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Set up

M := {z ∈ M ′; ρ(z) < 0}: domain with smooth boundary X .

M ′: complex manifold of dimension n.

ρ: defining function of M with |dρ| = 1 on X := ∂M.
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Set up

Suppose that M ′ admits a compact d-dimensional Lie group
G action.

The G -action is holomorphic, preserves the boundary X .

( · | · )M : L2 inner product on C∞(M) induced by the given
G -invariant Hermitian metric.
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Set up

H0(M) := Ker ∂ ⊂ L2(M): the space of global L2

holomorphic functions.

H0(M)G :=
{
u ∈ H0(M); h∗u = u, for any h ∈ G

}
:

G -invariant L2 holomorphic functions.

BG : L2(M) → H0(M)G : the orthogonal projection with
respect to ( · | · )M (G -invariant Bergman projection).
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Motivation

The study of BG is important in quantization on complex
manifolds with boundary.

Q: what is BG (x , y)?

Can we have Guillemin-Sternberg type result:
H0(M)G ∼= H0(MG ), MG : reduced space?
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Example

M :=
{
(z1, z2, z3) ∈ C3; |z1|4 + |z2|2 + |z3|2 < 1

}
.

M admits an S1-action:

S1 ×M → M, e iθ · (z1, z2, z3) = (e−iθz1, e
iθz2, e

iθz3).

H0(M) and H0(M)S1 are infinite dimensional.
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Moment map

ω0 := J(dρ), J is the complex structure on T ∗M ′.

The moment map associated to the form ω0 is the map
µ : M ′ → g∗ defined by

⟨µ(x), ξ⟩ = ω0(ξM′(x)), x ∈ M ′, ξ ∈ g. (1)

g: Lie algebra of G , ξM′ : vector field on M ′ induced by ξ.

µX := µ|X : X → g∗ be the associated moment map on the
CR manifold X .
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Moment map

We assume that

0 is a regular value of µX ,

G acts freely on µ−1(0) ∩ X , µ−1(0) ∩ X ̸= ∅,
the Levi form Lx is positive or negative near µ−1(0) ∩ X .

Lx = ∂∂ρ|T 1,0X , T
1,0X := T 1,0M ′ ∩ CTX .
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G -invariant Bergman kernel asymptotics, joint with Huang,
Li and Shao

Theorem 0

Let τ ∈ C∞(M) with supp τ ∩ µ−1(0) ∩ X = ∅.
τBG ≡ 0 mod C∞(M ×M), BG τ ≡ 0 mod C∞(M ×M).
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G -invariant Bergman kernel asymptotics, joint with Huang,
Li and Shao

Theorem 0

Let p ∈ µ−1(0) ∩ X. Let U be an open local coordinate patch
of p in M ′, D := U ∩ X.

If Levi form is negative on D, then

BG (z ,w) ≡ 0 mod C∞((U × U) ∩ (M ×M)). (2)
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G -invariant Bergman kernel asymptotics, joint with Huang,
Li and Shao

Theorem 0

If Levi form is positive on D, then

BG (z ,w) ≡
∫ +∞

0
e itΨ(z,w)b(z ,w , t)dt

mod C∞((U × U) ∩ (M ×M)).

(3)

b(z ,w , t) ∼
∑+∞

j=0 t
n− d

2
−jbj(z ,w) in

S
n− d

2
1,0 (((U × U) ∩ (M ×M))× R+).

b0(x , x) ̸= 0, for every x ∈ µ−1(0) ∩ D.
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G -invariant Bergman kernel asymptotics, joint with Huang,
Li and Shao

Theorem 0

Ψ(z ,w) ∈ C∞(((U × U) ∩ (M ×M))), ImΨ ≥ 0.

Ψ(z , z) = 0, z ∈ µ−1(0) ∩ D.

ImΨ(z ,w) > 0 if
(z ,w) /∈ diag ((µ−1(0) ∩ D)× (µ−1(0) ∩ D)).

dxΨ(x , x) = −ω0(x)− idρ(x), dyΨ(x , x) = ω0(x)− idρ(x),
x ∈ µ−1(0) ∩ D.
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G -invariant Bergman kernel asymptotics, joint with Huang,
Li and Shao

Theorem 0

BG (z ,w) = F (z,w)

(−iΨ(z,w))n−
d
2 +1

+ G (z ,w) log(−iΨ(z ,w)).

F (z ,w),G (z ,w) ∈ C∞((U × U) ∩ (M ×M)).
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Remark

We show that BG is a complex Fourier integral operator near
positive part of µ−1(0) ∩ X .

When G is trivial and X is strongly pseudoconvex,
Fefferman(1974) established an asymptotic expansion for
BG = B at the diagonal.

A full asymptotic expansion of B was obtained by Boutet de
Monvel and Sjöstrand(1976).
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Remark

The asymptotic of B plays an important role in some
important problems in several complex variables.

By using Theorem 0 , we get G -invariant version of
Fefferman’s result about regularity of biholomorphic maps on
strongly pseudoconvex domains of Cn.
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Geometric quantization on complex manifolds with
boundary

µ−1
X (0): d-codimensional submanifold of X .

µ−1(0) ∩ X = X̂ ∪ X̃ , X̂ : strongly pseudoconvex, X̃ : strongly
pseudoconcave.

X̂G := X̂/G , X̃G = X̃/G .

Fact: X̂G is a strongly pseudoconvex CR manifold.
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Guillemin-Sternberg map

H0
b(X̂G )s :=

{
u ∈ W s(X̂G ); ∂bu = 0

}
.

∂b: the tangential Cauchy-Riemann operator on X̂ .

H0(M)Gs := {u ∈ W s(M); ∂u, h∗u = u, ∀h ∈ G}.
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Guillemin-Sternberg map

Guillemin-Sternberg map:

σ̃G : H0(M)Gs → H0
b(X̂G )s− d

4
− 1

2
,

u → ι
G ,X̂

◦ ι∗
X̂
◦ γ ◦ u.

(4)

ι
X̂
: X̂ ↪→ X : natural inclusion.

ι
G ,X̂

: C∞(X̂ )G → C∞(X̂G ): natural identification.

γ: the operator of the restriction to the boundary X .
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Geometric quantization on complex manifolds with
boundary

Theorem I (joint with Huang, Li and Shao)

For every s ∈ R, the Guillemin-Sternberg map (4) is Fredholm.

Ker σ̃G ,s and Coker σ̃G ,s are finite dimensional subspaces of

H0(M)G ∩ C∞(M)G and H0
b(X̂G ) ∩ C∞(X̂G ) respectively.

Ker σ̃G ,s and Coker σ̃G ,s are independent of s.
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Remark

This result can be used to construct global G -invariant
holomorphic functions on M with given singularities at the
boundary.
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Geometric quantization on complex manifolds with
boundary

Theorem II (joint with Huang, Li and Shao)

Assume that 0 is a regular value of µ, G acts freely on µ−1(0).

M ′
G := µ−1(0)/G, MG := (µ−1(0) ∩M)/G.

MG is a complex manifold in M ′
G with smooth boundary XG .
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Geometric quantization on complex manifolds with
boundary

Theorem II (joint with Huang, Li and Shao)

σG = σG ,s : H
0(M)Gs → H0(MG )s− d

4
: holomorphic

Guillemin-Sternberg map.

The holomorphic Guillemin-Sternberg map is Fredholm.

Ker σG ,s and CokerσG ,s are finite dimensional subspaces of
H0(M)G ∩ C∞(M)G and H0(MG ) ∩ C∞(MG ) respectively.

Ker σG ,s and CokerσG ,s are independent of s.
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Examples and applications

(L, hL) → Y : holomorphic line bundle over a compact
complex manifold Y .

M =
{
v ∈ L∗; |v |2hL∗ < 1

}
, M ′ = L∗.

X = ∂M =
{
v ∈ L∗; |v |2hL∗ = 1

}
: circle bundle.

M ′ admits a natural S1-action (acting on fiber).

Assume that G commutes with S1 (for example, G acts on
base manifold Y ).
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Examples and applications

H0
k (M)G =

{
u ∈ H0(M)G ; (e iθ)∗u = e ikθu

}
.

H0
b,k(XG ) =

{
u ∈ H0

b(XG ); (e
iθ)∗u = e ikθu

}
.

From Theorem I , for |k| ≫ 1,

H0
k (M)G ∼= H0

b,k(XG ) ∼= H0(YG , L
k
G ). (5)
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Examples and applications

Consider M =
{
v ∈ L∗; 1

2 < |v |2hL∗ < 1
}
.

From Theorem II , for |k | ≫ 1,

H0
k (M)G ∼= H0

k (MG ). (6)
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Examples and applications

We can generalize (5) and (6) to general domain M with a
holomorphic compact Lie group action H such that H
commutes with G .

k ↔ irreducible representation of H.
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Toeplitz operator view point

(L, hL) → Y : holomorphic line bundle over a compact
complex manifold Y .

R: vector field on M ′ induced by the S1 action of L∗.

G -invariant Toeplitz operator: TG
R := BG ◦ (−iR) ◦ BG ,

BG : L2(M) → H0(M)G : G -invariant Bergman projection.

Toeplitz operator on XG : TRXG
:= SXG

◦ (−iRXG
) ◦ SXG

,

SXG
: L2(XG ) → Ker ∂b: Szegő projection.
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Toeplitz operator view point

H0
k (M)G =

{
u ∈ L2(M); TG

R u = ku
}
.

H0
b,k(XG ) =

{
u ∈ L2(XG ); TRXG

u = ku
}
.

For |k | ≫ 1, Ek(T
G
R ) ∼= Ek(TRXG

).

Ek(T
G
R )(Ek(TRXG

)) eigenspace of TG
R (TRXG

) corresponding to
the eigenvalue k .

The eigenvalues of TG
R are not integer in general.
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Toeplitz operators on complex manifolds with boundary

Assume that X is strongly pseudoconvex.

Fix a G -invariant Reeb vector field T on X , that is
T ∈ C∞(X ,TX ), CTX = T 1,0X ⊕ T 0,1X ⊕ CT (we can take
T = J( ∂

∂ρ)|X ).
R: G -invariant self-adjoint vector field on M ′ so that
R = 1

2((−iT ) + (−iT )∗) on X .

We can define Toeplitz operators TG
R , TRXG

as above.
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Toeplitz operators on complex manifolds with boundary

Let χ ∈ C∞
c (R+).

Let χk(T
G
R ) := χ(k−1TG

R ), χk(TRXG
) := χ(k−1TRXG

).

χk(T
G
R )(χk(TRXG

)): functional calculus of k−1TG
R (k−1TRXG

)
with respect to χ.
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Toeplitz operators on complex manifolds with boundary

Theorem III (joint with Herrmann, Marinescu and Shen)

χk(TRXG
)(x , y) =

∫
e iktφ(x ,y)a(x , y , t, k)dt +O(k−∞), k ≫ 1,

a(x , y , t, k) ∼
∑+∞

j=0 k
n−d−jaj(x , y , t),

Supp ta(x , y , t, k),Supp taj(x , y , t, k) ⊂ Suppχ,

a0(x , x , t) =
1

2πn−d χ(t)t
ndetLXG ,x ,

Imφ ≥ 0, φ(x , y) = 0 if and only if x = y.
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G -invariant Toeplitz operators asymptotics on complex
manifolds with boundary

Theorem IV (in preparation)

U: open set in M ′.

If U ∩ µ−1(0) ∩ X = ∅.
χk(T

G
R )(x , y) ≡ 0 mod O(k−∞) on (U × U) ∩ (M ×M).

If U ∩ µ−1(0) ∩ X ̸= ∅.
χk(T

G
R )(x , y) ≡

∫
e ikΨ(x ,y ,t)b(x , y , t, k)dt mod O(k−∞) on

(U × U) ∩ (M ×M).
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G -invariant Toeplitz operators asymptotics on complex
manifolds with boundary

Theorem IV (in preparation)

b(x , y , t, k) ∼
∑+∞

j=0 k
n+1− d

2
−jbj(x , y , t),

Supp tb(x , y , t, k), Supp tbj(x , y , t, k) ⊂ Suppχ,
b(x , y , t), bj(x , y , t) ∈ C∞((U × U) ∩ (M ×M)× R+),
b0(x , x , t) ̸= 0.

ImΨ ≥ 0,

Ψ(x , y) ≥ C
(
(dist (x , µ−1(0)∩X ))2+(dist (y , µ−1(0)∩X ))2

)
.

Ψ = 0 if and only if x = y ∈ µ−1(0) ∩ X.

Chin-Yu Hsiao Semi-classical Toeplitz operators and geometric quantization on CR manifolds and complex manifolds with boundary



Quantization commutes with reduction for Toeplitz
operators on complex manifolds with boundary

Theorem V

Fix 0 < δ1 < δ2.

We have for k ≫ 1,

⊕λ∈[kδ1,kδ2]Eλ(T
G
R ) ∼= ⊕λ∈[kδ1,kδ2]Eλ(TRXG

).
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Application

Theorem VI

dim ⊕λ∈[kδ1,kδ2] Eλ(T
G
R ) =

kn−d

2πn−d

∫
XG

∫ δ2
δ1

tn−d−1detLXG ,xdtdVXG
+ O(kn−d−1)

(G-invariant Boutet de Monvel-Guillemin Weyl law for
domains).

We can replace R to a pseudodiffernetial operator.
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Example

M :=
{
(z1, z2, . . . , zn) ∈ Cn; |z1|4 + |z2|2 + · · ·+ |zn|2 < 1

}
.

M admits an G = S1-action:

S1×M → M, e iθ ·(z1, z2, . . . , zn) = (e−iθz1, e
iθz2, . . . , e

iθzn).

M is a weakly pseudoconvex domain in Cn.
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Example

0 is a regular value of µX ,

G acts freely on µ−1(0) ∩ X , µ−1(0) ∩ X ̸= ∅,
the Levi form Lx is positive near µ−1(0) ∩ X .
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Example

H0(M)G = span {zα1
1 · · · zαn

n ;

− α1 + α2 + · · ·+ αn = 0, (α1, . . . , αn) ∈ (N ∪ {0})n}.

XG =
{
(z2, . . . , zn) ∈ Cn−1; |z2|2 + · · ·+ |zn|2 = 2

3

}
.

H0
b(XG ) = span {zα2

2 · · · zαn
n |XG

; (α2, . . . , αn) ∈ (N∪{0})n−1}.
H0(M)G ∼= H0

b(XG ).
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Example

0 ∈ Cn is not a regular value of the moment map.

Consider M :={
(z1, z2, . . . , zn) ∈ Cn; 1

2 < |z1|4 + |z2|2 + · · ·+ |zn|2 < 1
}
.

MG =
{
(z2, . . . , zn) ∈ Cn−1; 1

3 < |z2|2 + · · ·+ |zn|2 < 2
3

}
.

H0(M)G ∼= H0(MG ).
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Example

Let R =
∑n

j=1(iβjzj
∂
∂zj

− iβjz j
∂
∂z j

), (β1, . . . , βn) ∈ Rn
+.

R|X is a Reeb vector field.

Eigenvalues of TG
R

= {λ = m1β1 + · · ·+mnβn;

−m1 +m2 + · · ·+mn = 0, (m1, . . . ,mn) ∈ (N ∪ {0})n}.

Chin-Yu Hsiao Semi-classical Toeplitz operators and geometric quantization on CR manifolds and complex manifolds with boundary



Example

Eλ(T
G
R )

= span {zm1
1 · · · zmn

n ;

−m1 +m2 + · · ·+mn = 0, (m1, . . . ,mn) ∈ (N ∪ {0})n,
β1m1 + · · ·+ βnmn = λ}.
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Example

From Theorem VI , we have

dim ⊕λ∈[kδ1,kδ2] Eλ(T
G
R )

= |{(m1, . . . ,mn) ∈ (N ∪ {0})n;
kδ1 ≤ β1m1 + · · ·+ βnmn ≤ kδ2,−m1 +m2 + · · ·+mn = 0}|

=
kn−1

2πn−1

∫
XG

∫ δ2

δ1

tn−2detLXG ,xdtdVXG
+ O(kn−2).
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