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Today’s goal : Understand better the correspondence

metrics s norms



From metrics to norms

Metrics on L — norms on R(X, L)

Hermitian metric ht on L

§
L>°-norms Bang®(ht) 1 = || - [| e (x) ON HO(X, LK), k € N*

flloe(xy : = sup [f(X) |y, € HOX, LK)
xeX

"Ban" stands for Banach
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Graded norm N = > Nk, N : = | - ||k, on R(X, L)
is submultiplicative if |- gllk+ < ||Ifllk - llgll/-

Main example : Ban(hl) = 3" Bang°(ht).

Main theorem (preliminary version)

For any submultiplicative graded norm N on R(X, L) [satisfying
some hypotheses] there is a unique* metric ht on L such that

N ~ Ban*(ht)

Plan for the rest of the talk

A what is ~ ? how to construct h- ? hypotheses ?
B examples. motivations and applications.
C proof.
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Equivalence of norms

Sequences of norms Ny, N; on HO(X, LK), k € N, are
equivalent (~) if Ve > 0, 3ky € N such that Vk > kg

exp(—ek) - Ny < N < exp(ek) - Ny

Lemma : Ban™(h}) + Ban*(h}) for hS # h% continuous psh

ht is psh if locally ht = =%, where ¢ is plurisubharmonic (psh),

ht is positive if it is smooth and ¢ is strictly plurisubharmonic.
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Norm Ny on HO(X, LX) — Fubini-Study metric FS(N) on L¥

Defn : let / € LK, x € X, we define sy = = infgepo(x L6y IIs]|-
s(x)=I

Geometric description through Kodaira embeddings
Kodk :X — P(HO(X, LK)*)
$

isomorphism Kod; &/(1) ~ Lk,
Norm Ny on HO(X, LK) ~ metric on &(1) ~ metric FS(N) on LX
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Observation : If N = > Nj submultiplicative, then FS(Nj) is
submultiplicative, i.e. FS(Nk,/) < FS(Nk) - FS(N)).

Proof : for a € Ly, we need |a"+’\F3(Nk+,) < ‘akll:s(Nk) . \a’|FS(N,).

& Es(yy) = Infserox.ikey 18]k
_ s(x)=at/
< infrepox, k), geHO(X L) - gllx+s
f(x)=a",g(x)=2
< infrepox,ooy 1fllk - infgeporx oy 191l
f(x)=a* g(x)=4

= |a|esv) - 18| Es(n- O

Fekete’s lemma : For N = > Ny submultiplicative, as k — oo,
FS(Ni)* converge. Let FS(N) : = limy_s0o FS(Ni)*

Attention! FS(N) is only upper-semicontinuous ; probably zero
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Main theorem of the talk

Theorem (-, 2022)

For any submultiplicative graded norm N on R(X, L) such that
FS(N) is continuous and non-zero

N ~ Ban®(FS(N))

Remark :a) It is a complex-geometric analogue of a theorem
from non-Archimedean geometry of Boucksom-Jonsson, 2021

submultiplicative norm < submultiplicative filtration
metric on (L, X) <> metric on Berkovich analytification (L37, X@")

b) Theorem fails with no assumption on FS(N). But it can be
remedied by a weaker equivalence relation ~.
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A norm on homogeneous polynomials

V finitely dim. C-vector space, X = P(V*), L= 0(1).
R(X, L) = Sym(V) = space of polynomials on V*

For P € Sym*(V), P(2) = 3 aenn @0 2%, for N : = || - ||, we let
|a|=k

IPI% =" laal
aeN"
|a|=k
Easy observation : N = > Nj is submultiplicative
One can also verify that
1Pl oo (rs(ny) = sup |P(21,- -+, 2n)]
zeC"
|zi| <1
Clearly, we have H y HLoo(FS(N)) < H . Hz
Our theorem gives the opposite (nontrivial!) inequality :
Ve > 0, Jkg, so that Vk > kg, H . ”Loo(Fs(N)) > exp(—ek) . H . H;(r
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Ubiquitous submultiplicative norms

Are there natural examples of submultiplicative norms ?

1. Lk-(pseudo)norms : || £l : = (frex ]f(x)y,lﬁL - dv)k

2. Mahler (pseudo)norms : ||f[|x : = exp([,cx log [f(X)|x - AV)
3. Complex interpolation between submultiplicative norms

4. Projective tensor norms on symmetric algebras

5. Quotients of submultiplicative norms

6. Interpolations of submultiplicative filtrations
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4. Projective tensor norms on symmetric algebra

(Vi,N; : =1 -1l;), i = 1,2, normed vector spaces.
There is no canonical norm on Vi ® Vo

Projective tensor norm Ny @z N =||-[|_. Forfe Vi @ V,
17l =inf { S Il - illes £ =@ v}
Injective tensor norm Ny @ Np = ||| .. For f € Vi @ V2

1flls, =sup {|(e @ ¥)N|: o€ Vi, ve Vg liol; = llwls =1}

For any (V, Ny) denote the projective tensor norm by Sym™ Ny
on SymV = R(P(V*), 0(1))

Observation :Sym™ Ny, is submultiplicative. Also, || - [|%, < || - [k
If we now apply our theorem for Sym™ Ny, it would give : Ve > 0,
ko, so that Yk > ko, P € Sym*V, ||P||s, > exp(—e¢k) - || P||%

Surprising ! In full tensor algebra, the analogue is false for any
(V,Ny), dim V > 1, by a result of Pisier, 1980
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Y C X complex submanifold, the restriction operator
Res :HO(X, LK) — HO(Y, LK)
is surjective for k > 1 by Serre’s criterion

Observation : If N on R(X, L) is submultiplicative, then the
quotient norm [N] on R(Y, L) is submultiplicative, where
Ifllny = = inf {llglin: g € R(X,L),Res(g) =}, feR(Y,L).

If we now take N = Ban>°(ht), our theorem for [N] gives us :
Ve > 0, 3ko, so that Yk > ko, f € H(Y, L¥) there is a
holomorphic extension f € H°(X, LX) of f, such that

||?||L)°(°(hL) < exp(ek) - [|fl] oo py

This is a semiclassical Ohsawa-Takegoshi extension theorem.
Established by S.-W. Zhang 1995 and Bost 2003. In (-, 2021),

author refined it by replacing exp(ek) by 1 + $.
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Filtration on a finitely dimensional vector space V is a map
F :Z — { vector subspaces of V}
decreasing, i.e. F"'V c F'V
separating, i.e. 7>V = {0}
exhausting, i.e. 77>V =V

Weight function wz(v) : = sup,cmayAforve V

A graded filtration F on R(X, L) is called submultiplicative if
wr(f- g) > wr(f) + wr(9)

Example : Divisor D C X, wzo(-) =order of vanishing along D.

Motivation : study of submultiplicative filtrations is related to
K-stability, itself related with constant scalar curvature metrics
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6. Interpolations of submultiplicative filtrations

Let N be a submultiplicative norm on R(X, L) and Fis a

submultiplicative filtration. Define ray of norms N; = || - ||;, t > 0
Ifle = inf > " ||filn - exp(—twze(£)), f=_f
Fact : N; converges to F, i.e. lim;_, o % = —wz(f)

Easy observation : N; is submultiplicative

Our theorem (+ a lot of work, see (-, 2023)), applied for N,
proves a conjecture of Darvas-Lu 2019 and K. Zhang 2021.

Roughly, conjecture says that :

Geometry at infinity on the space of Kahler potentials
is related with
Asymptotic study of submultiplicative filtrations



Isometry and quantization
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" the space of continuous psh metrics on L
Hy the space of norms on HO(X, LK)

Tian, 1990 : L = UFS(Hy) k. In fact, FS(Ban>(ht)) = L.

Ban®®

T

HE I1H«

\/

FS

Question : to which extent, Ban> and FS preserve geometry ?

Remark : We understand Ban® much better than FS.
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We fix p € [1, 4-o0], let Hy, Hy Hermitian norms on HO(X, LK)
let A € End"(H(X, L¥)) be such that (-, -),, = (A--),,

p Tr[] IogA]P]
p(Ho. Fh) : =\ — gy —
For N=> Nk, N=>" N, we let
/
do(N,N') : = lim supidp(Nk’ Nid)
k—o00 k

This gives a (pseudo)metric on [ Hx

Mabuchi : distance on #!, for a C'-path v = ht € L, t € [0, 1]

lenp(y) = / f//‘th ci(L hb)n LhL

dp(hb, H;) : = inflenp(y ).
Y
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Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson,

2012, Darvas-Lu-Rubinstein 2020)
Ban® is an isometry

What about FS?

Let N =3 Ni, N =3 N, two graded norms on R(X, L)

Let AL : = limk_,o FS(Ni)* and At : = limy_,., FS(N})¥ exist
Fact (-, 2023) : No relation between dp(N, N') and dp(h§, h})

Theorem (-, 2023)

If N, N’ are submultiplicative, FS(N), FS(N') are bounded, then
do(N, N') = dp(FS(N), FS(N'))

Proof : From the main theorem of the talk, we have

dp(N, N') = dp(Ban>*(FS(N)),Ban>(FS(N'))). Then apply
previous theorem

Conclusion : pluripotential theory ~~ study of filtrations
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Theorem (-, 2022)

N submultiplicative such that FS(N) is continuous and non-zero
N ~ Ban®(FS(N))

Idea of the proof : Step 1 : N > Ban>*(FS(N)). Indeed :
Ve HO(X, LX), x € X, [[fllk = infgeppox 1oy ISl = 1) Fsie)-
s(x)=f(x)
.
Fekete’s : FS(N) = inf FS(Nk)*, 80 [[f[[k > ||f]| oo (Fs(N))-
Step 2 : Consider Mult, ; :HO(X, LK)® — HO(X, LK)
From submultiplicativity, we have N < [Nk ®x - -+ @, Nk].

Central lemma (-, 2023)
Let Nk norm on HO(X, LX), then over HO(X, LX) :
[Nk ®7r o ®7r Nk] ~ Banﬁ(FS(Nk)%)

Ve > 0, 3ko, 50 that Wk > ko, Nig < exp(ekl) - Banjy(FS(Ny)¥).
By Dini, FS(N) continuous = FS(Nk)% converge uniformly [
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Proof : Step 1 : verify for X = P(V*),L = ¢(1). It corresponds
to projective tensor norms on symmetric algebras (next slide)
Step 2 : deduce the general case from the one for P(V*) by
semiclassical Ohsawa-Takegoshi extension theorem, applied to
Kodaira embedding

HO(X, Lk 2 Sym!(HO(X, L))

—

HO(P(HO(X, LX)"), o(1))

lResKod,l

HO(X, L),

Multh

From step 1, the quotient of Ny ®, - - - @ Nx under Sym is ~
Ban > T(*"U7) (FS(N ) %) under =. From semiclassical OT, the
quotient under Resgqq x Of Banif’P(Ho(X’L)*)(FS(Nk)%) is ~
Ban?>X (FS(Nj)*). O
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Idea for the step 1

V finitely dim. C-vector space, X = P(V*), L= 0(1).
R(X, L) = Sym(V) = space of polynomials on V*

Ny any norm on V. N, = Symg Ny projective tensor norm

IPllso(rs(nyy = sup | P(w)
we*V*
l[wlly, <1
For Ny = I;, Step 1 corresponds to the first example.
We reduce the Step 1 for general Ny to /.

Folklore lemma
Forany (V.|| - |lv), € > 0, 3/ € N* and surjection 7 :C/ — V :

exp(=€) - [A] < I - lv < [A].

Apply semiclassical OT extension theorem for the embedding
P(V*) — P((C')")



Thank you'!
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