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Plan

Plan

Kohn-Nirenberg and Wick quantizations* on Rn and on groups G.

The Hörmander pseudo-differential calculus on Rn,
Gårding inequality.

Pseudo-differential calculi for G compact or nilpotent Lie groups,
Gårding inequality and applications.

* Quantization = symbol ⇝ operator
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KN and W Quantization KN Quantization on Rn

Kohn-Nirenberg quantization on Rn

Definition (OpKNσ, σ ∈S ′(Rn ×Rn))

(OpKNσ)f (x) =


Rn
e2iπxξσ(x,ξ)f (ξ)dξ, f ∈S (Rn), x ∈Rn,

where F f (ξ) =f (ξ) =


Rn
e−2iπxξf (x)dx.
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Kohn-Nirenberg quantization on Rn

Definition (OpKNσ, σ ∈S ′(Rn ×Rn))

(OpKNσ)f (x) =


Rn
e2iπxξσ(x,ξ)f (ξ)dξ, f ∈S (Rn), x ∈Rn,

where F f (ξ) =f (ξ) =


Rn
e−2iπxξf (x)dx.

Convolution kernel κx =F−1σ(x, · )
(OpKNσ)f (x) = f ∗κx(x), f ∈S (Rn), x ∈Rn.

The integral kernel of OpKNσ is (x,y) → κx(x−y), hence

OpKNσHS(L2(Rn)) = κL2(Rn×Rn) = σL2(Rn×Rn),

Hence, OpKN : L2(Rn ×Rn) → HS(L2(Rn)) unitary and surjective.
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Kohn-Nirenberg quantization on Rn

Definition (OpKNσ, σ ∈S ′(Rn ×Rn))

(OpKNσ)f (x) =


Rn
e2iπxξσ(x,ξ)f (ξ)dξ, f ∈S (Rn), x ∈Rn,

where F f (ξ) =f (ξ) =


Rn
e−2iπxξf (x)dx.

Convolution kernel κx =F−1σ(x, · )
(OpKNσ)f (x) = f ∗κx(x), f ∈S (Rn), x ∈Rn.

The integral kernel of OpKNσ is (x,y) → κx(x−y), hence

OpKNσHS(L2(Rn)) = κL2(Rn×Rn) = σL2(Rn×Rn),

Hence, OpKN : L2(Rn ×Rn) → HS(L2(Rn)) unitary and surjective.

Remark: also on Tn using Fourier series. . .

V. Fischer (Bath) Group quantizations Cologne, 27/07/23 3 / 20



KN and W Quantization KN Quantization on G

Formal Kohn-Nirenberg Quantization on groups

M. Taylor ’84

The definition of OpKN extends to groups where the Plancherel theorem
based on the group Fourier transform (representation theory) holds.

Formal definition of OpKNσ

(OpKNσ)f (x) =


G
tr


π(x)σ(x,π)f (π)


dµ(π), f ∈ Cc(G), x ∈ G.

For example, on the torus,

(OpKNσ)f (x) =


ℓ∈Zn

e2iπℓxσ(x,ℓ)f (ℓ), f ∈ Cc(Tn), x ∈Tn.
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KN and W Quantization KN Quantization on G

Group Fourier transform and Plancherel theorem

Fourier transform on a locally compact group G

F f (π) =f (π) =


G
f (x)π(x)∗dx, π ∈ RepG, f ∈ L1(G).

Note f (π) ∈L (Hπ) with f (π)L (Hπ) ≤ f L1(G) when π unitary.

Plancherel theorem (Dixmier, ’60’s)

Hyp: G locally compact, unimodular, type I.
G= set of unitary irreducible representation modulo equivalence.

∃! Plancherel measure µ, f 2
L2(G) =



G
f (π)2

HS(Hπ)dµ(π).

T ∈L (L2(G)) left-invariant ⇐⇒ Tf =F−1(σf ), σ ∈ L∞(G) .

TL (L2(G)) = σL∞(G) := sup
π∈G

σ(π)L (Hπ), σ= {σ(π) ∈L (Hπ),π ∈ G}.
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KN and W Quantization KN Quantization on G

Kohn-Nirenberg Quantization on groups

OpKN via the convolution kernel

If σ ∈ L2(G× G), i.e. σ(x,π) = κx(π) with κ ∈ L2(G×G) or C(G,FL1(G)),
then we define

(OpKNσ)f (x) = f ∗κx(x), x ∈ G, f ∈ Cc(G).

Integral kernel (x,y) → κx(y−1x).
Hence, OpKN : L2(G× G) → HS(L2(G)) unitary and surjective.

OpKN via the symbol (M. Taylor ’84)

Assume that the inversion formula holds for ‘enough’ functions,

f (x) =


G
tr


π(x)f (π)


dµ(π), x ∈ G.

Then (OpKNσ)f (x) =


G
tr


π(x)σ(x,π)f (π)


dµ(π).
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KN and W Quantization W Quantization on Rn

Wick quantization on Rn

Generalised Bargmann transform

Fixing a ∈S (Rn) with aL2(Rn) = 1, we set for f ∈ L2(Rn)

Ba(f )(x,ξ) :=F (f a(·−x))(ξ) =


Rn
f (y)a(y−x)e−2iπyξdy, (x,ξ) ∈Rn ×Rn.

B =Ba unitary transformation L2(Rn) → L2(Rn ×Rn).

Gaussian a(x) =π− d
2 e−

|x|2
2 ⇝ Bargmann transform.
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Generalised Bargmann transform

Fixing a ∈S (Rn) with aL2(Rn) = 1, we set for f ∈ L2(Rn)

Ba(f )(x,ξ) :=F (f a(·−x))(ξ) =


Rn
f (y)a(y−x)e−2iπyξdy, (x,ξ) ∈Rn ×Rn.

B =Ba unitary transformation L2(Rn) → L2(Rn ×Rn).

Gaussian a(x) =π− d
2 e−

|x|2
2 ⇝ Bargmann transform.

Wick quantization of σ ∈ L∞(Rn ×Rn)

OpWick(σ)f := B∗ 
σB(f )


, f ∈ L2(Rn).
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KN and W Quantization W Quantization on Rn

Wick quantization on Rn

Generalised Bargmann transform

Fixing a ∈S (Rn) with aL2(Rn) = 1, we set for f ∈ L2(Rn)

Ba(f )(x,ξ) :=F (f a(·−x))(ξ) =


Rn
f (y)a(y−x)e−2iπyξdy, (x,ξ) ∈Rn ×Rn.

B =Ba unitary transformation L2(Rn) → L2(Rn ×Rn).

Gaussian a(x) =π− d
2 e−

|x|2
2 ⇝ Bargmann transform.

Wick quantization of σ ∈ L∞(Rn ×Rn)

OpWick(σ)f := B∗ 
σB(f )


, f ∈ L2(Rn).

Advantages: L2-boundedness, preserves adjoint and positivity

OpWick(σ)L (L2(Rn) ≤ σL∞(Rn×Rn), OpWick(σ)∗ = OpWick(σ̄),

σ(x,ξ) ≥ 0 =⇒ (OpWick(σ)f , f )L2(Rn) = (σBf ,Bf )L2(Rn×Rn) ≥ 0.
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KN and W Quantization W Quantization on G

Wick quantization on G (loc. comp., unimodular, type I)

Generalised Bargmann transform

Fixing a ∈ C(G) bounded with aL2(Rn) = 1, we set for f ∈ L2(G)

Ba(f )(x,π) :=F (f a( ·x−1))(π), (x,π) ∈ G× G.

B =Ba unitary transformation L2(G) → L2(G× G).

Wick quantization of σ ∈ L∞(G× G)

OpWick(σ)f = B∗ 
σB(f )


, f ∈ L2(G).

Advantages: L2-boundedness, preserves adjoint and positivity

OpWick(σ)L (L2(G) ≤ σL∞(G×G) =: sup
(x,π)∈G×G

σ(x,π)L (Hπ),

OpWick(σ)∗ = OpWick(σ∗),

σ(x,π) ≥ 0 =⇒ (OpWick(σ)f , f )L2(G) = (σBf ,Bf )L2(G×G) ≥ 0.
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KN and W Quantization W Quantization on G

Link between OpKN and OpWick

Link via convolution kernel - when it makes sense. . .

Let σ ∈ L∞(G× G) with a convolution kernel κ ∈ C(G,L1(G). Then

OpWick(σ)f (x) = f ∗κWick
x (x), f ∈Cc(G), x ∈ G,

where

κWick
x (w) =



G
a(w−1xz−1)ā(xz−1)κz(w)dz

=


G
a(w−1z′)ā(z′)κz′−1x(w)dz′.

Application

Gårding inequalities within pseudo-differential calculi à la Hörmander.
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Gårding inequality on Rn

Gårding inequality on Rn

Hörmander classes Sm(Rn) andΨm(Rn)

∀α,β ∈Nn
0 ∃Cα,β > 0 ∀(x,ξ) ∈Rn ×Rn |∂βx∂αξσ(x,ξ)|≤ Cα,β(1+|ξ|2)

m−|α|
2 .

⇝ Sm(Rn), and Ψm(Rn) := OpKN(Sm(Rn)).

Sharp strong Gårding inequality
If σ ∈ Sm(Rn), m ∈R, satisfies σ(x,ξ) ≥ c(1+|ξ|2)m/2, for c > 0, then ∃C > 0 s.t.

∀f ∈S (Rn) 

OpKN(σ)f , f


L2 ≥−Cf 2

H
m−1

2
.

Generalisation to matrix-valued symbols, and
with modifications to (ρ,δ)-classes and to σ≥ 0.
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Gårding inequality on Rn

Proof (Benedetto + Fermanian + F., ’23)

Pseudo-diff. calculus: it suffices to show m = 0, so let σ ∈ S0(Rn), σ(x,ξ) ≥ c.

Link between OpWick and OpKN (a ∈S (Rn), aL2(Rn) = 1).

σ ∈ S0(Rn) =⇒ OpWick(σ)−OpKN(|a|2 ∗σ) ∈ Ψ−1(Rn).

(OpKN(σ)f , f )L2

≥ (OpWick(σ)f , f )L2  
=(σBf ,Bf )L2≥cf L2

−OpKN(σ− |a|2 ∗σ)L (L2)  
≤σ−|a|2∗σS0,a0,b0

f 2
L2(G) −Cf 2

H− 1
2

.

Approximation of the identity

If ϕ1 ∈S (Rn) with

Rn ϕ1 = 1, then ϕt = t−nϕ(t−1· ), t > 0, satisfies

lim
t→0

σ−ϕt ∗σSm,a1,b1 = 0.

Fix a1 ∈S (Rn) with a1L2 = 1. Set at := t−n/2a(t−1·) for t > 0. Choose a = at

in the Wick quantization with t > 0 s.t. σ− |a|2 ∗σS0,a0,b0
≤ c. □
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( )

What is a pseudo-differential calculus?

Pseudo-differential calculusΨ∞(M) :=∪mΨ
m(M) on a smooth manifold M
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( )

What is a pseudo-differential calculus?

Pseudo-differential calculusΨ∞(M) :=∪mΨ
m(M) on a smooth manifold M

Ψ∞(M) is a space of continuous operators D(M) →D(M)

that is filtered (m ≤ m′ ⇒Ψm(M) ⊂Ψm′
(M)),

stable by compositionΨm1 ×Ψm2 →Ψm1+m2 and ∗ :Ψm(M) →Ψm(M)

that contains a differential calculus and acting continuously on
‘Sobolev-like spaces’.
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What is a pseudo-differential calculus?

Pseudo-differential calculusΨ∞(M) :=∪mΨ
m(M) on a smooth manifold M

Ψ∞(M) is a space of continuous operators D(M) →D(M)

that is filtered (m ≤ m′ ⇒Ψm(M) ⊂Ψm′
(M)),

stable by compositionΨm1 ×Ψm2 →Ψm1+m2 and ∗ :Ψm(M) →Ψm(M)

that contains a differential calculus and acting continuously on
‘Sobolev-like spaces’.

+ eachΨm(M), m ∈R, is a Fréchet space:

continuous inclusion, composition and ∗.

Ψm(M) →L (Hs,Hs−m) continuous.
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What is a pseudo-differential calculus?

Pseudo-differential calculusΨ∞(M) :=∪mΨ
m(M) on a smooth manifold M

Ψ∞(M) is a space of continuous operators D(M) →D(M)

that is filtered (m ≤ m′ ⇒Ψm(M) ⊂Ψm′
(M)),

stable by compositionΨm1 ×Ψm2 →Ψm1+m2 and ∗ :Ψm(M) →Ψm(M)

that contains a differential calculus and acting continuously on
‘Sobolev-like spaces’.

+ eachΨm(M), m ∈R, is a Fréchet space:

continuous inclusion, composition and ∗.

Ψm(M) →L (Hs,Hs−m) continuous.

Optional: symbol, asymptotic expansions.
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Pseudo-differential calculus on a compact Lie group G Definition

Pseudo-differential calculus on a compact Lie group G

Plancherel theorem on G = Peter-Weyl theorem

G is discrete and µ({π}) = dimπ: f 2
L2(G) =



π∈G
dimπf (π)2

HS(Hπ).

⇝ symbol σ= {σ(x,π) ∈L (Hπ) : (x,π) ∈ G× G}
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Pseudo-differential calculus on a compact Lie group G Definition

Pseudo-differential calculus on a compact Lie group G

Plancherel theorem on G = Peter-Weyl theorem

G is discrete and µ({π}) = dimπ: f 2
L2(G) =



π∈G
dimπf (π)2

HS(Hπ).

⇝ symbol σ= {σ(x,π) ∈L (Hπ) : (x,π) ∈ G× G}

Laplace-Beltrami operator

Fix an ONB X1, . . . ,Xn on g. L :=−X 2
1 − . . .−X 2

n .
If π irreducible representation of G, then π(L ) =λπId.
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Pseudo-differential calculus on a compact Lie group G

Plancherel theorem on G = Peter-Weyl theorem

G is discrete and µ({π}) = dimπ: f 2
L2(G) =



π∈G
dimπf (π)2

HS(Hπ).

⇝ symbol σ= {σ(x,π) ∈L (Hπ) : (x,π) ∈ G× G}

Laplace-Beltrami operator

Fix an ONB X1, . . . ,Xn on g. L :=−X 2
1 − . . .−X 2

n .
If π irreducible representation of G, then π(L ) =λπId.

Hörmander classes Sm(G) andΨm(G)

∀α,β ∃C > 0 ∀(x,π) ∈ G× G Xβ
x ∆

ασ(x,π)L (Hπ) ≤ C(1+λπ)
m−|α|

2 .

⇝ Sm(G), and Ψm(G) := OpKN(Sm(G)), pseudo-diff. calculus (F. JFA ’15).
Difference operators ∆α intrinsic (F. JFA ’15, ’20)
or implicitly ∆qκ=F (qκ) (Ruzhansky+Turunen+Wirth, 2010-14).
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Pseudo-differential calculus on a compact Lie group G What is it good for?

What is this pseudo-differential calculus good for?

Link with Hörmander’s (F. ’15 and ’20)

Ψ∞(G) coincides with the pseudo-differential calculus on M = G
defined via charts etc. Generalisation for 1 ≥ ρ > δ≥ 0, ρ ≥ 1−δ.

Polyhomogeneous symbols in Sm(G), and link with Hörmander’s.
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What is this pseudo-differential calculus good for?

Link with Hörmander’s (F. ’15 and ’20)

Ψ∞(G) coincides with the pseudo-differential calculus on M = G
defined via charts etc. Generalisation for 1 ≥ ρ > δ≥ 0, ρ ≥ 1−δ.

Polyhomogeneous symbols in Sm(G), and link with Hörmander’s.

Applications

Ruzhansky+Turunen+Wirth ’14: Global hypoellipticity of X + c on
G = SU(2) with X ∈ su2, several values of the constant c.

Bambusi+Langella ’22, Growth of Sobolev norms in quasi integrable
quantum systems i∂tψ= (H0 +V (t))ψ on M , H0 = Id+

j A2
j ,

Aj ∈Ψ1 + hyp that are satisfied on M = G using F. JFA ’15.
(To do: homogeneous spaces G/K )

Shao ’23 uses F. JFA ’15 for a paradifferential calculus on G.
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Pseudo-differential calculus on a compact Lie group G Wick Q & Gårding

Wick quantization and Gårding inequality on G compact

Link between OpWick and OpKN

Assume a ∈ C∞(G) with aL2(Rn) = 1. If σ ∈ S0(G), then

OpWick(σ)−OpKN(|a|2 ∗σ) ∈Ψ−1(G).

Sharp strong Gårding inequality (Benedetto+Fermanian+F. ’23)

If σ ∈ Sm(G), m ∈R, satisfies σ(x,ξ) ≥ c(Id+λπ)m/2, for c > 0, then ∃C > 0 s.t.

∀f ∈ C∞(Rn) 

OpKN(σ)f , f


L2 ≥−Cf 2

H
m−1

2
.

+ generalisations.
Proof: Same ingredients as on Rn with a =

pt , since the heat kernels pt ,
t > 0, are an approximation of the identity.
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Pseudo-differential calculus on a graded nilpotent Lie group G Definition

Pseudo-differential calculus on a graded nilpotent Lie
group G

G not compact, G non-discrete.
However, G and µ may be described by the orbit method (Kirillov).
Left-invariant differential calculus ∕= right-invariant!

Hörmander classes Sm(G) andΨm(G), F.+Ruzhansky ’16

π(Id+R)−
m−ρ[α]+δ[β]+γ

ν Xβ∆ασ(x,π)π(Id+R)
γ

ν L (Hπ) ≤ Cα,β,γ,

where R positive Rockland operator of homogeneous degree ν,
difference operators ∆α =∆xα .
⇝ Sm(G), and Ψm(G) := OpKN(Sm(G)).
Pseudo-differential calculus on adapted Sobolev spaces L2

s (G).
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Pseudo-differential calculus on a graded nilpotent Lie group G Wick Q & Gårding

Wick quantization and Gårding inequality on G graded

Link between OpWick and OpKN

Assume a ∈S (G) with aL2(Rn) = 1. If σ ∈ S0(G), then

OpWick(σ)−OpKN(|a|2 ∗σ) ∈Ψ−1(G).

Sharp strong Gårding inequality (Benedetto+Fermanian+F. ’23)

If σ ∈ Sm(G), m ∈R, satisfies σ(x,ξ) ≥ c(Id+ R)m/ν for c > 0, then ∃C > 0 s.t.

∀f ∈S (Rn) 

OpKN(σ)f , f


L2 ≥−Cf 2

L2
m−1

2

.

+ generalisations.
Proof: ‘Almost’ same ingredients as on Rn.

Remark: in Benedetto+Fermanian+F. ’23, also the semi-classical case.
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Pseudo-differential calculus on a graded nilpotent Lie group G Applications

Applications: quantum limit as operator-valued measures

Fermanian + F. ’20: Micro-local Defect Measures on G

Given (fj)j∈N, f L2(G) = 1, fj  0, ∃ (jk), Γdγ s.t. ∀A ∈Ψ0
cl(G), princ A=σ0


A fj, fj


L2 −→j=jk→∞



G×(G\{1})/R+
tr


π(x)σ0(x, π̇)Γ(x, π̇)


dγ(x, π̇).

Fermanian + F. ’19: Semi-classical calculus on G

OpKN
ε (σ) = Op(σ( · ,δε · ) , ε> 0, with σ(x,π) = κx(π), κ ∈ C∞

c (G,S (G)).

Fermanian + F. ’21: semi-classical measures

Given (fε)ε∈(0,1], fεL2 = 1, ∃ (εk), Γdγ s.t.


OpKN

ε (σ) fε, fε


L2 −→ε=εk→0



G×G
tr


π(x)σ(x,π)Γ(x,π)


dγ(x,π).

+ Quantum evolution of the sub-laplacian on H-type groups.
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Pseudo-differential calculus on a graded nilpotent Lie group G Applications

Research funded by the Leverhulme Trust (RPG 2020-037)

PI: Veronique Fischer, CoI: Clotilde Fermanian,
Postdocs: Steven Flynn, Søren Mikkelsen.

Selection of published works

Fermanian + F. + Flynn ’21: Geometric invariance of the semi-classical
calculus on graded nilpotent Lie groups, JGEA.

F. ’22: Asymptotics and zeta functions on nilmanifolds, JMPA.

Fermanian + F. + Flynn ’22: Some remarks on semi-classical analysis
on 2-step nilmanifolds, Proceedings IQM22.

Work in progress on regular subRiemannian manifolds

Fermanian + F. + Flynn: quantization with symbol σ(x,π), x ∈ G, π ∈ Gx,
pseudo-diff. calculus.

F. + Mikkelsen: Weyl law estimates of subLaplacians.

Longer term: Fermanian + F. : quantum evolution and QE of subLaplacians?
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THE END

Thank you for your attention.
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