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Setting for the talk

X complex projective manifold, dimX = n ; L ample line bundle

section ring R(X ,L) = ⊕∞k=0H0(X ,Lk ) has graded ring structure

geometry (X ,L) R(X ,L)

H0

algebra

Today’s goal : Understand better the correspondence

metrics ! norms
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From metrics to norms

Metrics on L→ norms on R(X ,L)

Hermitian metric hL on L 

L∞-norms Ban∞k (hL) : = ‖ · ‖L∞(X) on H0(X ,Lk ), k ∈ N∗

‖f‖L∞(X) : = sup
x∈X
|f (x)|(hL)k , f ∈ H0(X ,Lk )

"Ban" stands for Banach



Submultiplicative norms

Graded norm N =
∑

Nk , Nk : = ‖ · ‖k , on R(X ,L)
is submultiplicative if ‖f · g‖k+l ≤ ‖f‖k · ‖g‖l .

Main example : Ban∞(hL) =
∑

Ban∞k (hL).

Main theorem (preliminary version)

For any submultiplicative graded norm N on R(X ,L) [satisfying
some hypotheses] there is a unique∗ metric hL on L such that

N ∼ Ban∞(hL)

Plan for the rest of the talk

A what is ∼? how to construct hL ? hypotheses?
B examples. motivations and applications.
C proof.
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Equivalence of norms

Sequences of norms Nk , N ′k on H0(X ,Lk ), k ∈ N, are
equivalent (∼) if ∀ε > 0, ∃k0 ∈ N such that ∀k ≥ k0

exp(−εk) · Nk ≤ N ′k ≤ exp(εk) · Nk

Lemma : Ban∞(hL
0) 6∼ Ban∞(hL

1) for hL
0 6= hL

1 continuous psh

hL is psh if locally hL = e−φ, where φ is plurisubharmonic (psh),

hL is positive if it is smooth and φ is strictly plurisubharmonic.
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From norms to metrics

Norm Nk on H0(X ,Lk )→ Fubini-Study metric FS(Nk ) on Lk

Defn : let l ∈ Lk
x , x ∈ X , we define |l |FS(Nk ) : = infs∈H0(X ,Lk )

s(x)=l

‖s‖k .

Geometric description through Kodaira embeddings

Kodk :X ↪→ P(H0(X ,Lk )∗) 

isomorphism Kod∗kO(1) ' Lk ,

Norm Nk on H0(X ,Lk ) metric on O(1) metric FS(Nk ) on Lk
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Submultiplicative norms and Fubini-Study metrics

Observation : If N =
∑

Nk submultiplicative, then FS(Nk ) is
submultiplicative, i.e. FS(Nk+l) ≤ FS(Nk ) · FS(Nl).

Proof : for a ∈ Lx , we need |ak+l |FS(Nk+l ) ≤ |a
k |FS(Nk ) · |a

l |FS(Nl ).

|ak+l |FS(Nk+l ) = infs∈H0(X ,Lk+l )

s(x)=ak+l

‖s‖k+l

≤ inf f∈H0(X ,Lk ),g∈H0(X ,Ll )

f (x)=ak ,g(x)=al

‖f · g‖k+l

≤ inf f∈H0(X ,Lk )

f (x)=ak

‖f‖k · infg∈H0(X ,Ll )

g(x)=al

‖g‖l

= |ak |FS(Nk ) · |a
l |FS(Nl ).

Fekete’s lemma : For N =
∑

Nk submultiplicative, as k →∞,
FS(Nk )

1
k converge. Let FS(N) : = limk→∞ FS(Nk )

1
k

Attention ! FS(N) is only upper-semicontinuous ; probably zero
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Main theorem of the talk

Theorem (-, 2022)

For any submultiplicative graded norm N on R(X ,L) such that
FS(N) is continuous and non-zero

N ∼ Ban∞(FS(N))

Remark :a) It is a complex-geometric analogue of a theorem
from non-Archimedean geometry of Boucksom-Jonsson, 2021

submultiplicative norm↔ submultiplicative filtration

metric on (L,X )↔ metric on Berkovich analytification (Lan,X an)

b) Theorem fails with no assumption on FS(N). But it can be
remedied by a weaker equivalence relation ∼.
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Examples



A norm on homogeneous polynomials

V finitely dim. C-vector space, X = P(V ∗), L = O(1).
R(X ,L) = Sym(V ) = space of polynomials on V ∗

For P ∈ Symk (V ), P(z) =
∑

α∈Nn

|α|=k
aαzα, for Nk : = ‖ · ‖πk , we let

‖P‖πk =
∑
α∈Nn

|α|=k

|aα|

Easy observation : N =
∑

Nk is submultiplicative

One can also verify that

‖P‖L∞(FS(N)) = sup
z∈Cn

|zi |≤1

∣∣P(z1, · · · , zn)
∣∣

Clearly, we have ‖ · ‖L∞(FS(N)) ≤ ‖ · ‖πk
Our theorem gives the opposite (nontrivial !) inequality :

∀ε > 0, ∃k0, so that ∀k ≥ k0, ‖ · ‖L∞(FS(N)) ≥ exp(−εk) · ‖ · ‖πk
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Ubiquitous submultiplicative norms

Are there natural examples of submultiplicative norms?

1. L
1
k -(pseudo)norms : ‖f‖k : = (

∫
x∈X |f (x)|
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k
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4. Projective tensor norms on symmetric algebra

(Vi ,Ni : = ‖ · ‖i), i = 1,2, normed vector spaces.
There is no canonical norm on V1 ⊗ V2

Projective tensor norm N1 ⊗π N2 =‖·‖⊗π . For f ∈ V1 ⊗ V2

‖f‖⊗π = inf
{∑

‖xi‖1 · ‖yi‖2; f =
∑

xi ⊗ yi

}
Injective tensor norm N1 ⊗ε N2 =‖·‖⊗ε . For f ∈ V1 ⊗ V2

‖f‖⊗ε = sup
{∣∣(φ⊗ ψ)(f )∣∣; φ ∈ V ∗1 , ψ ∈ V ∗2 , ‖φ‖∗1 = ‖ψ‖∗2 = 1

}
For any (V ,NV ) denote the projective tensor norm by SymπNV
on SymV = R(P(V ∗),O(1))

Observation :SymπNV is submultiplicative. Also, ‖ · ‖εk ≤ ‖ · ‖πk
If we now apply our theorem for SymπNV , it would give : ∀ε > 0,
∃k0, so that ∀k ≥ k0, P ∈ SymkV , ‖P‖εk ≥ exp(−εk) · ‖P‖πk

Surprising ! In full tensor algebra, the analogue is false for any
(V ,NV ), dimV > 1, by a result of Pisier, 1980
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5. Quotient norms and extension theorem

Y ⊂ X complex submanifold, the restriction operator

Res :H0(X ,Lk )� H0(Y ,Lk )

is surjective for k � 1 by Serre’s criterion

Observation : If N on R(X ,L) is submultiplicative, then the
quotient norm [N] on R(Y ,L) is submultiplicative, where
‖f‖[N] : = inf

{
‖g‖N ; g ∈ R(X ,L),Res(g) = f}, f ∈ R(Y ,L).

If we now take N = Ban∞(hL), our theorem for [N] gives us :
∀ε > 0, ∃k0, so that ∀k ≥ k0, f ∈ H0(Y ,Lk ) there is a
holomorphic extension f̃ ∈ H0(X ,Lk ) of f , such that

‖f̃‖L∞X (hL) ≤ exp(εk) · ‖f‖L∞Y (hL)

This is a semiclassical Ohsawa-Takegoshi extension theorem.
Established by S.-W. Zhang 1995 and Bost 2003. In (-, 2021),
author refined it by replacing exp(εk) by 1 + C

k .
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6. Introduction to submultiplicative filtrations

Filtration on a finitely dimensional vector space V is a map
F :Z→ { vector subspaces of V}

decreasing, i.e. Fn+1V ⊂ FnV
separating, i.e. F∞V = {0}
exhausting, i.e. F−∞V = V

Weight function wF (v) : = supv∈FλV λ for v ∈ V

A graded filtration F on R(X ,L) is called submultiplicative if

wF (f · g) ≥ wF (f ) + wF (g)

Example : Divisor D ⊂ X , wFD(·) =order of vanishing along D.

Motivation : study of submultiplicative filtrations is related to
K-stability, itself related with constant scalar curvature metrics
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6. Interpolations of submultiplicative filtrations

Let N be a submultiplicative norm on R(X ,L) and F is a
submultiplicative filtration. Define ray of norms Nt = ‖ · ‖t , t ≥ 0

‖f‖t = inf
∑
‖fi‖N · exp(−twF (fi)), f =

∑
fi

Fact : Nt converges to F , i.e. limt→∞
log ‖f‖t

t = −wF (f )

Easy observation : Nt is submultiplicative

Our theorem (+ a lot of work, see (-, 2023)), applied for Nt ,
proves a conjecture of Darvas-Lu 2019 and K. Zhang 2021.

Roughly, conjecture says that :

Geometry at infinity on the space of Kähler potentials
is related with

Asymptotic study of submultiplicative filtrations
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Isometry and quantization



Spaces of metrics and norms

HL the space of continuous psh metrics on L

Hk the space of norms on H0(X ,Lk )

Tian, 1990 : HL = ∪FS(Hk )
1
k . In fact, FS(Ban∞(hL)) = hL.

HL ∏
Hk

Ban∞

FS

Question : to which extent, Ban∞ and FS preserve geometry?

Remark : We understand Ban∞ much better than FS.
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Natural metric structures on HL and Hk

We fix p ∈ [1,+∞[, let H0,H1 Hermitian norms on H0(X ,Lk )

let A ∈ Endh(H0(X ,Lk )) be such that
〈
·, ·
〉

H1
=
〈
A·, ·

〉
H0

dp(H0,H1) : =
p

√√√√Tr
[
| logA|p

]
dimV

For N =
∑

Nk , N =
∑

N ′k , we let

dp(N,N ′) : = lim sup
k→∞

dp(Nk ,N ′k )
k

This gives a (pseudo)metric on
∏
Hk

Mabuchi : distance on HL, for a C1-path γ = hL
t ∈ HL, t ∈ [0,1]

lenp(γ) =

∫ 1

0

p

√∫
X

∣∣∣ ḣL
t

hL
t

∣∣∣p · c1(L,hL
t )

n

c1(L)n

dp(hL
0,h

L
1) : = inf

γ
lenp(γ).
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This gives a (pseudo)metric on
∏
Hk

Mabuchi : distance on HL, for a C1-path γ = hL
t ∈ HL, t ∈ [0,1]

lenp(γ) =

∫ 1

0

p

√∫
X

∣∣∣ ḣL
t

hL
t

∣∣∣p · c1(L,hL
t )

n

c1(L)n

dp(hL
0,h

L
1) : = inf

γ
lenp(γ).



Isometric properties of Ban∞ and FS

Theorem (Phong-Sturm, 2006, Chen-Sun, 2009, Berndtsson,
2012, Darvas-Lu-Rubinstein 2020)

Ban∞ is an isometry

What about FS ?

Let N =
∑

Nk , N ′ =
∑

N ′k two graded norms on R(X ,L)
Let hL

0 : = limk→∞ FS(Nk )
1
k and hL

1 : = limk→∞ FS(N ′k )
1
k exist

Fact (-, 2023) : No relation between dp(N,N ′) and dp(hL
0,h

L
1)

Theorem (-, 2023)

If N,N ′ are submultiplicative, FS(N), FS(N ′) are bounded, then
dp(N,N ′) = dp(FS(N),FS(N ′))

Proof : From the main theorem of the talk, we have
dp(N,N ′) = dp(Ban∞(FS(N)),Ban∞(FS(N ′))). Then apply
previous theorem
Conclusion : pluripotential theory study of filtrations
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Proof of the main result



Main steps of the proof

Theorem (-, 2022)

N submultiplicative such that FS(N) is continuous and non-zero

N ∼ Ban∞(FS(N))

Idea of the proof : Step 1 : N ≥ Ban∞(FS(N)). Indeed :
∀f ∈ H0(X ,Lk ), x ∈ X , ‖f‖k ≥ infs∈H0(X ,Lk )

s(x)=f (x)

‖s‖k = |f (x)|FS(Nk ).

Fekete’s : FS(N) = inf FS(Nk )
1
k , so ‖f‖k ≥ ‖f‖L∞(FS(N)).

Step 2 : Consider Multk ,l :H0(X ,Lk )⊗l � H0(X ,Lkl)
From submultiplicativity, we have Nkl ≤ [Nk ⊗π · · · ⊗π Nk ].

Central lemma (-, 2023)

Let Nk norm on H0(X ,Lk ), then over H0(X ,Lkl) :

[Nk ⊗π · · · ⊗π Nk ] ∼ Ban∞kl (FS(Nk )
1
k )

∀ε > 0, ∃k0, so that ∀k ≥ k0, Nkl ≤ exp(εkl) · Ban∞kl (FS(Nk )
1
k ).

By Dini, FS(N) continuous⇒ FS(Nk )
1
k converge uniformly
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Proof of the Central lemma

Proof : Step 1 : verify for X = P(V ∗),L = O(1).

It corresponds
to projective tensor norms on symmetric algebras (next slide)
Step 2 : deduce the general case from the one for P(V ∗) by
semiclassical Ohsawa-Takegoshi extension theorem, applied to
Kodaira embedding

H0(X ,Lk )⊗l

H0(X ,Lkl).

Multk,l

From step 1, the quotient of Nk ⊗π · · · ⊗π Nk under Sym is ∼
Ban∞,P(H

0(X ,L)∗)
kl (FS(Nk )

1
k ) under =. From semiclassical OT, the

quotient under ResKod,k of Ban∞,P(H
0(X ,L)∗)

kl (FS(Nk )
1
k ) is ∼

Ban∞,Xkl (FS(Nk )
1
k ).
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Idea for the step 1

V finitely dim. C-vector space, X = P(V ∗), L = O(1).
R(X ,L) = Sym(V ) = space of polynomials on V ∗

NV any norm on V . Nk = Symπ
k NV projective tensor norm

‖P‖L∞(FS(N)) = sup
w∈V∗

‖w‖∗NV
≤1

∣∣P(w)
∣∣

For NV = l1, Step 1 corresponds to the first example.
We reduce the Step 1 for general NV to l1.

Folklore lemma
For any (V , ‖ · ‖V ), ε > 0, ∃ l ∈ N∗ and surjection π :Cl → V :

exp(−ε) · [l1] ≤ ‖ · ‖V ≤ [l1].

Apply semiclassical OT extension theorem for the embedding

P(V ∗)→ P((Cl)∗)
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Thank you !
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