Semi-classical Toeplitz operators and geometric quantization on CR manifolds and complex manifolds with boundary

Chin-Yu Hsiao

Institute of Mathematics, Academia Sinica, Taiwan

Chin-Yu Hsiao Semi-classical Toeplitz operators and geometric quantization of

(4回) (1日) (日)

- $M := \{z \in M'; \rho(z) < 0\}$: domain with smooth boundary X.
- M': complex manifold of dimension n.
- ρ : defining function of M with $|d\rho| = 1$ on $X := \partial M$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● ○ ○ ○ ○

- Suppose that *M*' admits a compact *d*-dimensional Lie group *G* action.
- The G-action is holomorphic, preserves the boundary X.
- $(\cdot | \cdot)_M$: L^2 inner product on $\mathcal{C}^{\infty}(\overline{M})$ induced by the given *G*-invariant Hermitian metric.

イロン イボン イヨン 「日

- H⁰(M) := Ker∂ ⊂ L²(M): the space of global L² holomorphic functions.
- $H^0(\overline{M})^G := \{ u \in H^0(\overline{M}); h^*u = u, \text{ for any } h \in G \}:$ *G*-invariant L^2 holomorphic functions.
- B_G: L²(M) → H⁰(M)^G: the orthogonal projection with respect to (·|·)_M (G-invariant Bergman projection).

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ● ● ● ●

- The study of *B_G* is important in quantization on complex manifolds with boundary.
- Q: what is $B_G(x, y)$?
- Can we have Guillemin-Sternberg type result: $H^0(\overline{M})^G \cong H^0(\overline{M}_G), M_G$: reduced space?

•
$$M := \left\{ (z_1, z_2, z_3) \in \mathbb{C}^3; |z_1|^4 + |z_2|^2 + |z_3|^2 < 1 \right\}.$$

• M admits an S^1 -action:

$$S^1 \times M \rightarrow M, \ e^{i\theta} \cdot (z_1, z_2, z_3) = (e^{-i\theta}z_1, e^{i\theta}z_2, e^{i\theta}z_3).$$

• $H^0(\overline{M})$ and $H^0(\overline{M})^{S_1}$ are infinite dimensional.

- $\omega_0 := J(d\rho)$, J is the complex structure on T^*M' .
- The moment map associated to the form ω_0 is the map $\mu: M' \to \mathfrak{g}^*$ defined by

$$\langle \mu(x),\xi\rangle = \omega_0(\xi_{M'}(x)), \qquad x \in M', \quad \xi \in \mathfrak{g}.$$
 (1)

- \mathfrak{g} : Lie algebra of G, $\xi_{M'}$: vector field on M' induced by ξ .
- $\mu_X := \mu|_X : X \to \mathfrak{g}^*$ be the associated moment map on the CR manifold X.

We assume that

- 0 is a regular value of μ_X ,
- G acts freely on $\mu^{-1}(0) \cap X$, $\mu^{-1}(0) \cap X \neq \emptyset$,
- the Levi form \mathcal{L}_{x} is positive or negative near $\mu^{-1}(0) \cap X$.
- $\mathcal{L}_{x} = \partial \overline{\partial} \rho|_{T^{1,0}X}, \ T^{1,0}X := T^{1,0}M' \cap \mathbb{C}TX.$

Theorem 0

- Let $\tau \in \mathcal{C}^{\infty}(\overline{M})$ with $\operatorname{supp} \tau \cap \mu^{-1}(0) \cap X = \emptyset$.
- $\tau B_G \equiv 0 \mod C^{\infty}(\overline{M} \times \overline{M}), B_G \tau \equiv 0 \mod C^{\infty}(\overline{M} \times \overline{M}).$

Theorem 0

- Let p ∈ μ⁻¹(0) ∩ X. Let U be an open local coordinate patch of p in M', D := U ∩ X.
- If Levi form is negative on D, then

$$B_G(z,w) \equiv 0 \mod \mathcal{C}^{\infty}((U \times U) \cap (\overline{M} \times \overline{M})).$$
 (2)

(日本)

Theorem 0

• If Levi form is positive on D, then

$$B_{G}(z,w) \equiv \int_{0}^{+\infty} e^{it\Psi(z,w)} b(z,w,t) dt$$

mod $\mathcal{C}^{\infty}((U \times U) \cap (\overline{M} \times \overline{M})).$ (3)

•
$$b(z, w, t) \sim \sum_{j=0}^{+\infty} t^{n-\frac{d}{2}-j} b_j(z, w)$$
 in
 $S_{1,0}^{n-\frac{d}{2}}(((U \times U) \cap (\overline{M} \times \overline{M})) \times \mathbb{R}_+).$
• $b_0(x, x) \neq 0$, for every $x \in \mu^{-1}(0) \cap D$.

イロン イヨン イヨン イヨン

Theorem 0

• $\Psi(z,w) \in \mathcal{C}^{\infty}(((U \times U) \cap (\overline{M} \times \overline{M}))), \operatorname{Im} \Psi \geq 0.$

•
$$\Psi(z,z) = 0, z \in \mu^{-1}(0) \cap D.$$

• Im
$$\Psi(z, w) > 0$$
 if
 $(z, w) \notin \operatorname{diag}((\mu^{-1}(0) \cap D) \times (\mu^{-1}(0) \cap D)).$

•
$$d_x \Psi(x, x) = -\omega_0(x) - id\rho(x), \ d_y \Psi(x, x) = \omega_0(x) - id\rho(x), \ x \in \mu^{-1}(0) \cap D.$$

・ロト ・回ト ・ヨト ・ヨト

Theorem 0

•
$$B_G(z,w) = \frac{F(z,w)}{(-i\Psi(z,w))^{n-\frac{d}{2}+1}} + G(z,w)\log(-i\Psi(z,w)).$$

•
$$F(z,w), G(z,w) \in \mathcal{C}^{\infty}((U \times U) \cap (\overline{M} \times \overline{M})).$$

イロト イロト イヨト イヨト

- We show that B_G is a complex Fourier integral operator near positive part of μ⁻¹(0) ∩ X.
- When G is trivial and X is strongly pseudoconvex, Fefferman(1974) established an asymptotic expansion for $B^G = B$ at the diagonal.
- A full asymptotic expansion of *B* was obtained by Boutet de Monvel and Sjöstrand(1976).

- The asymptotic of *B* plays an important role in some important problems in several complex variables.
- By using Theorem 0, we get G-invariant version of Fefferman's result about regularity of biholomorphic maps on strongly pseudoconvex domains of Cⁿ.

Geometric quantization on complex manifolds with boundary

- $\mu_X^{-1}(0)$: *d*-codimensional submanifold of *X*.
- $\mu^{-1}(0) \cap X = \widehat{X} \cup \widetilde{X}$, \widehat{X} : strongly pseudoconvex, \widetilde{X} : strongly pseudoconvex.

•
$$\widehat{X}_G := \widehat{X}/G$$
, $\widetilde{X}_G = \widetilde{X}/G$.

• Fact: \hat{X}_G is a strongly pseudoconvex CR manifold.

マロト イヨト イヨト ニヨ

•
$$H^0_b(\widehat{X}_G)_s := \left\{ u \in W^s(\widehat{X}_G); \ \overline{\partial}_b u = 0 \right\}.$$

• $\overline{\partial}_b$: the tangential Cauchy-Riemann operator on \widehat{X} .

•
$$H^0(\overline{M})^G_s := \{ u \in W^s(\overline{M}); \overline{\partial} u, h^*u = u, \forall h \in G \}.$$

イロン イヨン イヨン イヨン

臣

• Guillemin-Sternberg map:

$$\widetilde{\sigma}_{G}: H^{0}(\overline{M})_{s}^{G} \to H^{0}_{b}(\widehat{X}_{G})_{s-\frac{d}{4}-\frac{1}{2}},
 u \to \iota_{G,\widehat{X}} \circ \iota_{\widehat{X}}^{*} \circ \gamma \circ u.$$
(4)

•
$$\iota_{\widehat{X}}: \widehat{X} \hookrightarrow X$$
: natural inclusion.

- $\iota_{G,\widehat{X}} : \mathcal{C}^{\infty}(\widehat{X})^{G} \to \mathcal{C}^{\infty}(\widehat{X}_{G})$: natural identification.
- γ : the operator of the restriction to the boundary X.

イロン イヨン イヨン イヨン

Geometric quantization on complex manifolds with boundary

Theorem I (joint with Huang, Li and Shao)

- For every $s \in \mathbb{R}$, the Guillemin-Sternberg map (4) is Fredholm.
- Ker $\tilde{\sigma}_{G,s}$ and Coker $\tilde{\sigma}_{G,s}$ are finite dimensional subspaces of $H^0(\overline{M})^G \cap \mathcal{C}^{\infty}(\overline{M})^G$ and $H^0_b(\widehat{X}_G) \cap \mathcal{C}^{\infty}(\widehat{X}_G)$ respectively.
- Ker $\tilde{\sigma}_{G,s}$ and $\operatorname{Coker} \tilde{\sigma}_{G,s}$ are independent of s.

- 4 回 ト 4 ヨ ト - 4 ヨ ト - -

• This result can be used to construct global *G*-invariant holomorphic functions on *M* with given singularities at the boundary.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ●

Geometric quantization on complex manifolds with boundary

Theorem II (joint with Huang, Li and Shao)

• Assume that 0 is a regular value of μ , G acts freely on $\mu^{-1}(0)$.

•
$$M'_{G} := \mu^{-1}(0)/G$$
, $M_{G} := (\mu^{-1}(0) \cap M)/G$.

• M_G is a complex manifold in M'_G with smooth boundary X_G .

A (1) > A (2) > A (3) >

Geometric quantization on complex manifolds with boundary

Theorem II (joint with Huang, Li and Shao)

•
$$\sigma_G = \sigma_{G,s} : H^0(\overline{M})_s^G \to H^0(\overline{M}_G)_{s-\frac{d}{4}}$$
: holomorphic Guillemin-Sternberg map.

- The holomorphic Guillemin-Sternberg map is Fredholm.
- Ker σ_{G,s} and Coker σ_{G,s} are finite dimensional subspaces of H⁰(M)^G ∩ C[∞](M)^G and H⁰(M_G) ∩ C[∞](M_G) respectively.
- Ker $\sigma_{G,s}$ and Coker $\sigma_{G,s}$ are independent of s.

(1日) (日) (日)

Examples and applications

 (L, h^L) → Y: holomorphic line bundle over a compact complex manifold Y.

•
$$M = \left\{ v \in L^*; |v|_{h^{L^*}}^2 < 1 \right\}, M' = L^*.$$

•
$$X = \partial M = \left\{ v \in L^*; |v|_{h^{L^*}}^2 = 1 \right\}$$
: circle bundle.

- M' admits a natural S^1 -action (acting on fiber).
- Assume that G commutes with S¹ (for example, G acts on base manifold Y).

Examples and applications

- $H^0_k(\overline{M})^G = \{ u \in H^0(\overline{M})^G; (e^{i\theta})^* u = e^{ik\theta} u \}.$
- $H^0_{b,k}(X_G) = \{ u \in H^0_b(X_G); (e^{i\theta})^* u = e^{ik\theta} u \}.$
- From Theorem I , for $|k| \gg 1$,

$$H^0_k(\overline{M})^G \cong H^0_{b,k}(X_G) \cong H^0(Y_G, L^k_G).$$
(5)

Examples and applications

• Consider
$$M = \left\{ v \in L^*; \frac{1}{2} < |v|_{h^{L^*}}^2 < 1 \right\}.$$

• From Theorem II, for $|k|\gg 1$,

$$H_k^0(\overline{M})^G \cong H_k^0(\overline{M}_G).$$
(6)

・ロト ・回ト ・ヨト ・ヨト

臣

- We can generalize (5) and (6) to general domain *M* with a holomorphic compact Lie group action *H* such that *H* commutes with *G*.
- $k \leftrightarrow$ irreducible representation of H.

- (L, h^L) → Y: holomorphic line bundle over a compact complex manifold Y.
- R: vector field on M' induced by the S^1 action of L^* .
- *G*-invariant Toeplitz operator: $T_R^G := B_G \circ (-iR) \circ B_G$, $B_G : L^2(M) \to H^0(\overline{M})^G$: *G*-invariant Bergman projection.
- Toeplitz operator on X_G : $T_{R_{X_G}} := S_{X_G} \circ (-iR_{X_G}) \circ S_{X_G}$, $S_{X_G} : L^2(X_G) \to \operatorname{Ker} \overline{\partial}_b$: Szegő projection.

Toeplitz operator view point

- $H^0_k(\overline{M})^G = \{ u \in L^2(M); \ T^G_R u = ku \}.$
- $H^0_{b,k}(X_G) = \left\{ u \in L^2(X_G); \ T_{R_{X_G}}u = ku \right\}.$
- For $|k| \gg 1$, $E_k(T_R^G) \cong E_k(T_{R_{X_G}})$.
- $E_k(T_R^G)(E_k(T_{R_{X_G}}))$ eigenspace of $T_R^G(T_{R_{X_G}})$ corresponding to the eigenvalue k.
- The eigenvalues of T_R^G are not integer in general.

- Assume that X is strongly pseudoconvex.
- Fix a *G*-invariant Reeb vector field *T* on *X*, that is $T \in C^{\infty}(X, TX)$, $\mathbb{C}TX = T^{1,0}X \oplus T^{0,1}X \oplus \mathbb{C}T$ (we can take $T = J(\frac{\partial}{\partial \rho})|_X$).
- R: G-invariant self-adjoint vector field on M' so that $R = \frac{1}{2}((-iT) + (-iT)^*)$ on X.
- We can define Toeplitz operators T_R^G , $T_{R_{\chi_c}}$ as above.

- Let $\chi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}_{+}).$
- Let $\chi_k(T_R^G) := \chi(k^{-1}T_R^G), \ \chi_k(T_{R_{X_G}}) := \chi(k^{-1}T_{R_{X_G}}).$
- $\chi_k(T_R^G)(\chi_k(T_{R_{\chi_G}}))$: functional calculus of $k^{-1}T_R^G(k^{-1}T_{R_{\chi_G}})$ with respect to χ .

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem III (joint with Herrmann, Marinescu and Shen)

•
$$\chi_k(T_{R_{X_G}})(x,y) = \int e^{ikt\varphi(x,y)} a(x,y,t,k) dt + O(k^{-\infty}), \ k \gg 1,$$

•
$$a(x, y, t, k) \sim \sum_{j=0}^{+\infty} k^{n-d-j} a_j(x, y, t),$$

• Supp
$$_t a(x, y, t, k)$$
, Supp $_t a_j(x, y, t, k) \subset$ Supp χ_i

•
$$a_0(x,x,t) = \frac{1}{2\pi^{n-d}}\chi(t)t^n \det \mathcal{L}_{X_G,x}$$

• Im
$$\varphi \ge 0$$
, $\varphi(x, y) = 0$ if and only if $x = y$.

・ロット (四) (日) (日) (日)

G-invariant Toeplitz operators asymptotics on complex manifolds with boundary

Theorem ${ m IV}\,$ (in preparation)

- U: open set in M'.
- If $U \cap \mu^{-1}(0) \cap X = \emptyset$.
- $\chi_k(T_R^G)(x,y) \equiv 0 \mod O(k^{-\infty})$ on $(U \times U) \cap (\overline{M} \times \overline{M})$.
- If $U \cap \mu^{-1}(0) \cap X \neq \emptyset$.
- $\chi_k(T_R^G)(x,y) \equiv \int e^{ik\Psi(x,y,t)} b(x,y,t,k) dt \mod O(k^{-\infty})$ on $(U \times U) \cap (\overline{M} \times \overline{M}).$

・ロン ・回 と ・ ヨ と ・ ヨ

G-invariant Toeplitz operators asymptotics on complex manifolds with boundary

Theorem IV (in preparation)

•
$$b(x, y, t, k) \sim \sum_{j=0}^{+\infty} k^{n+1-\frac{d}{2}-j} b_j(x, y, t),$$

- Supp $_t b(x, y, t, k)$, Supp $_t b_j(x, y, t, k) \subset$ Supp χ , $b(x, y, t), b_j(x, y, t) \in C^{\infty}((U \times U) \cap (\overline{M} \times \overline{M}) \times \mathbb{R}_+),$ $b_0(x, x, t) \neq 0.$
- Im $\Psi \ge 0$, $\Psi(x, y) \ge C \Big((\operatorname{dist}(x, \mu^{-1}(0) \cap X))^2 + (\operatorname{dist}(y, \mu^{-1}(0) \cap X))^2 \Big).$

•
$$\Psi = 0$$
 if and only if $x = y \in \mu^{-1}(0) \cap X$.

・ロト ・日 ト ・ヨト ・ヨト - ヨ

Quantization commutes with reduction for Toeplitz operators on complex manifolds with boundary

Theorem V

- Fix $0 < \delta_1 < \delta_2$.
- We have for $k \gg 1$,
- $\oplus_{\lambda \in [k\delta_1, k\delta_2]} E_{\lambda}(T_R^G) \cong \oplus_{\lambda \in [k\delta_1, k\delta_2]} E_{\lambda}(T_{R_{X_G}}).$

Theorem VI

- $\dim_{\lambda \in [k\delta_1, k\delta_2]} E_{\lambda}(T_R^G) = \frac{k^{n-d}}{2\pi^{n-d}} \int_{X_G} \int_{\delta_1}^{\delta_2} t^{n-d-1} \det \mathcal{L}_{X_G, x} dt dV_{X_G} + O(k^{n-d-1})$ (G-invariant Boutet de Monvel-Guillemin Weyl law for domains).
- We can replace R to a pseudodiffernetial operator.

•
$$M := \{(z_1, z_2, \ldots, z_n) \in \mathbb{C}^n; |z_1|^4 + |z_2|^2 + \cdots + |z_n|^2 < 1\}.$$

• *M* admits an
$$G = S^1$$
-action:

$$S^1 \times M \to M, e^{i\theta} \cdot (z_1, z_2, \ldots, z_n) = (e^{-i\theta} z_1, e^{i\theta} z_2, \ldots, e^{i\theta} z_n).$$

• *M* is a weakly pseudoconvex domain in \mathbb{C}^n .

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 の < @

- 0 is a regular value of μ_X ,
- G acts freely on $\mu^{-1}(0) \cap X$, $\mu^{-1}(0) \cap X \neq \emptyset$,
- the Levi form \mathcal{L}_x is positive near $\mu^{-1}(0) \cap X$.

Э

$$H^{0}(\overline{M})^{G} = \operatorname{span} \{ z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}; \\ -\alpha_{1} + \alpha_{2} + \cdots + \alpha_{n} = 0, (\alpha_{1}, \dots, \alpha_{n}) \in (\mathbb{N} \cup \{0\})^{n} \}.$$

•
$$X_G = \left\{ (z_2, \dots, z_n) \in \mathbb{C}^{n-1}; |z_2|^2 + \dots + |z_n|^2 = \frac{2}{3} \right\}.$$

•
$$H_b^0(X_G) = \operatorname{span} \{ z_2^{\alpha_2} \cdots z_n^{\alpha_n} | X_G; (\alpha_2, \dots, \alpha_n) \in (\mathbb{N} \cup \{0\})^{n-1} \}.$$

• $H^0(\overline{M})^G \cong H_b^0(X_G).$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

• $0 \in \mathbb{C}^n$ is not a regular value of the moment map.

• Consider
$$M := \left\{ (z_1, z_2, \dots, z_n) \in \mathbb{C}^n; \frac{1}{2} < |z_1|^4 + |z_2|^2 + \dots + |z_n|^2 < 1 \right\}.$$

• $M_G = \left\{ (z_2, \dots, z_n) \in \mathbb{C}^{n-1}; \frac{1}{3} < |z_2|^2 + \dots + |z_n|^2 < \frac{2}{3} \right\}.$
• $H^0(\overline{M})^G \cong H^0(\overline{M}_G).$

Example

۲

• Let
$$R = \sum_{j=1}^{n} (i\beta_j z_j \frac{\partial}{\partial z_j} - i\beta_j \overline{z}_j \frac{\partial}{\partial \overline{z}_j}), \ (\beta_1, \dots, \beta_n) \in \mathbb{R}^n_+.$$

• $R|_X$ is a Reeb vector field.

Eigenvalues of T_R^G = { $\lambda = m_1\beta_1 + \dots + m_n\beta_n$; - $m_1 + m_2 + \dots + m_n = 0, (m_1, \dots, m_n) \in (\mathbb{N} \cup \{0\})^n$ }.

$E_{\lambda}(T_{R}^{G})$ $= \operatorname{span} \{ z_{1}^{m_{1}} \cdots z_{n}^{m_{n}};$ $- m_{1} + m_{2} + \cdots + m_{n} = 0, (m_{1}, \dots, m_{n}) \in (\mathbb{N} \cup \{0\})^{n},$ $\beta_{1}m_{1} + \cdots + \beta_{n}m_{n} = \lambda \}.$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ●

Example

• From Theorem VI, we have

٩

$$\begin{split} \dim \ \oplus_{\lambda \in [k\delta_1, k\delta_2]} & E_{\lambda}(\mathcal{T}_R^G) \\ &= |\{(m_1, \dots, m_n) \in (\mathbb{N} \cup \{0\})^n; \\ & k\delta_1 \leq \beta_1 m_1 + \dots + \beta_n m_n \leq k\delta_2, -m_1 + m_2 + \dots + m_n = 0\}| \\ &= \frac{k^{n-1}}{2\pi^{n-1}} \int_{X_G} \int_{\delta_1}^{\delta_2} t^{n-2} \det \mathcal{L}_{X_G, x} dt dV_{X_G} + O(k^{n-2}). \end{split}$$