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Plan

@ Kohn-Nirenberg and Wick quantizations* on R” and on groups G.

@ The Hormander pseudo-differential calculus on R”,
Garding inequality.

@ Pseudo-differential calculi for G compact or nilpotent Lie groups,
Garding inequality and applications.

* Quantization = symbol ~~ operator
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KN and W Quantization KN Quantization on R"*

Kohn-Nirenberg quantization on R"

Definition (OpKNO', ge ¥ R"xR")
OpNo)f () = f Ao Of @) dE,  feSRM, xR,
Rn
where Ff(¢&) :f(f) = f e_zmx‘tf(x) dx.

[Rn
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KN and W Quantization KN Quantization on R"*

Kohn-Nirenberg quantization on R"

Definition (OpKNO', ge ¥ R"xR")
OpNo)f (x) = f F e, OfE) dé,  fe FSRY, xeR”,
Rn
where Ff(¢&) :f(f) = f e_zmx‘tf(x) dx.

[Rn

Convolution kernelx, =% 1o(x, -)
OpNo)f () =f*x,(x), feFR", xeR".
The integral kernel of Op*No is (x,3) — x(x—y), hence
10" N s zz@m) = 1K1 2@k = 101 2 @,

Hence, OpKN :[2(R" x R™) — HS(I2(R™) unitary and surjective.
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KN and W Quantization KN Quantization on R"*

Kohn-Nirenberg quantization on R"

Definition (OpKNO', ge ¥ R"xR")
OpNo)f (x) = f F e, OfE) dé,  fe FSRY, xeR”,
Rn
where Ff(¢&) :f(f) = f e_zmx‘tf(x) dx.

[Rﬂ

Convolution kernelx, =% 1o(x, -)
OpNo)f () =f*x,(x), feFR", xeR".
The integral kernel of Op*No is (x,3) — x(x—y), hence
10" N s zz@m) = 1K1 2@k = 101 2 @,
Hence, OpKN :[2(R" x R™) — HS(I2(R™) unitary and surjective.

Remark: also on T" using Fourier series. ..
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KN and W Quantization KN Quantization on G

Formal Kohn-Nirenberg Quantization on groups

M. Taylor '84

The definition of OpXN extends to groups where the Plancherel theorem
based on the group Fourier transform (representation theory) holds.

Formal definition of OpNo

OpNo)f (x) = fa tr(n(x) o(x,m) fon) dutn),  feCelG), x€G.

For example, on the torus,

OpNo)f )= Y 0 Of(0),  feC(T™, xeT™
lezn
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KN and W Quantization KN Quantization on G

Group Fourier transform and Plancherel theorem

Fourier transform on a locally compact group G
Ff(m) =f(m) = f f)n(x)*dx, meRepG,fel(G).
G

Note f (1) € £ (#;) with | f(m) |l 2z, < Ifll (G When 7 unitary.

Plancherel theorem (Dixmier, '60’s)
@ Hyp: Glocally compact, unimodular, type I.

e G=set of unitary irreducible representation modulo equivalence.
o 1! Plancherel measure y, |f IIi2 ©= fé IIf(n) IIZHS( e, Q7).

o Te Z(I2(G)) left-invariant < Tf = F (o)), 0 € I°(G) .
1Tl zq2(6n = 101 oy = supllo@l 2, 0 =10 € L(Hy),ne G}.

neG

v
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KN and W Quantization KN Quantization on G

Kohn-Nirenberg Quantization on groups

OpXN via the convolution kernel

Ifo e [2(Gx G),ie. oxm)=R.(n) withk € [2(Gx G) or C(G, FL(G)),
then we define
Op N f) =f*xkx(x), x€G, feC(G).

Integral kernel (x, y) — k(y ' x).
Hence, OpKN (I2(Gx @) — HSI2(G) unitary and surjective.

OpKN via the symbol (M. Taylor '84)
Assume that the inversion formula holds for ‘enough’ functions,

flo) = fa tr(r(0f () dutm), xe€G.

Then (OpNo)f (x) = f@' tr(ﬂ(x)a(x,n)f(n))dp(n).
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KN and W Quantization W Quantization on R”

Wick quantization on R"

Generalised Bargmann transform
Fixing a€ % R™) with ||all ;2@ = 1, we set for f € I*(R")

Ba()(x,8) := F(fal-—x) (&) = fR fWaly-xne ¥y, (x¢) eR"xR"
9B = B, unitary transformation L?(R") — I?(R" x R™).

. _d P
Gaussian a(x) =n~2e” 2z ~- Bargmann transform.
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KN and W Quantization W Quantization on R”

Wick quantization on R"

Generalised Bargmann transform

Fixing a€ % R™) with ||all ;2@ = 1, we set for f € I*(R")

Ba(f)(x,8) := F(fal-—x)(&) = fR fyay-x e 2 dy,  (x,6) eR" x R™.

9B = B, unitary transformation L?(R") — I?(R" x R™).
. _d P
Gaussian a(x) =n~2e” 2z ~- Bargmann transform.

Wick quantization of 0 € L° (R x R")

opVik(o)f := B* (0 B(), fe*RM.
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KN and W Quantization W Quantization on R”

Wick quantization on R"

Generalised Bargmann transform

Fixing a€ % R™) with ||all ;2@ = 1, we set for f € I*(R")

Ba(f)(x,8) := F(fal-—x)(&) = fR fyay-x e 2 dy,  (x,6) eR" x R™.

9B = B, unitary transformation L?(R") — I?(R" x R™).
. _d P
Gaussian a(x) =n~2e” 2z ~- Bargmann transform.

Wick quantization of 0 € L° (R x R")
opVik(o)f := B* (0 B(), fe*RM.

Advantages: L? -boundedness, preserves adjoint and positivity
10p™M ¥ D) g2@n < 10 @ixwn,  Op™* ()" = 0pV™(&),

o(x,8) = 0= (0p"V' ™)) f, ) 2 @r) = (OBS, Bf) 12 @<y = 0.
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KN and W Quantization W Quantization on G
Wick quantization on G (loc. comp., unimodular, type I)

Generalised Bargmann transform
Fixing a € C(G) bounded with | all ;2 g = 1, we set for f € I*(G)

B x,m) =F(fal-x @), (1)eGxG.
9B = B, unitary transformation I?(G) — [*(G x G).

Wick quantization of o € L°(G x G)
opVik(o)f = B* (0 B()), fel*.

Advantages: I?-boundedness, preserves adjoint and positivity

10p™ (@) Il 22

IA

Iol o gxiy =2 sup _lloxm 2z,
(x,m)eGXG

OpWick(o_)* — OpWiCk(O'*),
oxm=0 = (OpV™ 0)f.Nrq = 0Bf. BN 26 = 0.
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KN and W Quantization W Quantization on G

Link between Op*N and Op™Wick

Link via convolution kernel - when it makes sense. ..

Let o € [°(G x G) with a convolution kernel x € C(G,1}(G). Then

OpWick(O_)f(x) :f*KyCViCk(X), fe¥€.(G), xeG,

where

K\;Vick(w):\/ a(w_lxz_l)&(xz_l)Kz(W)dZ
G

= f aw™ ' 2)a(Z)k 1 (w)dZ .
G

Application

Garding inequalities within pseudo-differential calculi a la Hormander.
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Garding inequality on R"

Garding inequality on R"

Hormander classes S™(R™) and W™ (R")
Va, BN 3Cop>0 V(5o eR'xR" [02020(x,8) < Copll+ 1222
~ SM(R™), and W™(R") := OpN(S™(R™)).

Sharp strong Garding inequality
If o € S™(R"), me R, satisfies o (x,&) = c(1 +|&2)™?2, for ¢> 0, then 3C > 0 s.t.

VfeS R R(OpNOSf)p 2 -CIfI

Generalisation to matrix-valued symbols, and
with modifications to (p, §)-classes and to o = 0.
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Garding inequality on R"

Proof (Benedetto + Fermanian + E, 23)
Pseudo-diff. calculus: it suffices to show m =0, so let o € S°(R™), o (x,¢) = c.
Link between Op™i™® and OpXN (ae & R™), llal 2 @n = 1)

oe SR = 0pVik() - 0pN(a? o) € ¥TIRY.

ROp N (@)f. Nz
> (OpW‘““(a)f P = 100" (@ —1al” x o)l If I g = CIFI
—(03?3f5?31‘)L2>C||f||LZ <llo- IaIZ*UIISo,W,0

Approximation of the identity

If 1 € #(R™) with [gup1 =1, then ¢, =t "¢ 1), r> 0, satisfies
limllo—@*0llsma,p =0.

Fix a; € #(R™) with |lai||;2 = 1. Set a; := t7"2q(+71.) for t > 0. Choose a=a;
in the Wick quantization with t> 0 s.t. [lo = |al® xollg 4 p, s ¢. O
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What is a pseudo-differential calculus?

Pseudo-differential calculus W*° (M) := U,,, ¥ (M) on a smooth manifold M
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What is a pseudo-differential calculus?

Pseudo-differential calculus W*° (M) := U,,, ¥ (M) on a smooth manifold M
Y (M) is a space of continuous operators 2(M) — 2 (M)

e thatis filtered (m < m' = ¥"™(M) < ¥™ (M)),

e stable by composition W x ¥ — WM+ gnd « : WM(M) — P"(M)

o that contains a differential calculus and acting continuously on
‘Sobolev-like spaces’.
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What is a pseudo-differential calculus?

Pseudo-differential calculus W*° (M) := U,,, ¥ (M) on a smooth manifold M
Y (M) is a space of continuous operators 2(M) — 2 (M)

o thatis filtered (m < m’ = W™ (M) c ¥ (M),

e stable by composition W x ¥ — WM+ gnd « : WM(M) — P"(M)

o that contains a differential calculus and acting continuously on
‘Sobolev-like spaces’.

+each Y"(M), me R, is a Fréchet space:
@ continuous inclusion, composition and .
o Y"™"(M) — Z(H* H™) continuous.
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What is a pseudo-differential calculus?

Pseudo-differential calculus W*° (M) := U,,, ¥ (M) on a smooth manifold M
Y (M) is a space of continuous operators 2(M) — 2 (M)

o thatis filtered (m < m’ = W™ (M) c ¥ (M),

e stable by composition W x ¥ — WM+ gnd « : WM(M) — P"(M)

o that contains a differential calculus and acting continuously on
‘Sobolev-like spaces’.

+each Y"(M), me R, is a Fréchet space:
@ continuous inclusion, composition and .
o Y"™"(M) — Z(H* H™) continuous.

Optional: symbol, asymptotic expansions.
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Pseudo-differential calculus on a compact Lie group G

Definition

Pseudo-differential calculus on a compact Lie group G

Plancherel theorem on G = Peter-Weyl theorem

Gis discrete and p({r}) = dimz: IIfIIiZ(G) = Zdimnllf(n) ”IZ{S(JL”,,)'
~ symbol g = {o(x, 1) € L (Hy) : (x,m) € Gx G mee
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Pseudo-differential calculus on a compact Lie group G

Definition

Pseudo-differential calculus on a compact Lie group G

Plancherel theorem on G = Peter-Weyl theorem

Gis discrete and p({r}) = dimz: IIfIIiZ(G) = Zdimnllf(n) ”IZ{S(JL”,,)'

~ 7meG
~ symbol g = {o(x, 1) € L (Hy) : (x,m1) € Gx G}

Laplace-Beltrami operator

FixanONB Xj,...,X,ong. £L:=-X/—...—- X
If 7 irreducible representation of G, then (%) = 1,1d.
w
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Pseudo-differential calculus on a compact Lie group G NSl (0}s]

Pseudo-differential calculus on a compact Lie group G

Plancherel theorem on G = Peter-Weyl theorem

Gis discrete and p({r}) = dimz: IIfIIiZ(G) = Zdimnllf(n) ”IZ{S(JL”,,)'

~ 7meG
~ symbol g = {o(x, 1) € L (Hy) : (x,m1) € Gx G}

Laplace-Beltrami operator

FixanONB Xj,...,X,ong. £L:=-X/—...—- X
If 7 irreducible representation of G, then (%) = 1,1d.

Hormander classes S™(G) and Y™(G)
Ya,f 3C>0 VxmeGxG IXPA%0(mllgue, s CL+A0) "7 .

~ §"(G), and Y™(G) := OpKN(Sm(G)), pseudo-diff. calculus (E JFA15).
Difference operators A% intrinsic (FE JFA '15, 20)
or implicitly Aq? = % (gx) (Ruzhansky+Turunen+Wirth, 2010-14).

v
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Pseudo-differential calculus on a compact Lie group G [ANEISERIE=GIeleBies]

What is this pseudo-differential calculus good for?

Link with Hormander’s (E '15 and '20)

@ ¥°(G) coincides with the pseudo-differential calculus on M = G
defined via charts etc. Generalisationfor 1=z p>6§=0,p=1-0.

e Polyhomogeneous symbols in S”(G), and link with Hérmander’s.
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Pseudo-differential calculus on a compact Lie group G [ERAVGETSERIE=(I B {sIed

What is this pseudo-differential calculus good for?

Link with Hormander's (E ’'15 and '20)

@ ¥°(G) coincides with the pseudo-differential calculus on M = G
defined via charts etc. Generalisationfor 1=z p>6§=0,p=1-0.

e Polyhomogeneous symbols in S”(G), and link with Hérmander’s.

Applications
® Ruzhansky+Turunen+Wirth '14: Global hypoellipticity of X + c on
G =SU(2) with X € su,, several values of the constant c.
@ Bambusi+Langella 22, Growth of Sobolev norms in quasi integrable
quantum systems 10;y = (Hy+ V(t))w on M, Hy=1d + ZjAJZ.,
Aj€ W! 4 hyp that are satisfied on M = G using E JFA '15.
(To do: homogeneous spaces G/K)

@ Shao 23 uses E JFA 15 for a paradifferential calculus on G.

v
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Pseudo-differential calculus on a compact Lie group G ANTE SO RFEx e

Wick quantization and Garding inequality on G compact

Link between OpVi and Op*N
Assume a€ C*(G) with |lall ;z@n = 1. If 0 € S°(G), then
opVi(g) - 0p"N(laf® x 0) e ¥T(G).

Sharp strong Garding inequality (Benedetto+Fermanian+F '23)

If o € S™(G), me R, satisfies o (x,&) = c(Id + A,,)"™2, for ¢> 0, then 3C > 0 s.t.
VfeC®®R™  R(Op™N0)f.f) = -Clf ||i[m—r1-

+ generalisations.

Proof: Same ingredients as on R" with a = ,/py, since the heat kernels py,
t> 0, are an approximation of the identity.
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Pseudo-differential calculus on a graded nilpotent Lie group G B (o]

Pseudo-differential calculus on a graded nilpotent Lie
group G

G not compact, G non-discrete.
However, G and ¢ may be described by the orbit method (Kirillov).
Left-invariant differential calculus # right-invariant!

Hormander classes S™(G) and Y"(G), E+Ruzhansky '16

m=plal+d[pl+y
v

Iz(d + %) XPA%o (x, M)A+ B) " | 2s6y) < Caprys

where Z positive Rockland operator of homogeneous degree v,
difference operators A% = Aya.

~ 8™(G), and Y"™(G) := Op*N(§"(G)).

Pseudo-differential calculus on adapted Sobolev spaces 2(G).
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Pseudo-differential calculus on a graded nilpotent Lie group G A ORI Glit:4

Wick quantization and Garding inequality on G graded

Link between Op™i* and Op*N
Assume a€ . (G) with ||all z@n = 1. If 0 € S°(G), then

Sharp strong Garding inequality (Benedetto+Fermanian+E '23)
If 0 € S"™(G), me R, satisfies o (x, &) = c(Id + )™V for ¢ > 0, then AC > 0 s.t.

Vies®RD  R(Op™N©0)f.f)2 = -ClfII%

m=1
2

+ generalisations.
Proof: ‘Almost’ same ingredients as on R”.

Remark: in Benedetto+Fermanian+E 23, also the semi-classical case.
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Pseudo-differential calculus on a graded nilpotent Lie group G NSOt

Applications: quantum limit as operator-valued measures

Fermanian + E "20: Micro-local Defect Measures on G
Given (fy)jen, Ifl12¢ = L, fj — 0,3 (i), Tdy s.t. VA€ W2, (G), princ A= o

(Aff) 12 — jmjeoo fG - (700 e T (1)) cy (o, 7).

Fermanian + E '19: Semi-classical calculus on G

opN@) =0p(o(-,8:-), €>0, witho(x,7) =R.(1), k € CX(G,F(G)).

Fermanian + E "21: semi-classical measures
Given (fo)ee1), Ifellz =1, 3 (€x), T'dy s.t.

(OPEN(0) fir fi) 12 —e=ex—0 fG L (ﬂ(x)rf(x,n)F(x,n))dy(x,n).

+ Quantum evolution of the sub-laplacian on H-type groups.

v
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Pseudo-differential calculus on a graded nilpotent Lie group G VIl

Research funded by the Leverhulme Trust (RPG 2020-037)

PI: Veronique Fischer, Col: Clotilde Fermanian,
Postdocs: Steven Flynn, Seren Mikkelsen.

Selection of published works

e Fermanian + E + Flynn '21: Geometric invariance of the semi-classical
calculus on graded nilpotent Lie groups, JGEA.

e F ’22: Asymptotics and zeta functions on nilmanifolds, JMPA.

@ Fermanian + E + Flynn '22: Some remarks on semi-classical analysis
on 2-step nilmanifolds, Proceedings IQM22.

Work in progress on regular subRiemannian manifolds

o Fermanian + E + Flynn: quantization with symbol o (x,7), x€ G, 7w € Gy,
pseudo-diff. calculus.

o F + Mikkelsen: Weyl law estimates of subLaplacians.

v

Longer term: Fermanian + E : quantum evolution and QE of subLaplacians?
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THE END

Thank you for your attention.
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