|y_{i}\right\|_{2} ; \quad f=\sum x_{i} \otimes y_{i}\right\}$
Injective tensor norm $N_{1} \otimes_{\epsilon} N_{2}=\|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\epsilon}}=\sup \left\{|(\phi \otimes \psi)(f)| ; \quad \phi \in V_{1}^{*}, \psi \in V_{2}^{*},\|\phi\|_{1}^{*}=\|\psi\|_{2}^{*}=1\right\}$

4. Projective tensor norms on symmetric algebra

$\left(V_{i}, N_{i}:=\|\cdot\|_{i}\right), i=1,2$, normed vector spaces.
There is no canonical norm on $V_{1} \otimes V_{2}$
Projective tensor norm $N_{1} \otimes_{\pi} N_{2}=\|\cdot\|_{\otimes_{\pi}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\pi}}=\inf \left\{\sum\left\|x_{i}\right\|_{1} \cdot\left\|y_{i}\right\|_{2} ; \quad f=\sum x_{i} \otimes y_{i}\right\}$
Injective tensor norm $N_{1} \otimes_{\epsilon} N_{2}=\|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\epsilon}}=\sup \left\{|(\phi \otimes \psi)(f)| ; \quad \phi \in V_{1}^{*}, \psi \in V_{2}^{*},\|\phi\|_{1}^{*}=\|\psi\|_{2}^{*}=1\right\}$
For any $\left(V, N_{V}\right)$ denote the projective tensor norm by $\operatorname{Sym}^{\pi} N_{V}$ on $\operatorname{Sym} V=R\left(\mathbb{P}\left(V^{*}\right), \mathscr{O}(1)\right)$

4. Projective tensor norms on symmetric algebra

$\left(V_{i}, N_{i}:=\|\cdot\|_{i}\right), i=1,2$, normed vector spaces.
There is no canonical norm on $V_{1} \otimes V_{2}$
Projective tensor norm $N_{1} \otimes_{\pi} N_{2}=\|\cdot\|_{\otimes_{\pi}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\pi}}=\inf \left\{\sum\left\|x_{i}\right\|_{1} \cdot\left\|y_{i}\right\|_{2} ; \quad f=\sum x_{i} \otimes y_{i}\right\}$
Injective tensor norm $N_{1} \otimes_{\epsilon} N_{2}=\|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\epsilon}}=\sup \left\{|(\phi \otimes \psi)(f)| ; \quad \phi \in V_{1}^{*}, \psi \in V_{2}^{*},\|\phi\|_{1}^{*}=\|\psi\|_{2}^{*}=1\right\}$
For any $\left(V, N_{V}\right)$ denote the projective tensor norm by $\operatorname{Sym}^{\pi} N_{V}$ on $\operatorname{Sym} V=R\left(\mathbb{P}\left(V^{*}\right), \mathscr{O}(1)\right)$
Observation : $\operatorname{Sym}^{\pi} N_{V}$ is submultiplicative. Also, $\|\cdot\|_{k}^{\epsilon} \leq\|\cdot\|_{k}^{\pi}$
$\left(V_{i}, N_{i}:=\|\cdot\|_{i}\right), i=1,2$, normed vector spaces.
There is no canonical norm on $V_{1} \otimes V_{2}$
Projective tensor norm $N_{1} \otimes_{\pi} N_{2}=\|\cdot\|_{\otimes_{\pi}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\pi}}=\inf \left\{\sum\left\|x_{i}\right\|_{1} \cdot\left\|y_{i}\right\|_{2} ; \quad f=\sum x_{i} \otimes y_{i}\right\}$
Injective tensor norm $N_{1} \otimes_{\epsilon} N_{2}=\|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\epsilon}}=\sup \left\{|(\phi \otimes \psi)(f)| ; \quad \phi \in V_{1}^{*}, \psi \in V_{2}^{*},\|\phi\|_{1}^{*}=\|\psi\|_{2}^{*}=1\right\}$
For any $\left(V, N_{V}\right)$ denote the projective tensor norm by $\operatorname{Sym}^{\pi} N_{V}$ on $\operatorname{Sym} V=R\left(\mathbb{P}\left(V^{*}\right), \mathscr{O}(1)\right)$
Observation : $\operatorname{Sym}^{\pi} N_{V}$ is submultiplicative. Also, $\|\cdot\|_{k}^{\epsilon} \leq\|\cdot\|_{k}^{\pi}$ If we now apply our theorem for $\operatorname{Sym}^{\pi} N_{V}$, it would give : $\forall \epsilon>0$, $\exists k_{0}$, so that $\forall k \geq k_{0}, P \in \operatorname{Sym}^{k} V,\|P\|_{k}^{\epsilon} \geq \exp (-\epsilon k) \cdot\|P\|_{k}^{\pi}$
$\left(V_{i}, N_{i}:=\|\cdot\|_{i}\right), i=1,2$, normed vector spaces.
There is no canonical norm on $V_{1} \otimes V_{2}$
Projective tensor norm $N_{1} \otimes_{\pi} N_{2}=\|\cdot\|_{\otimes_{\pi}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\pi}}=\inf \left\{\sum\left\|x_{i}\right\|_{1} \cdot\left\|y_{i}\right\|_{2} ; \quad f=\sum x_{i} \otimes y_{i}\right\}$
Injective tensor norm $N_{1} \otimes_{\epsilon} N_{2}=\|\cdot\|_{\otimes_{\epsilon}}$. For $f \in V_{1} \otimes V_{2}$
$\|f\|_{\otimes_{\epsilon}}=\sup \left\{|(\phi \otimes \psi)(f)| ; \quad \phi \in V_{1}^{*}, \psi \in V_{2}^{*},\|\phi\|_{1}^{*}=\|\psi\|_{2}^{*}=1\right\}$
For any $\left(V, N_{V}\right)$ denote the projective tensor norm by $\operatorname{Sym}^{\pi} N_{V}$ on $\operatorname{Sym} V=R\left(\mathbb{P}\left(V^{*}\right), \mathscr{O}(1)\right)$
Observation : $\operatorname{Sym}^{\pi} N_{V}$ is submultiplicative. Also, $\|\cdot\|_{k}^{\epsilon} \leq\|\cdot\|_{k}^{\pi}$ If we now apply our theorem for $\operatorname{Sym}^{\pi} N_{V}$, it would give : $\forall \epsilon>0$, $\exists k_{0}$, so that $\forall k \geq k_{0}, P \in \operatorname{Sym}^{k} V,\|P\|_{k}^{\epsilon} \geq \exp (-\epsilon k) \cdot\|P\|_{k}^{\pi}$

Surprising! In full tensor algebra, the analogue is false for any $\left(V, N_{V}\right), \operatorname{dim} V>1$, by a result of Pisier, 1980

5. Quotient norms and extension theorem

$Y \subset X$ complex submanifold, the restriction operator

$$
\operatorname{Res}: H^{0}\left(X, L^{k}\right) \rightarrow H^{0}\left(Y, L^{k}\right)
$$

is surjective for $k \gg 1$ by Serre's criterion

5. Quotient norms and extension theorem

$Y \subset X$ complex submanifold, the restriction operator

$$
\operatorname{Res}: H^{0}\left(X, L^{k}\right) \rightarrow H^{0}\left(Y, L^{k}\right)
$$

is surjective for $k \gg 1$ by Serre's criterion
Observation : If N on $R(X, L)$ is submultiplicative, then the quotient norm [N] on $R(Y, L)$ is submultiplicative, where $\|f\|_{[N]}:=\inf \left\{\|g\|_{N} ; \quad g \in R(X, L), \operatorname{Res}(g)=f\right\}, \quad f \in R(Y, L)$.

5. Quotient norms and extension theorem

$Y \subset X$ complex submanifold, the restriction operator

$$
\text { Res }: H^{0}\left(X, L^{k}\right) \rightarrow H^{0}\left(Y, L^{k}\right)
$$

is surjective for $k \gg 1$ by Serre's criterion
Observation : If N on $R(X, L)$ is submultiplicative, then the quotient norm [N] on $R(Y, L)$ is submultiplicative, where $\|f\|_{[N]}:=\inf \left\{\|g\|_{N} ; \quad g \in R(X, L), \operatorname{Res}(g)=f\right\}, \quad f \in R(Y, L)$.
If we now take $N=\operatorname{Ban}^{\infty}\left(h^{L}\right)$, our theorem for [N] gives us: $\forall \epsilon>0, \exists k_{0}$, so that $\forall k \geq k_{0}, f \in H^{0}\left(Y, L^{k}\right)$ there is a holomorphic extension $\tilde{f} \in H^{0}\left(X, L^{k}\right)$ of f, such that

$$
\|\tilde{f}\|_{L_{X}^{\infty}\left(h^{L}\right)} \leq \exp (\epsilon \boldsymbol{k}) \cdot\|f\|_{L_{Y}^{\infty}\left(h^{L}\right)}
$$

5. Quotient norms and extension theorem

$Y \subset X$ complex submanifold, the restriction operator

$$
\text { Res }: H^{0}\left(X, L^{k}\right) \rightarrow H^{0}\left(Y, L^{k}\right)
$$

is surjective for $k \gg 1$ by Serre's criterion
Observation : If N on $R(X, L)$ is submultiplicative, then the quotient norm [N] on $R(Y, L)$ is submultiplicative, where $\|f\|_{[N]}:=\inf \left\{\|g\|_{N} ; \quad g \in R(X, L), \operatorname{Res}(g)=f\right\}, \quad f \in R(Y, L)$.
If we now take $N=\operatorname{Ban}^{\infty}\left(h^{L}\right)$, our theorem for [N] gives us: $\forall \epsilon>0, \exists k_{0}$, so that $\forall k \geq k_{0}, f \in H^{0}\left(Y, L^{k}\right)$ there is a holomorphic extension $\tilde{f} \in H^{0}\left(X, L^{k}\right)$ of f, such that

$$
\|\tilde{f}\|_{L_{\chi}^{\infty}\left(h^{L}\right)} \leq \exp (\epsilon k) \cdot\|f\|_{L_{Y}^{\infty}\left(h^{L}\right)}
$$

This is a semiclassical Ohsawa-Takegoshi extension theorem. Established by S.-W. Zhang 1995 and Bost 2003. In (-, 2021), author refined it by replacing $\exp (\epsilon k)$ by $1+\frac{C}{k}$.

6. Introduction to submultiplicative filtrations

Filtration on a finitely dimensional vector space V is a map
$\mathcal{F}: \mathbb{Z} \rightarrow\{$ vector subspaces of $V\}$
decreasing, i.e. $\mathcal{F}^{n+1} V \subset \mathcal{F}^{n} V$
separating, i.e. $\mathcal{F}^{\infty} V=\{0\}$
exhausting, i.e. $\mathcal{F}^{-\infty} V=V$

6. Introduction to submultiplicative filtrations

Filtration on a finitely dimensional vector space V is a map
$\mathcal{F}: \mathbb{Z} \rightarrow\{$ vector subspaces of $V\}$
decreasing, i.e. $\mathcal{F}^{n+1} V \subset \mathcal{F}^{n} V$
separating, i.e. $\mathcal{F}^{\infty} V=\{0\}$
exhausting, i.e. $\mathcal{F}^{-\infty} V=V$
Weight function $w_{\mathcal{F}}(v):=\sup _{v \in \mathcal{F}^{\lambda} V} \lambda$ for $v \in V$

6. Introduction to submultiplicative filtrations

Filtration on a finitely dimensional vector space V is a map
$\mathcal{F}: \mathbb{Z} \rightarrow\{$ vector subspaces of $V\}$ decreasing, i.e. $\mathcal{F}^{n+1} V \subset \mathcal{F}^{n} V$ separating, i.e. $\mathcal{F}^{\infty} V=\{0\}$ exhausting, i.e. $\mathcal{F}^{-\infty} V=V$

Weight function $w_{\mathcal{F}}(v):=\sup _{v \in \mathcal{F}^{\lambda} V} \lambda$ for $v \in V$
A graded filtration \mathcal{F} on $R(X, L)$ is called submultiplicative if

$$
w_{\mathcal{F}}(f \cdot g) \geq w_{\mathcal{F}}(f)+w_{\mathcal{F}}(g)
$$

6. Introduction to submultiplicative filtrations

Filtration on a finitely dimensional vector space V is a map
$\mathcal{F}: \mathbb{Z} \rightarrow\{$ vector subspaces of $V\}$ decreasing, i.e. $\mathcal{F}^{n+1} V \subset \mathcal{F}^{n} V$ separating, i.e. $\mathcal{F}^{\infty} V=\{0\}$ exhausting, i.e. $\mathcal{F}^{-\infty} V=V$

Weight function $w_{\mathcal{F}}(v):=\sup _{v \in \mathcal{F}^{\lambda} V} \lambda$ for $v \in V$
A graded filtration \mathcal{F} on $R(X, L)$ is called submultiplicative if

$$
w_{\mathcal{F}}(f \cdot g) \geq w_{\mathcal{F}}(f)+w_{\mathcal{F}}(g)
$$

Example : Divisor $D \subset X, w_{\mathcal{F}^{D}}(\cdot)=$ order of vanishing along D.

6. Introduction to submultiplicative filtrations

Filtration on a finitely dimensional vector space V is a map
$\mathcal{F}: \mathbb{Z} \rightarrow\{$ vector subspaces of $V\}$ decreasing, i.e. $\mathcal{F}^{n+1} V \subset \mathcal{F}^{n} V$ separating, i.e. $\mathcal{F}^{\infty} V=\{0\}$ exhausting, i.e. $\mathcal{F}^{-\infty} V=V$

Weight function $w_{\mathcal{F}}(v):=\sup _{v \in \mathcal{F}^{\lambda} V} \lambda$ for $v \in V$
A graded filtration \mathcal{F} on $R(X, L)$ is called submultiplicative if

$$
w_{\mathcal{F}}(f \cdot g) \geq w_{\mathcal{F}}(f)+w_{\mathcal{F}}(g)
$$

Example : Divisor $D \subset X, w_{\mathcal{F}^{D}}(\cdot)=$ order of vanishing along D.
Motivation : study of submultiplicative filtrations is related to K-stability, itself related with constant scalar curvature metrics

6. Interpolations of submultiplicative filtrations

Let N be a submultiplicative norm on $R(X, L)$ and \mathcal{F} is a submultiplicative filtration. Define ray of norms $N_{t}=\|\cdot\|_{t}, t \geq 0$

$$
\|f\|_{t}=\inf \sum\left\|f_{i}\right\|_{N} \cdot \exp \left(-t w_{\mathcal{F}}\left(f_{i}\right)\right), \quad f=\sum f_{i}
$$

6. Interpolations of submultiplicative filtrations

Let N be a submultiplicative norm on $R(X, L)$ and \mathcal{F} is a submultiplicative filtration. Define ray of norms $N_{t}=\|\cdot\|_{t}, t \geq 0$

$$
\|f\|_{t}=\inf \sum\left\|f_{i}\right\|_{N} \cdot \exp \left(-t w_{\mathcal{F}}\left(f_{i}\right)\right), \quad f=\sum f_{i}
$$

Fact : N_{t} converges to \mathcal{F}, i.e. $\lim _{t \rightarrow \infty} \frac{\log \|f\|_{t}}{t}=-w_{\mathcal{F}}(f)$

6. Interpolations of submultiplicative filtrations

Let N be a submultiplicative norm on $R(X, L)$ and \mathcal{F} is a submultiplicative filtration. Define ray of norms $N_{t}=\|\cdot\|_{t}, t \geq 0$

$$
\|f\|_{t}=\inf \sum\left\|f_{i}\right\|_{N} \cdot \exp \left(-t w_{\mathcal{F}}\left(f_{i}\right)\right), \quad f=\sum f_{i}
$$

Fact : N_{t} converges to \mathcal{F}, i.e. $\lim _{t \rightarrow \infty} \frac{\log \|f\|_{t}}{t}=-w_{\mathcal{F}}(f)$
Easy observation : N_{t} is submultiplicative

6. Interpolations of submultiplicative filtrations

Let N be a submultiplicative norm on $R(X, L)$ and \mathcal{F} is a submultiplicative filtration. Define ray of norms $N_{t}=\|\cdot\|_{t}, t \geq 0$

$$
\|f\|_{t}=\inf \sum\left\|f_{i}\right\|_{N} \cdot \exp \left(-t w_{\mathcal{F}}\left(f_{i}\right)\right), \quad f=\sum f_{i}
$$

Fact: N_{t} converges to \mathcal{F}, i.e. $\lim _{t \rightarrow \infty} \frac{\log \|f\|_{t}}{t}=-w_{\mathcal{F}}(f)$
Easy observation : N_{t} is submultiplicative
Our theorem (+ a lot of work, see (-, 2023)), applied for N_{t}, proves a conjecture of Darvas-Lu 2019 and K. Zhang 2021.

Roughly, conjecture says that :
Geometry at infinity on the space of Kähler potentials is related with
Asymptotic study of submultiplicative filtrations

Isometry and quantization

Spaces of metrics and norms

\mathcal{H}^{L} the space of continuous psh metrics on L \mathcal{H}_{k} the space of norms on $H^{0}\left(X, L^{k}\right)$

Spaces of metrics and norms

\mathcal{H}^{L} the space of continuous psh metrics on L \mathcal{H}_{k} the space of norms on $H^{0}\left(X, L^{k}\right)$

Tian, $1990: \mathcal{H}^{L}=\overline{\cup F S\left(\mathcal{H}_{k}\right)^{\frac{1}{k}}}$. In fact, $F S\left(\operatorname{Ban}^{\infty}\left(h^{L}\right)\right)=h^{L}$.

Spaces of metrics and norms

\mathcal{H}^{L} the space of continuous psh metrics on L \mathcal{H}_{k} the space of norms on $H^{0}\left(X, L^{k}\right)$

Tian, $1990: \mathcal{H}^{L}=\overline{\cup F S\left(\mathcal{H}_{k}\right)^{\frac{1}{k}}}$. In fact, $F S\left(\operatorname{Ban}^{\infty}\left(h^{L}\right)\right)=h^{L}$.

Spaces of metrics and norms

\mathcal{H}^{L} the space of continuous psh metrics on L \mathcal{H}_{k} the space of norms on $H^{0}\left(X, L^{k}\right)$

Tian, $1990: \mathcal{H}^{L}=\overline{\cup F S\left(\mathcal{H}_{k}\right)^{\frac{1}{k}}}$. In fact, $F S\left(\operatorname{Ban}^{\infty}\left(h^{L}\right)\right)=h^{L}$.

Question : to which extent, Ban^{∞} and $F S$ preserve geometry?

Spaces of metrics and norms

\mathcal{H}^{L} the space of continuous psh metrics on L \mathcal{H}_{k} the space of norms on $H^{0}\left(X, L^{k}\right)$

Tian, $1990: \mathcal{H}^{L}=\overline{\cup F S\left(\mathcal{H}_{k}\right)^{\frac{1}{k}}}$. In fact, $F S\left(\operatorname{Ban}^{\infty}\left(h^{L}\right)\right)=h^{L}$.

Question : to which extent, Ban ${ }^{\infty}$ and $F S$ preserve geometry?
Remark : We understand Ban ${ }^{\infty}$ much better than FS.

Natural metric structures on \mathcal{H}^{L} and \mathcal{H}_{k}

We fix $p \in\left[1,+\infty\left[\right.\right.$, let H_{0}, H_{1} Hermitian norms on $H^{0}\left(X, L^{k}\right)$ let $A \in \operatorname{End}^{h}\left(H^{0}\left(X, L^{k}\right)\right)$ be such that $\langle\cdot, \cdot\rangle_{H_{1}}=\langle A \cdot, \cdot\rangle_{H_{0}}$

Natural metric structures on \mathcal{H}^{L} and \mathcal{H}_{k}

We fix $p \in\left[1,+\infty\left[\right.\right.$, let H_{0}, H_{1} Hermitian norms on $H^{0}\left(X, L^{k}\right)$ let $A \in \operatorname{End}^{h}\left(H^{0}\left(X, L^{k}\right)\right)$ be such that $\langle\cdot, \cdot\rangle_{H_{1}}=\langle A \cdot, \cdot\rangle_{H_{0}}$

$$
d_{p}\left(H_{0}, H_{1}\right):=\sqrt[p]{\frac{\operatorname{Tr}\left[|\log A|^{p}\right]}{\operatorname{dim} V}}
$$

For $N=\sum N_{k}, N=\sum N_{k}^{\prime}$, we let

$$
d_{p}\left(N, N^{\prime}\right):=\limsup _{k \rightarrow \infty} \frac{d_{p}\left(N_{k}, N_{k}^{\prime}\right)}{k}
$$

This gives a (pseudo)metric on $\prod \mathcal{H}_{k}$

Natural metric structures on \mathcal{H}^{L} and \mathcal{H}_{k}

We fix $p \in\left[1,+\infty\left[\right.\right.$, let H_{0}, H_{1} Hermitian norms on $H^{0}\left(X, L^{k}\right)$ let $A \in \operatorname{End}^{h}\left(H^{0}\left(X, L^{k}\right)\right)$ be such that $\langle\cdot, \cdot\rangle_{H_{1}}=\langle A \cdot, \cdot\rangle_{H_{0}}$

$$
d_{p}\left(H_{0}, H_{1}\right):=\sqrt[p]{\frac{\operatorname{Tr}\left[|\log A|^{p}\right]}{\operatorname{dim} V}}
$$

For $N=\sum N_{k}, N=\sum N_{k}^{\prime}$, we let

$$
d_{p}\left(N, N^{\prime}\right):=\limsup _{k \rightarrow \infty} \frac{d_{p}\left(N_{k}, N_{k}^{\prime}\right)}{k}
$$

This gives a (pseudo) metric on $\prod \mathcal{H}_{k}$
Mabuchi : distance on \mathcal{H}^{L}, for a \mathcal{C}^{1}-path $\gamma=h_{t}^{L} \in \mathcal{H}^{L}, t \in[0,1]$

$$
\begin{gathered}
\operatorname{len}_{p}(\gamma)=\int_{0}^{1} \sqrt[p]{\int_{X}\left|\frac{\dot{h}_{t}^{L}}{h_{t}^{L}}\right|^{p} \cdot \frac{c_{1}\left(L, h_{t}^{L}\right)^{n}}{c_{1}(L)^{n}}} \\
d_{p}\left(h_{0}^{L}, h_{1}^{L}\right):=\inf _{\gamma} \operatorname{len} p(\gamma)
\end{gathered}
$$

Isometric properties of Ban ${ }^{\infty}$ and FS

Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson, 2012, Darvas-Lu-Rubinstein 2020)
Ban^{∞} is an isometry

Isometric properties of Ban ${ }^{\infty}$ and FS

Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson, 2012, Darvas-Lu-Rubinstein 2020)

Ban^{∞} is an isometry
What about FS?

Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson, 2012, Darvas-Lu-Rubinstein 2020)

Ban^{∞} is an isometry
What about FS?
Let $N=\sum N_{k}, N^{\prime}=\sum N_{k}^{\prime}$ two graded norms on $R(X, L)$
Let $h_{0}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}\right)^{\frac{1}{k}}$ and $h_{1}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}^{\prime}\right)^{\frac{1}{k}}$ exist

Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson, 2012, Darvas-Lu-Rubinstein 2020)

Ban^{∞} is an isometry
What about FS?
Let $N=\sum N_{k}, N^{\prime}=\sum N_{k}^{\prime}$ two graded norms on $R(X, L)$
Let $h_{0}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}\right)^{\frac{1}{k}}$ and $h_{1}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}^{\prime}\right)^{\frac{1}{k}}$ exist
Fact (-, 2023) : No relation between $d_{p}\left(N, N^{\prime}\right)$ and $d_{p}\left(h_{0}^{L}, h_{1}^{L}\right)$

Isometric properties of Ban ${ }^{\infty}$ and FS

Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson, 2012, Darvas-Lu-Rubinstein 2020)
$\operatorname{Ban}^{\infty}$ is an isometry
What about FS?
Let $N=\sum N_{k}, N^{\prime}=\sum N_{k}^{\prime}$ two graded norms on $R(X, L)$
Let $h_{0}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}\right)^{\frac{1}{k}}$ and $h_{1}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}^{\prime}\right)^{\frac{1}{k}}$ exist
Fact (-, 2023) : No relation between $d_{p}\left(N, N^{\prime}\right)$ and $d_{p}\left(h_{0}^{L}, h_{1}^{L}\right)$

Theorem (-, 2023)

If N, N^{\prime} are submultiplicative, $F S(N), F S\left(N^{\prime}\right)$ are bounded, then

$$
d_{p}\left(N, N^{\prime}\right)=d_{p}\left(F S(N), F S\left(N^{\prime}\right)\right)
$$

Isometric properties of Ban ${ }^{\infty}$ and FS

Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson, 2012, Darvas-Lu-Rubinstein 2020)
$\operatorname{Ban}^{\infty}$ is an isometry
What about FS?
Let $N=\sum N_{k}, N^{\prime}=\sum N_{k}^{\prime}$ two graded norms on $R(X, L)$
Let $h_{0}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}\right)^{\frac{1}{k}}$ and $h_{1}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}^{\prime}\right)^{\frac{1}{k}}$ exist
Fact $(-, 2023)$: No relation between $d_{p}\left(N, N^{\prime}\right)$ and $d_{p}\left(h_{0}^{L}, h_{1}^{L}\right)$

Theorem (-, 2023)

If N, N^{\prime} are submultiplicative, $F S(N), F S\left(N^{\prime}\right)$ are bounded, then

$$
d_{p}\left(N, N^{\prime}\right)=d_{p}\left(F S(N), F S\left(N^{\prime}\right)\right)
$$

Proof : From the main theorem of the talk, we have $d_{p}\left(N, N^{\prime}\right)=d_{p}\left(\operatorname{Ban}^{\infty}(F S(N)), \operatorname{Ban}^{\infty}\left(F S\left(N^{\prime}\right)\right)\right)$. Then apply previous theorem

Isometric properties of Ban ${ }^{\infty}$ and FS

Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson, 2012, Darvas-Lu-Rubinstein 2020)
Ban^{∞} is an isometry
What about FS?
Let $N=\sum N_{k}, N^{\prime}=\sum N_{k}^{\prime}$ two graded norms on $R(X, L)$
Let $h_{0}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}\right)^{\frac{1}{k}}$ and $h_{1}^{L}:=\lim _{k \rightarrow \infty} F S\left(N_{k}^{\prime}\right)^{\frac{1}{k}}$ exist
Fact $(-, 2023)$: No relation between $d_{p}\left(N, N^{\prime}\right)$ and $d_{p}\left(h_{0}^{L}, h_{1}^{L}\right)$

Theorem (-, 2023)

If N, N^{\prime} are submultiplicative, $F S(N), F S\left(N^{\prime}\right)$ are bounded, then

$$
d_{p}\left(N, N^{\prime}\right)=d_{p}\left(F S(N), F S\left(N^{\prime}\right)\right)
$$

Proof : From the main theorem of the talk, we have $d_{p}\left(N, N^{\prime}\right)=d_{p}\left(\operatorname{Ban}^{\infty}(F S(N)), \operatorname{Ban}^{\infty}\left(F S\left(N^{\prime}\right)\right)\right)$. Then apply previous theorem
Conclusion : pluripotential theory \rightsquigarrow study of filtrations

Proof of the main result

Main steps of the proof

Theorem (-, 2022)
N submultiplicative such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Main steps of the proof

Theorem (-, 2022)
N submultiplicative such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Idea of the proof : Step 1: $N \geq \operatorname{Ban}^{\infty}(F S(N))$.

Main steps of the proof

Theorem (-, 2022)
N submultiplicative such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Idea of the proof : Step 1: $N \geq \operatorname{Ban}^{\infty}(F S(N))$. Indeed : $\forall f \in H^{0}\left(X, L^{k}\right), x \in X,\|f\|_{k} \geq \inf _{s \in H^{0}\left(X, L^{k}\right)}\|s\|_{k}=|f(x)|_{F S\left(N_{k}\right)}$. $s(x)=f(x)$

Main steps of the proof

Theorem (-, 2022)
N submultiplicative such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Idea of the proof : Step 1: $N \geq \operatorname{Ban}^{\infty}(F S(N)$). Indeed : $\forall f \in H^{0}\left(X, L^{k}\right), x \in X,\|f\|_{k} \geq \inf _{s \in H^{0}\left(X, L^{k}\right)}\|s\|_{k}=|f(x)|_{F S\left(N_{k}\right)}$. $s(x)=f(x)$
Fekete's : $F S(N)=\inf F S\left(N_{k}\right)^{\frac{1}{k}}$, so $\|f\|_{k} \geq\|f\|_{L^{\infty}(F S(N))}$.

Main steps of the proof

Theorem (-, 2022)

N submultiplicative such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Idea of the proof : Step 1: $N \geq \operatorname{Ban}^{\infty}(F S(N)$). Indeed :
$\forall f \in H^{0}\left(X, L^{k}\right), x \in X,\|f\|_{k} \geq \inf _{s \in H^{0}\left(X, L^{k}\right)}\|s\|_{k}=|f(x)|_{F S\left(N_{k}\right)}$. $s(x)=f(x)$
Fekete's : $F S(N)=\inf F S\left(N_{k}\right)^{\frac{1}{k}}$, so $\|f\|_{k} \geq\|f\|_{L^{\infty}(F S(N))}$.
Step 2 : Consider Mult ${ }_{k, l}: H^{0}\left(X, L^{k}\right)^{\otimes l} \rightarrow H^{0}\left(X, L^{k l}\right)$
From submultiplicativity, we have $N_{k l} \leq\left[N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}\right]$.

Main steps of the proof

Theorem (-, 2022)

N submultiplicative such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Idea of the proof : Step 1: $N \geq \operatorname{Ban}^{\infty}(F S(N)$). Indeed:
$\forall f \in H^{0}\left(X, L^{k}\right), x \in X,\|f\|_{k} \geq \inf _{s \in H^{0}\left(X, L^{k}\right)}\|s\|_{k}=|f(x)|_{F S\left(N_{k}\right)}$. $s(x)=f(x)$
Fekete's : $F S(N)=\inf F S\left(N_{k}\right)^{\frac{1}{k}}$, so $\|f\|_{k} \geq\|f\|_{L^{\infty}(F S(N))}$.
Step 2 : Consider Mult ${ }_{k, l}: H^{0}\left(X, L^{k}\right)^{\otimes l} \rightarrow H^{0}\left(X, L^{k l}\right)$
From submultiplicativity, we have $N_{k l} \leq\left[N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}\right]$.
Central lemma (-, 2023)
Let N_{k} norm on $H^{0}\left(X, L^{k}\right)$, then over $H^{0}\left(X, L^{k l}\right)$:

$$
\left[N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}\right] \sim \operatorname{Ban}_{k l}^{\infty}\left(F S\left(N_{k}\right)^{\frac{1}{k}}\right)
$$

Main steps of the proof

Theorem (-, 2022)

N submultiplicative such that $F S(N)$ is continuous and non-zero

$$
N \sim \operatorname{Ban}^{\infty}(F S(N))
$$

Idea of the proof : Step 1: $N \geq \operatorname{Ban}^{\infty}(F S(N)$). Indeed:
$\forall f \in H^{0}\left(X, L^{k}\right), x \in X,\|f\|_{k} \geq \inf _{s \in H^{0}\left(X, L^{k}\right)}\|S\|_{k}=|f(x)|_{F S\left(N_{k}\right)}$.

$$
s(x)=f(x)
$$

Fekete's : $F S(N)=\inf F S\left(N_{k}\right)^{\frac{1}{k}}$, so $\|f\|_{k} \geq\|f\|_{L^{\infty}(F S(N))}$.
Step 2 : Consider Mult ${ }_{k, I}: H^{0}\left(X, L^{k}\right)^{\otimes l} \rightarrow H^{0}\left(X, L^{k l}\right)$
From submultiplicativity, we have $N_{k l} \leq\left[N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}\right]$.

Central lemma (-, 2023)

Let N_{k} norm on $H^{0}\left(X, L^{k}\right)$, then over $H^{0}\left(X, L^{k l}\right)$:

$$
\left[N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}\right] \sim \operatorname{Ban}_{k l}^{\infty}\left(F S\left(N_{k}\right)^{\frac{1}{k}}\right)
$$

$\forall \epsilon>0, \exists k_{0}$, so that $\forall k \geq k_{0}, N_{k l} \leq \exp (\epsilon k l) \cdot \operatorname{Ban}_{k l}^{\infty}\left(F S\left(N_{k}\right)^{\frac{1}{k}}\right)$.
By Dini, $F S(N)$ continuous $\Rightarrow F S\left(N_{k}\right)^{\frac{1}{k}}$ converge uniformly

Proof of the Central lemma

Proof : Step 1 : verify for $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$.

Proof of the Central lemma

Proof : Step 1 : verify for $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide)

Proof of the Central lemma

Proof : Step 1 : verify for $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide) Step 2 : deduce the general case from the one for $\mathbb{P}\left(V^{*}\right)$ by semiclassical Ohsawa-Takegoshi extension theorem, applied to Kodaira embedding

Proof of the Central lemma

Proof: Step 1 : verify for $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide) Step 2 : deduce the general case from the one for $\mathbb{P}\left(V^{*}\right)$ by semiclassical Ohsawa-Takegoshi extension theorem, applied to Kodaira embedding

Proof of the Central lemma

Proof: Step 1 : verify for $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide) Step 2 : deduce the general case from the one for $\mathbb{P}\left(V^{*}\right)$ by semiclassical Ohsawa-Takegoshi extension theorem, applied to Kodaira embedding

Proof of the Central lemma

Proof : Step 1 : verify for $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide) Step 2 : deduce the general case from the one for $\mathbb{P}\left(V^{*}\right)$ by semiclassical Ohsawa-Takegoshi extension theorem, applied to Kodaira embedding

$$
H^{0}\left(X, L^{k}\right)^{\otimes l} \xrightarrow{\text { Sym }} \operatorname{Sym}^{\prime}\left(H^{0}\left(X, L^{k}\right)\right)
$$

Proof of the Central lemma

Proof: Step 1 : verify for $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide) Step 2 : deduce the general case from the one for $\mathbb{P}\left(V^{*}\right)$ by semiclassical Ohsawa-Takegoshi extension theorem, applied to Kodaira embedding

$$
H^{0}\left(X, L^{k}\right)^{\otimes I} \xrightarrow{\text { Sym }} \operatorname{Sym}^{\prime}\left(H^{0}\left(X, L^{k}\right)\right)
$$

Proof of the Central lemma

Proof: Step 1 : verify for $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide) Step 2 : deduce the general case from the one for $\mathbb{P}\left(V^{*}\right)$ by semiclassical Ohsawa-Takegoshi extension theorem, applied to Kodaira embedding

$$
H^{0}\left(X, L^{k}\right)^{\otimes l} \xrightarrow{\operatorname{Sym}^{\prime}\left(H^{0}\left(X, L^{k}\right)\right)}
$$

From step 1, the quotient of $N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}$ under Sym is \sim $\operatorname{Ban}_{k l}^{\infty, \mathbb{P}\left(H^{0}(X, L)^{*}\right)}\left(F S\left(N_{k}\right)^{\frac{1}{k}}\right)$ under $=$.

Proof of the Central lemma

Proof : Step 1 : verify for $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. It corresponds to projective tensor norms on symmetric algebras (next slide) Step 2 : deduce the general case from the one for $\mathbb{P}\left(V^{*}\right)$ by semiclassical Ohsawa-Takegoshi extension theorem, applied to Kodaira embedding

$$
H^{0}\left(X, L^{k}\right)^{\otimes l} \xrightarrow{\operatorname{Sym}^{\prime}\left(H^{0}\left(X, L^{k}\right)\right)}
$$

From step 1, the quotient of $N_{k} \otimes_{\pi} \cdots \otimes_{\pi} N_{k}$ under Sym is \sim $\operatorname{Ban}_{k l}^{\infty, \mathbb{P}\left(H^{0}(X, L)^{*}\right)}\left(F S\left(N_{k}\right)^{\frac{1}{k}}\right)$ under $=$. From semiclassical OT, the quotient under $\operatorname{Res}_{\text {Kod, } k}$ of $\operatorname{Ban}_{k l}^{\infty, \mathbb{P}\left(H^{0}(X, L)^{*}\right)}\left(F S\left(N_{k}\right)^{\frac{1}{k}}\right)$ is ~ $\operatorname{Ban}_{k l}^{\infty, X}\left(F S\left(N_{k}\right)^{\frac{1}{k}}\right)$.

Idea for the step 1

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. $R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}

Idea for the step 1

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. $R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
N_{V} any norm on $V . N_{k}=\operatorname{Sym}_{k}^{\pi} N_{V}$ projective tensor norm

Idea for the step 1

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. $R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
N_{V} any norm on $V . N_{k}=\operatorname{Sym}_{k}^{\pi} N_{V}$ projective tensor norm

$$
\|P\|_{L^{\infty}(F S(N))}=\sup _{\substack{w \in V^{*} \\\|w\|_{N_{V}}^{*} \leq 1}}|P(w)|
$$

Idea for the step 1

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. $R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
N_{V} any norm on $V . N_{k}=\operatorname{Sym}_{k}^{\pi} N_{V}$ projective tensor norm

$$
\|P\|_{L^{\infty}(F S(N))}=\sup _{\substack{w \in V^{*} \\\|w\|_{N_{V}}^{*} \leq 1}}|P(w)|
$$

For $N_{V}=I_{1}$, Step 1 corresponds to the first example.

Idea for the step 1

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$. $R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
N_{V} any norm on $V . N_{k}=\operatorname{Sym}_{k}^{\pi} N_{V}$ projective tensor norm

$$
\|P\|_{L^{\infty}(F S(N))}=\sup _{\substack{w \in V^{*} \\\|w\|_{N_{V}}^{*} \leq 1}}|P(w)|
$$

For $N_{V}=I_{1}$, Step 1 corresponds to the first example. We reduce the Step 1 for general N_{V} to I_{1}.

Idea for the step 1

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$.
$R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
N_{V} any norm on $V . N_{k}=\operatorname{Sym}_{k}^{\pi} N_{V}$ projective tensor norm

$$
\|P\|_{L^{\infty}(F S(N))}=\sup _{\substack{w \in V^{*} \\\|w\|_{N_{V}}^{*} \leq 1}}|P(w)|
$$

For $N_{V}=I_{1}$, Step 1 corresponds to the first example. We reduce the Step 1 for general N_{V} to I_{1}.

Folklore lemma

For any $(V,\|\cdot\| v), \epsilon>0, \exists I \in \mathbb{N}^{*}$ and surjection $\pi: \mathbb{C}^{\prime} \rightarrow V$:

$$
\exp (-\epsilon) \cdot\left[I_{1}\right] \leq\|\cdot\| v \leq\left[I_{1}\right]
$$

Idea for the step 1

V finitely dim. \mathbb{C}-vector space, $X=\mathbb{P}\left(V^{*}\right), L=\mathscr{O}(1)$.
$R(X, L)=\operatorname{Sym}(V)=$ space of polynomials on V^{*}
N_{V} any norm on $V . N_{k}=\operatorname{Sym}_{k}^{\pi} N_{V}$ projective tensor norm

$$
\|P\|_{L^{\infty}(F S(N))}=\sup _{\substack{w \in V^{*} \\\|w\|_{N_{V}}^{*} \leq 1}}|P(w)|
$$

For $N_{V}=I_{1}$, Step 1 corresponds to the first example.
We reduce the Step 1 for general N_{V} to I_{1}.
Folklore lemma
For any $(V,\|\cdot\| v), \epsilon>0, \exists I \in \mathbb{N}^{*}$ and surjection $\pi: \mathbb{C}^{\prime} \rightarrow V$:

$$
\exp (-\epsilon) \cdot\left[I_{1}\right] \leq\|\cdot\| v \leq\left[I_{1}\right]
$$

Apply semiclassical OT extension theorem for the embedding

$$
\mathbb{P}\left(V^{*}\right) \rightarrow \mathbb{P}\left(\left(\mathbb{C}^{\prime}\right)^{*}\right)
$$

Thank you!

