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The Quantum Ergodicity 1

The quantum ergodicity was established by Shnirelman (1974), Colin
de Verdière (1985) and Zelditch (1987).
Riemannian manifold (X, gTX), (non-negative) Laplacian ∆ acting on
C ∞(X), eigenvalues limj→+∞ λj = +∞ and eigenfuctions

∆uj = λjuj, ‖uj‖2
L2(X) = 1.

Assumption : the geodesic flow on the unit cotangent bundle S∗X is
ergodic. Example : compact hyperbolic surface X = Γ\H2.
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The Quantum Ergodicity 2

We has a density one subsequence of eigenfunctions that tend to be
equidistributed.
B (blue points) ⊆ N∗ is density one if

lim
λ→+∞

{j ∈ B, 0 ⩽ λj ⩽ λ}
{j ∈ N∗, 0 ⩽ λj ⩽ λ} = 1.

j0 λ8 λ

Figure – 1

Equidistributed : for A(x) ∈ C ∞(X),

lim
j→+∞,j∈B

∫
X

A(x) |uj(x)|2 dvX(x) =
1

VolX

∫
X

A(x)dvX(x).

Born rule, for U ⊂ X,

Pdetect the particle in U =

∫
U
|uj(x)|2 dvX(x) ∼

Vol(U)

Vol(M)
.
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Flat bundles I

Differential geometric approach :
A vector bundle (F,∇F) over X is flat if its curvature vanishes :

RF(U,V)s = ∇F
U∇F

Vs −∇F
V∇F

Us −∇F
[U,V]s = 0

for U,V ∈ C ∞(X,TX), s ∈ C ∞(X,F).
A unitary flat bundle (F,∇F, hF) has parallel metric ∇FhF = 0 :

U(hF(s, s′)) = hF(∇F
Us, s′) + hF(s,∇F

Us′)

Ex : The Möbius band is a unitary flat bundle over S1. Compare with
the trivial line bundle on S1.

Qiaochu Ma (with Minghui Ma)
Semiclassical Analysis, Geometric Representation and Quantum Ergodicity
5/30



Introduction
Main results

Backgrounds and UQUE
The Quantum Ergodicity
Flat Vector bundles

Flat bundles II

Representation approach :
Transition maps ϕα,β are constant matrices.
X̃ the universal covering. For ρ : π1(X) → U(n) (called holonomy), set

F = π1(X)\(X̃ × Cn), (x̃, v) ∼ (γ · x̃, ρ(γ) · v) for γ ∈ π1(X).

Describe Möbius band and the trivial line bundle on S1 in terms of
representation.
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Flat bundles III

An isomorphism

C (X,F) ∼= C (X̃,Cn)π1(X)

s(x) 7→ s̃(x̃), s̃(γ · x̃) = γ · s̃(x̃).

(dX̃, 〈·, ·〉Cn ,∆Cn

X̃ ) descents to (∇F, hF,∆F)

s ∈ C (X,F) s̃ ∈ C (X̃,Cn)π1(X)

∆Fs ∈ C (X,F) ∆Cn

X̃ s̃

∼=

∆F ∆Cn
X̃

∼=
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Geometric Settings I

A genus-2 hyperbolic surface X = Γ2\H2 with

Γ2 ∼= {a1, b1, a2, b2 | [a1, a2][b1, b2] = 1}.

A representation ρ : Γ2 7→ SU(2). Ex : for θ/π ∈ R irrational,

ρ(ai) =

(
e−iθ/2 0

0 eiθ/2

)
, ρ(bi) =

(
cos θ

2 i sin θ
2

i sin θ
2 cos θ

2

)
.

The image ρ(Γ2) ⊂ SU(2) is dense by the double covering

SU(2) → SU(2)/{±1} ∼= SO(3,R)

and the Euler rotation.
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Geometric Settings II

We have
(
X = Γ2\H2, ρ : Γ2 7→ SU(2)

)
(a principal flat bundle).

Need an action SU(2) ↷ Cn.
SU(2) acts on C2, gives

F = Γ2\(H2 × C2).

Also acts on Symp(C2) for p ∈ N∗

Symp(C2) =
(
C2

)⊗p
/{v ⊗ w ∼ w ⊗ v}.

We have a series of flat bundles over Γ2\H2.

Fp = Γ2\(H2 × Symp(C2)) for p ∈ N∗.
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Geometric Representation I

Laplacians ∆Fp (p ∈ N∗) acting on C ∞(
Γ2\H2,Γ2\(H2 × Symp(C2))

)
∆Fp up,j = λp,jup,j, ‖up,j‖L2(X,Fp)

= 1, i ∈ N.

Pauli-Schrödinger spin- p
2 Laplacian.

Natural question : when λp,j large, does the quantum state up,j also
tend to be equidistributed ?
Need to make sense, on what ? First choice, |up,j(x)|2Symp(C2) dvΓ2\H2(x),

A ∈ C ∞(Γ2\H2) 7→
∫
Γ2\H2

A(x) |up,j(x)|2Symp(C2) dvΓ2\H2(x)

→ 1
VolΓ2\H2

∫
Γ2\H2

A(x)dvΓ2\H2(x)?

Too coarse !
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Geometric Representation II

An isomorphism and an embedding

Symp(C2) = {a0zp
0 + a1zp−1

0 z1 + · · ·+ apz1
p | a0, · · · , ap ∈ C} ⊂ C ∞(C2).

For g ∈ SU(2),P ∈ Symp(C2), then

(g · P)(z0, z1) = P(g−1 · (z0, z1)).

Restricted to S3 = {(z1, z2) | |z1|2 + |z2|2 = 1}, P(w1,w2) ∈ C ∞(S3).
For |λ| = 1, |P(λz0, λz1)|2 = |P(z0, z1)|2.
|P(z0, z1)|2 a smooth function on S3/S1 ∼= CP1 ∼= S2 (Hopf fibration) !
The norm on Symp(C2) :

|P|2Symp(C2) =

∫
CP1

|P(z)|2 dwFS(z).
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Geometric Representation III

Coarse probability measure

|up,j(x)|2Symp(C2) dvΓ2\H2(x) on Γ2\H2.

By the integral for P ∈ Symp(C2) :

|P|2Symp(C2) =

∫
CP1

|P(z)|2 wFS(z), coarse =

∫
CP1

refined.

The Refined probability measure formally is

|up,j(x, z)|2 wFS(z)dvΓ2\H2(x)

Locally on (Γ2\H2)× CP1, globally on

Γ2\(H2 × CP1) = (x̃, z) ∼ (γx̃, ρ(γ)z), ρ : Γ2 → SU(2).
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The Main Theorem I

Uniform Quantum Ergodicity (2023, Ma-M.)
The quantum ergodicity holds uniformly on unitary flat bundles {Fp}p∈N∗ .

UQE consist of two parts :
Uniform density-1 condition.
Uniform equidistribution theorem.
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The Main Theorem II : uniform density-1 condition

There is a two dimensional array B ⊆ N2 that

lim
λ→+∞

min
p∈N∗

|{(p, j) ∈ B | λp,j ⩽ λ}|
|{j ∈ N | λp,j ⩽ λ}| = 1,

Compare with

min
p∈N∗

lim
λ→+∞

|{(p, j) ∈ B | λp,j ⩽ λ}|
|{j ∈ N | λp,j ⩽ λ}| = 1.
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The Main Theorem II : uniform density-1 condition

j

p

j

p

Figure – 2
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The Main Theorem III : uniform equidistribution

On the uniform density-1 set B ⊆ N2, the equidistribution result is also
uniform for p ∈ N∗.
Given A ∈ C ∞(Γ2\(H2 × CP1)), we have

lim
λ→+∞

sup
(p,j)∈B,λp,j⩾λ

∣∣∣∣∣
∫
Γ2\(H2×CP1)

(
A

∣∣up,j
∣∣2 − A

)
dvΓ2\(H2×CP1)

∣∣∣∣∣ = 0.
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Technique 0 : QE

Recall the proof of QE, three key terms : classical and quantum
observable spaces, a quantization procedure, classical and quantum
evolutions.
The Weyl quantization Oph : C ∞(S∗X) → End(L2(X)), the
geodesic flow (gt)t∈R and the Schrödinger propagator ade−ith∆ .
A commutative diagram

a(x, ξ) Oph(a)

(gta)(x, ξ) = a(gt(x, ξ)) Oph(gta) ∼ e−ith∆Oph(a)eith∆

Oph

gt ade−ith∆

Oph
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Technique I : which flow & quantization ?

Classical and quantum observable spaces :
C ∞(Γ\(PSL(2,R)× CP1)) and {End(L2(Γ\H2,Fp))}p∈N∗

Quantum evolutions : the Schrödinger propagator {ad
e−ith∆Fp }p∈N∗ .

We need to find a flow (gt)t∈R and a quantization procedure to make
the following diagram commutes

A (x, ξ, z) Q(A )

(gtA )(x, ξ, z) Q(gtA ) ∼ e−ith∆Fp Q(A )eith∆Fp

Q=?

gt
ad

e−ith∆Fp

Q=?
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Technique II : horizontal geodesic flow

The geodesic flow (g̃t)t∈R on PSL(2,R), the unit tangent bundle of H2.
This descents to the geodesic flow (gt)t∈R on Γ2\PSL(2,R), the unit
tangent bundle of Γ2\H2.
The geodesic flow of Γ2\(H2 × CP1) on Γ2\(PSL(2,R)× CP1) ?
The geodesic flow (g̃t)t∈R acts on PSL(2,R)× CP1, which is
π1(X)-invariant.
Horizontal geodesic flow : It descents to a flow (gt)t∈R on
Γ2\(PSL(2,R)× CP1).

Qiaochu Ma (with Minghui Ma)
Semiclassical Analysis, Geometric Representation and Quantum Ergodicity
19/30



Introduction
Main results

Backgrounds and UQUE

Geometric Setup
Geometric Representation
Techniques
General Case

Technique III : mixed quantization

Go back to ∫
Γ\(H2×CP1)

A (x, z)
∣∣up,j(x, z)

∣∣2dv(x, z)

Berezin-Toeplitz quantization TA ,p(x) ∈ End(Fp)|x,
v,w ∈ Fp|x ∼= Symp(Cp) = H(0,0)(CP1,O(p))

〈TA ,p(x)v,w〉Fp|x =

∫
CP1

A (x, z)v(z)w(z)ωFS(z)

Weyl quantization∫
Γ\H2

(∫
CP1

A (x, z)
∣∣up,j(x, z)

∣∣2ωFS(z)
)

dvX(x)

=

∫
Γ\H2

〈TA (x)up,j(x), up,j(x)〉Fp dvX(x) = 〈Oph(TA ,p)up,j, up,j〉L2(Γ\H2,Fp)
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Technique III : mixed quantization

Weyl quantization governs high-frequency eigensections(
Oph(A)s

)
(x) = 1

(2πh)m

∫
Rm

∫
Rm

e
i
h ⟨x−y,ξ⟩A( x+y

2 , ξ)s(y)dydξ.

Berezin-Toeplitz quantization regulates the behavior of an infinite
number of linear spaces

TA,p : L2(CP1,O(p)) → H(0,0)(CP1,O(p)), TA,p = PpAPp.

Mixed quantization simultaneous controls the high-frequency
eigensections of an infinite number of bundles

Oph(T·,p) : C ∞(Γ\(PSL(2,R)× CP1)) → End(L2(Γ\H2,Fp)).
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A series of flat bundles {Fp}p∈N∗

A compact Kähler manifold (N, J) and a positive line bundle (L, gL)
over N. These give gTN, dvN

A holomorphic unitary action of π1(X) on N and this action can be
lifted to L.
A Riemannian manifold (X, gTX).
A series of flat bundles{

Fp = π1(X)\
(
X̃ × H(0,0)(N,Lp)

)
| p ∈ N∗

}
Borel-Weil-Bott : irreducible representation ρτ : U → Vτ ,

Vτ
∼= H(0,0)(Oτ ,Lτ ), Vpτ ∼= H(0,0)(Oτ ,Lp

τ ).

A special case, N = CP1,L = O(1), H(0,0)(N,Lp) ∼= Symp(C2).
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Main Theorem (General)

Uniform Quantum Ergodicity (Ma-M. 2023)

If the horizontal geodesic flow on π1(X)\(S∗X̃ × N) is ergodic, then there is
a uniform density-1 two dimensional array B. Uniformly equidistributed{∣∣up,j(x, z)

∣∣2 : (p, j) ∈ B
}

on π1(X)\(S∗X̃ × N)

A Criterion
If X is Anosov and for all z ∈ N, the orbit {π1(X) · z} ⊆ N is dense, then the
horizontal geodesic flow on π1(X)\(S∗X̃ × N).
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Analytic torsion

In the 1930s, the Reidemeister torsion TR(X,F), induced by
Reidemeister and Franz
Homeomorphic, not homopoty.
Ray and Singer defined their analytic torsion T(X,F) as the regularized
determinant of Hodge-de Rham Laplacian, and conjectured
TR(X,F) = T(X,F).
This conjecture was proved by Cheeger-Müller/Bismut-Zhang
1978/1992.
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Asymptotic Torsion

The asymptotics of analytic torsions of locally symmetric spaces under
finite coverings, Bergeron-Venkatesh, 2010
The asymptotics of torsions for symmetric powers of a canonical flat
vector bundle on 3-dimensional compact hyperbolic manifolds, Müller,
2010
The asymptotics of a general family of flat vector bundles {Fp}p∈N∗

when p → +∞, Bismut-Ma-Zhang, 2011

Qiaochu Ma (with Minghui Ma)
Semiclassical Analysis, Geometric Representation and Quantum Ergodicity
25/30



Introduction
Main results

Backgrounds and UQUE
Backgrounds
UQUE

Comparison

Asymptotic spectral information of flat bundles.
Orthogonal  asymptotic torsion UQE

dim(X) = odd dim(X) ∈ N∗

Fp very non-unitary Fp unitary



Qiaochu Ma (with Minghui Ma)
Semiclassical Analysis, Geometric Representation and Quantum Ergodicity
26/30



Introduction
Main results

Backgrounds and UQUE
Backgrounds
UQUE

Uniform QUE

Quantum unique ergodicity of Rudnick-Sarnak : can we take B = N ?
Uniform quantum unique ergodicity : can we take B = N2 ?
Do we have

lim
λ→+∞

sup
λp,j⩾λ

∣∣∣∣∣
∫
Γ2\(H2×CP1)

(
A

∣∣up,j
∣∣2 − A

)
dvΓ2\(H2×CP1)

∣∣∣∣∣ = 0

for any A ∈ C ∞(Γ2\(H2 × CP1)) ?
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AQUE to AUQUE I

AQUE : on arithmetic surfaces, (Lindenstrauss, 2006). Extra
symmetries called Hecke operators.
AUQUE (arithmetic uniform quantum unique ergodicity) ?
K = Q[

√
2],OK = Z[

√
2] and σ : a + b

√
2 → a − b

√
2

Quadratic forms and special groups : hyperbolic

a(x) = x2
0 −

√
2x2

1 −
√

2x2
2, G = SO(a(x),R) ∼= SO(1, 2,R),

and compact

b(x) = x2
0 +

√
2x2

1 +
√

2x2
2, U = SO(b(x),R) ∼= SO(3,R).

Borel density : GZ[
√

2] ⊂ G discrete cocompact, and σ(GOK) ⊂ U is
dense.
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AQUE to AUQUE II

The arithmetic surface (orbifold) GZ[
√

2]\H
2.

Selberg Lemma, pass GZ[
√

2] to a torsion free subgroup.
σ(GZ[

√
2]) ⊂ SO(3,R) has dense image.

SO(3,R) ∼= SU(2)/{±1}, representations of SO(3,R) are
{Sym2p(C2)}p∈N∗ .

AUQUE (M. 2023)
The UQUE holds for(

GZ[
√

2]\H
2,GZ[

√
2]\(H

2 × Sym2p(C2)),GZ[
√

2]\
(
H2 × CP1)).
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Thank you !
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