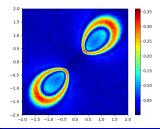
Random holomorphic sections and Berezin-Toeplitz operators

Yohann Le Floch (joint with Michele Ancona, Université Côte d'Azur)

IRMA, Université de Strasbourg

Quantization in geometry - Cologne



Random holomorphic sections and BTOs

Section 1

Introduction: zeros of random polynomials

Random homogeneous polynomials

A broadly studied topic: zeros (real, complex) of random polynomials of one or several variables. Dates back at least to the 1930s (Bloch-Pólya 1931, Littlewood-Offord 1938) and popularized by Kac (1943). Here we look at the following example:

▶ $\mathbb{C}_k^{\text{hom}}[z_0, z_1]$: degree k homogeneous polynomials in two complex variables.

• Choose
$$P_k \in \mathbb{C}_k^{\mathsf{hom}}[z_0, z_1]$$
 "at random".

• Zeros of P_k :

$$Z_{P_k} = \{[z_0:z_1] \mid P_k(z_0,z_1) = 0\} \subset \mathbb{CP}^1$$

discrete set of points.

How are the elements of Z_{Pk} distributed (for large k)?

"At random"

- ▶ $\mathcal{B}_k = (e_{0,k}, \dots, e_{k,k})$ basis of $\mathbb{C}_k^{\text{hom}}[z_0, z_1]$. Take $P_k = \sum_{\ell=0}^k \alpha_{\ell,k} e_{\ell,k}$ where $\alpha_{\ell,k}$ are random coefficients. Choice of basis \mathcal{B}_k and probability distribution of $\alpha_{\ell,k}$?
- Fix an inner product on $\mathbb{C}_k^{\text{hom}}[z_0, z_1]$ and choose an orthonormal \mathcal{B}_k .
- Choose the $\alpha_{\ell,k}$ to be i.i.d. Gaussian.
- Here we choose

$$\langle P, Q \rangle_k = \int_{\mathbb{C}} \frac{P(z,1)\overline{Q(z,1)}}{(1+|z|^2)^{k+2}} |dz \wedge d\overline{z}|.$$

• A choice of orthonormal basis: $e_{\ell,k} = \sqrt{\frac{(k+1)\binom{k}{\ell}}{2\pi}} z_0^{\ell} z_1^{k-\ell}; \ \alpha_{\ell,k} \sim \mathcal{N}_{\mathbb{C}}(0,1)$ i.i.d.

- Equivalently: probability measure μ_k on $\mathbb{C}_k^{\text{hom}}[z_0, z_1]$ given by $d\mu_k(P) = \frac{1}{\pi^{k+1}} e^{-\|P\|_k^2} dP$. Here dP: Lebesgue measure induced by $\langle \cdot, \cdot \rangle_k$.
- Later: these choices are important.

Results

- Fubini-Study measure on CP¹: ω_{FS} unique measure invariant under the natural action of U(2) and such that ω_{FS}(CP¹) = 2π.
- Equivalently: multiple of the standard measure on S^2 when identifying $\mathbb{CP}^1 \simeq S^2$.
- $\omega_{\rm FS}$ symplectic (Kähler) form. In local coordinate $z = \frac{z_0}{z_1}$ on $\{[z_0:z_1] \mid z_1 \neq 0\}, \ \omega_{\rm FS} = i \frac{dz \wedge d\bar{z}}{(1+|z|^2)^2}.$
- $U \subset \mathbb{CP}^1$ measurable; we are interested in $\mathbb{E}[\#(Z_{P_k} \cap U)]$.
- Result (Bogomolny-Bohigas-Leboeuf 1996): $\mathbb{E}[\#(Z_{P_k} \cap U)] = \frac{k}{2\pi} \omega_{FS}(U).$
- Exact because of symmetries, but keep in mind: $\frac{1}{k}\mathbb{E}[\#(Z_{P_k} \cap U)] \xrightarrow[k \to +\infty]{} \frac{\omega_{\text{FS}}(U)}{2\pi}.$

General idea

- Choose $P_k \in \mathbb{C}_k^{\text{hom}}[z_0, z_1]$ at random as before.
- Apply a (well-chosen, see later) differential operator T_k : C^{hom}_k[z₀, z₁] → C^{hom}_k[z₀, z₁] to P_k.
- Zeros of $T_k P_k$: $Z_{T_k P_k} = \{ [z_0 : z_1] \mid (T_k P_k)(z_0, z_1) = 0 \} \subset \mathbb{CP}^1$.
- Question: behavior of distribution of elements of Z_{T_kP_k}? Differences with previous case T_k = Id? Deduce information on T_k from this distribution?
- Example (see next two slides): $T_k = \frac{1}{k+2} \left(2z_0 \frac{\partial}{\partial z_0} k \, \mathrm{Id} \right)$; then $T_k e_{\ell,k} = \frac{2\ell-k}{k+2} e_{\ell,k}$. So $T_k P_k = \sum_{\ell=0}^k \frac{2\ell-k}{k+2} \alpha_{\ell,k} e_{\ell,k}$.

Example (first sample)

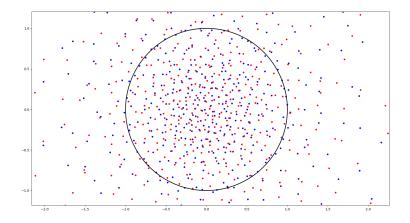


Figure: Red: zeros of P_k . Blue: zeros of $T_k P_k$. k = 500.

Example (second sample)

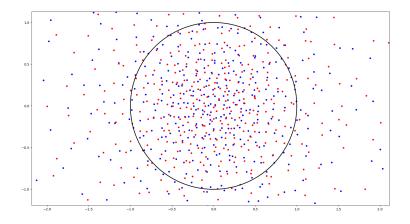


Figure: Red: zeros of P_k . Blue: zeros of $T_k P_k$. k = 500.

Remarks about higher dimension $(n \ge 2)$

- ▶ $\mathbb{C}_k^{\text{hom}}[z_0, \ldots, z_n]$: degree k homogeneous polynomials in n + 1 variables.
- Choose $P_k \in \mathbb{C}_k^{\mathsf{hom}}[z_0, \dots, z_n]$ at random as before.
- Zeros of P_k: Z_{P_k} = {[z₀ : ... : z_n] | P_k(z₀,..., z_n) = 0} ⊂ CPⁿ submanifold of complex dimension n − 1 with probability 1.
- Study Z_{P_k} (or $Z_{T_kP_k}$)?
- Still call Z_{P_k} the integration current associated with Z_{P_k} . If Z_{P_k} regular

$$\forall \varphi \in \Omega^{n-1,n-1}(\mathbb{CP}^n) \qquad \langle Z_{P_k}, \varphi \rangle := \int_{Z_{P_k}} \varphi$$

► In local coordinates: $\varphi = \sum_{I,J \subset \{1,...,n\}} a_{I,J} dz_{i_1} \wedge \ldots \wedge dz_{i_{n-1}} \wedge d\overline{z}_{j_1} \wedge \ldots \wedge d\overline{z}_{j_{n-1}}.$

• Convergence in the sense of currents: convergence of $\langle Z_{P_k}, \varphi \rangle$ for all $\varphi \in \Omega^{n-1,n-1}(\mathbb{CP}^n)$. And $\langle \mathbb{E}(Z_{P_k}), \varphi \rangle := \mathbb{E}(\langle Z_{P_k}, \varphi \rangle)$.

Section 2

Quantization and random sections

Quantization and semiclassical limit

- Classical (Hamiltonian) mechanics: state space (M, ω) symplectic manifold, observable f ∈ C[∞](M, ℝ).
- Quantum mechanics: state space H_ħ Hilbert, observable T_ħ self-adjoint operator on H_ħ.
- (Approximate) Dirac quantization conditions: $f \mapsto T_{\hbar}(f)$ linear, $1 \mapsto \text{Id}_{\mathcal{H}_{\hbar}}$, $[T_{\hbar}(f), T_{\hbar}(g)] = -i\hbar T_{\hbar}(\{f, g\}) + O(\hbar^2).$
- Standard example: $(M, \omega) = (\mathbb{R}^{2n}, d\xi \wedge dx), f(x, \xi) = ||\xi||^2 + V(x);$ $\mathcal{H}_{\hbar} = L^2(\mathbb{R}^n), T_{\hbar} = -\hbar^2 \Delta + V.$
- Here: setting of compact (M, ω). Geometric quantization and Berezin-Toeplitz operators.

Geometric quantization

- (M, ω) compact, Kähler: *M* complex, ω symplectic and compatibility between these two structures. In particular, Riemannian metric g_{ω} on *M*.
- Assume also that there exists a prequantum line bundle (L, ∇, h) → M: complex line bundle, holomorphic, h Hermitian metric → Chern connection ∇, ask that it satisfies curv(∇) = -iω.
- Hilbert spaces H_k = H⁰(M, L^{⊗k}), k ≥ 1 integer: holomorphic sections of L^{⊗k} → M. With inner product ⟨·, ·⟩_k (see next slide).
- ▶ dim H_k < +∞, can be estimated thanks to Riemann-Roch-Hirzebruch (not necessary for this story).</p>
- ► Example: $(M, \omega) = (\mathbb{CP}^1, \omega_{FS})$. $L = \mathcal{O}(1) = \mathcal{O}(-1)^*$ with $\mathcal{O}(-1) = \{([u], v) \in \mathbb{CP}^1 \times \mathbb{C}^2 \mid v \in \mathbb{C}u\} \subset \mathbb{CP}^1 \times \mathbb{C}^2$ tautological bundle and *h* induced by the standard metric on \mathbb{C}^2 . Then $\mathcal{H}_k \simeq \mathbb{C}_k^{hom}[z_0, z_1]$ with $\langle \cdot, \cdot \rangle_k$ shown earlier.

Random holomorphic sections

• *h* induces a Hermitian metric h_k on $L^{\otimes k}$.

• Volume form
$$\mu = \frac{\omega^{\wedge n}}{n!}$$
.

- $\langle s, t \rangle_k = \int_M h_k(s, t) d\mu$ inner product on $H^0(M, L^{\otimes k})$.
- ▶ $N_k = \dim H^0(M, L^{\otimes k})$. $e_{1,k}, \ldots, e_{N_k,k}$ orthonormal basis of $H^0(M, L^{\otimes k})$.
- ▶ Random holomorphic section $s_k = \sum_{\ell=1}^{N_k} \alpha_{\ell,k} e_{\ell,k}$ with $\alpha_{\ell,k} \sim \mathcal{N}_{\mathbb{C}}(0,1)$ i.i.d.

$$Z_{s_k} = \{m \in M \mid s_k(m) = 0\}.$$

Theorem (Shiffman-Zelditch 1999)

$$\frac{1}{k}\mathbb{E}[Z_{s_k}] \xrightarrow[k \to +\infty]{} \frac{\omega}{2\pi}$$

in the sense of currents.

Moreover, $\mathbb{E}[Z_{s_k}] - \frac{k\omega}{2\pi}$ is of order $O(k^{-1})$.

Berezin-Toeplitz operators

- $\Pi_k : L^2(M, L^{\otimes k}) \to H^0(M, L^{\otimes k})$ orthogonal projector.
- ► $f \in \mathcal{C}^{\infty}(M, \mathbb{R}) \rightsquigarrow T_k = T_k(f) = \prod_k f : H^0(M, L^{\otimes k}) \to H^0(M, L^{\otimes k}).$
- Z_{T_ks_k} = {m ∈ M | (T_ks_k)(m) = 0} ⊂ M, s_k random holomorphic section as before.
- What can we say about $\mathbb{E}[Z_{T_k s_k}]$?
- Idea: $T_k s_k \approx f s_k$ so one can expect $f^{-1}(0)$ to play a part.
- Motivation: recover some information about $f^{-1}(0)$ from $\mathbb{E}[Z_{T_k s_k}]$?

► Example: $(M, \omega) = (\mathbb{CP}^1, \omega_{FS}), f = \text{height function on } S^2 \simeq \mathbb{CP}^1 \rightsquigarrow$ $T_k(f) = \frac{1}{k+2} \left(2z_0 \frac{\partial}{\partial z_0} - k \text{ Id} \right) \text{ on } \mathbb{C}_k^{\text{hom}}[z_0, z_1] \text{ and } f^{-1}(0) = \text{equator. Recall previous samples.}$

First results

Theorem (Ancona-LF 2022)

Let $f \in \mathcal{C}^{\infty}(M, \mathbb{R})$ be such that 0 is a regular value of f. Let $T_k = T_k(f)$. Then

$$\frac{1}{k}\mathbb{E}[Z_{\mathcal{T}_k s_k}] \xrightarrow[k \to +\infty]{} \frac{\omega}{2\pi}$$

in the sense of currents. Moreover,

$$\mathbb{E}[Z_{\mathcal{T}_k s_k}] - \frac{k\omega}{2\pi} \xrightarrow[k \to +\infty]{i} \frac{i}{2\pi} \partial \bar{\partial} \log f^2$$

in the sense of currents.

Remarks:

- The result of Shiffman-Zelditch discussed earlier corresponds to f = 1.
- Here the remainder is not of order $O(k^{-1})$ anymore.
- Part played by f⁻¹(0).

Analysis at scale $k^{-\frac{1}{2}}$

Theorem (Ancona-LF 2022)

Let $f \in C^{\infty}(M, \mathbb{R})$ be such that 0 is a regular value of f. Let $T_k = T_k(f)$. Let $x \in M$ and let φ be a (n - 1, n - 1)-form on M. Then for every R > 0,

$$\int_{B(x,\frac{R}{\sqrt{k}})} \left(\mathbb{E}[Z_{T_k s_k}] - \frac{k}{2\pi} \omega \right) \wedge \varphi = \begin{cases} k^{-n+1} \frac{F_{\varphi}(x)}{\pi |df(x)|_{\omega}^2} C_n(R) + O(k^{-n+\frac{1}{2}}) & \text{if } x \in f^{-1}(0), \\ \frac{k^{-n} \frac{R^{2n} L_{\varphi}(x) \operatorname{Vol}(B_{\mathbb{R}^{2n}}(0,1))}{2\pi} + O(k^{-n-\frac{1}{2}}) & \text{if } x \notin f^{-1}(0). \end{cases}$$

B(x, R/√k): geodesic ball centered at x and of radius R/√k.
F_φ and L_φ defined by i∂f ∧ ∂̄f ∧ φ = F_φ ωⁿ/n! and i∂∂ log f² ∧ φ = L_φ ωⁿ/n!.
C_n(R) > 0 fully explicit constant:

$$C_n(R) = \frac{2^n \pi^n (n-1)!}{(2n-2)!} \left(\sum_{\ell=0}^{n-1} \binom{n-\frac{3}{2}}{\ell} 2^\ell R^{2\ell} - (1+2R^2)^{n-\frac{3}{2}} \right)$$

The zeros of $T_k s_k$ have a slightly higher concentration near the zero set of f.

Case n = 1, $\varphi = 1$

Theorem (Ancona-LF 2022)

Assume dim_C M = 1 and let $f \in C^{\infty}(M, \mathbb{R})$ be such that 0 is a regular value of f. Let $T_k = T_k(f)$. Let $x \in M$. Then for every R > 0,

$$\mathbb{E}\left[\#\left(Z_{T_k s_k} \cap B\left(x, \frac{R}{\sqrt{k}}\right)\right)\right] - \frac{k}{2\pi} \int_{B(x, \frac{R}{\sqrt{k}})} \omega = \begin{cases} \frac{C_1(R)}{2\pi} + O(k^{-\frac{1}{2}}) & \text{if } x \in f^{-1}(0), \\ k^{-1} \frac{R^2 L_1(x)}{2} + O(k^{-\frac{3}{2}}) & \text{if } x \notin f^{-1}(0). \end{cases}$$

► $B(x, \frac{R}{\sqrt{k}})$: geodesic ball centered at x and of radius $\frac{R}{\sqrt{k}}$.

• L_1 : function defined by $i\partial \bar{\partial} \log f^2 = L_1 \omega$.

•
$$C_1(R) = 2\pi \left(1 - \frac{1}{\sqrt{1+2R^2}}\right).$$

Examples

• We illustrate the result on $\mathbb{E}\left[\#\left(Z_{T_ks}\cap B(x,\frac{R}{\sqrt{k}})\right)\right] - \frac{k}{2\pi}\int_{B(x,\frac{R}{\sqrt{k}})}\omega$ for the example of \mathbb{CP}^1 .

• On (
$$\mathbb{CP}^1, \omega_{\mathrm{FS}}$$
), one computes $\int_{\mathcal{B}(x, \frac{R}{\sqrt{k}})} \omega_{\mathrm{FS}} = 2\pi \left(1 - \frac{1}{1 + \tan^2(\frac{R}{\sqrt{k}})}\right)$.

- ► *N*: number of samples.
- $s_k^{(m)}$: one sample of the random holomorphic section s_k .
- Use sample mean:

$$\mathcal{E}(x,R,k,N) = \frac{1}{N} \sum_{m=1}^{N} \# \left(Z_{T_k s_k^{(m)}} \cap B(x,\frac{R}{\sqrt{k}}) \right) - k \left(1 - \frac{1}{1 + \tan^2(\frac{R}{\sqrt{k}})} \right).$$

For fixed k, converges to the quantity in the first item as $N \to +\infty$.

First example: height function on S^2 ($x \in f^{-1}(0)$)

$$T_k = \frac{1}{k+2} \left(2z_0 \frac{\partial}{\partial z_0} - k \text{ Id} \right) \text{ sur } \mathbb{C}_k^{\mathsf{hom}}[z_0, z_1].$$

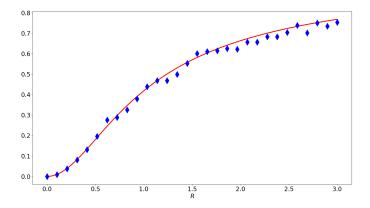


Figure: Blue diamonds: numerical values of $\mathcal{E}(x, R, k, N)$ for x = (1, 0, 0), k = 400, N = 1000 and various values of R. Red curve: graph of $\frac{C_1}{2\pi}$: $R \mapsto 1 - \frac{1}{\sqrt{1+2R^2}}$.

Yohann Le Floch

First example: height function on S^2 ($x \notin f^{-1}(0)$)

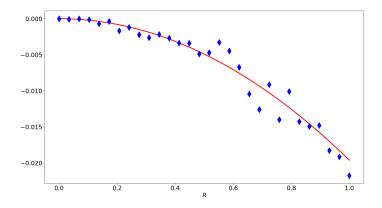


Figure: Blue diamonds: numerical values of $\mathcal{E}(\pi_N^{-1}(z), R, k, N)$ for z = 0, k = 100, N = 100000 and various values of R. Red curve: graph of $R \mapsto k^{-1} \frac{R^2 L_1(\pi_N^{-1}(z))}{2} = -\frac{2k^{-1}R^2(1+|z|^4)}{(|z|^2-1)^2}$ for these values of k and z.

Second example: $f_{\lambda} = x_1 x_2 - \lambda$ on S^2

 $M = S^2$ with coordinates (x_1, x_2, x_3) . $T_k = T_k(x_1x_2 - \lambda)$ with λ regular value of x_1x_2 .

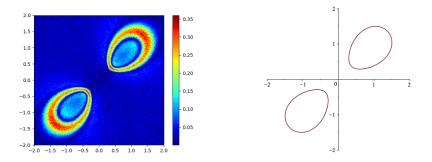


Figure: Recovering $f_{\lambda}^{-1}(0)$ for $f_{\lambda} = x_1x_2 - \lambda$ on S^2 , with $\lambda = \frac{1}{3}$. Left: values of $|\mathcal{E}(z, R, k, N)|$ for $R = \frac{1}{\sqrt{2}}$, k = 100, N = 1000, and z on a 200 × 200 discretizing $\{|\Re(z)|, |\Im(z)| \le 2\}$. Right: $f_{\lambda}^{-1}(0)$ for $\lambda = \frac{1}{3}$.

Section 3

Comments and ideas of proof

Remarques

- More general results: replace $T_k(f)$ with $T_k(f + k^{-1}f_1 + k^{-2}f_2 + ...)$.
- Statements about the forms Φ^{*}_{T_k}ω_{FS} with Φ_{T_k} the "Kodaira embedding" induced by T_k:

$$\Phi_{T_k}: M \dashrightarrow \mathbb{CP}^{N_k-1}, \qquad m \mapsto [(T_k e_{1,k})(m): \ldots : (T_k e_{N_k,k})(m)]$$

with $(e_{\ell,k})_{1 \le \ell \le N_k}$ orthonormal basis of $H^0(M, L^{\otimes k})$.

- Relationship between $\Phi_{T_k}^* \omega_{FS}$ and $\mathbb{E}[Z_{T_ks}]$ (Poincaré-Lelong formula).
- Similar results on higher concentration of zeros near $f^{-1}(0)$ (Drewitz-Liu-Marinescu 2023): non-compact setting, $f \ge 0$, $\Delta f \ne 0$ on $f^{-1}(0)$.

Sketch of proof

- ► $2\pi \mathbb{E}[Z_{T_k s_k}] k\omega = i\partial \overline{\partial} \log B_k$ with $B_k : M \to \mathbb{R}$ restriction to the diagonal of the Schwartz kernel of $T_k^* T_k$ (standard computation + Poincaré-Lelong formula).
- $B_k(x) = \left(\frac{k}{2\pi}\right)^n \left(f(x)^2 + k^{-1}b_1(x) + O(k^{-2})\right).$
- ► $b_1 = 2f\Delta f + \frac{r}{2}f^2 + \frac{1}{2}|\mathrm{d}f|^2_{\omega}.$
- ▶ *r*: scalar curvature (hence depends on *M*).
- If $f(x) \neq 0$, the leading term in $B_k(x)$ is given by $f(x)^2$.
- ► If f(x) = 0: ► Explicit computation of $i\partial\bar{\partial}\log(f^2 + k^{-1}b_1) \rightsquigarrow \int_{B(x, \frac{R}{\sqrt{k}})} \frac{k^{-1}|\mathrm{d}f|^2_{\omega} - 2f^2}{(2f^2 + k^{-1}|\mathrm{d}f|^2_{\omega})^2} \partial f \wedge \bar{\partial}f \wedge \varphi.$
 - $\blacktriangleright \text{ Normal coordinates } + \text{ Hadamard's lemma } \rightsquigarrow \frac{k^{-n+1}F_{\varphi(x)}}{|\mathrm{d}f(x)|^2_{\omega}} \int_{\mathcal{B}_{\mathbb{R}^{2n}}(0,R)} \frac{1-2t_1^2}{(1+2t_1^2)^2} \mathrm{d}\lambda(t).$
 - Computation with hypergeometric functions (using identities between those).