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A question in Quantum Chaos

How do the eigenmodes of classically chaotic systems look like?

−∆Ωψn = λ2
n ψn Helmholtz equation: λn = eigenfrequency

Examples:
– eigenmode of the (Dirichlet) Laplacian on a chaotic Euclidean billiards
(figure c©Arnd Bäcker)
– Laplacian on a compact manifold of negative curvature (M, g).

It is assumed that the billiard flow / geodesic flow enjoys chaotic dynamical
properties : ergodicity, mixing, exponential instability of the trajectories.

The strongest form of chaos is satisfied by Anosov flows (e.g. on manifolds of
negative curvature).
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Macroscopic properties of chaotic modes: Quantum Ergodicity

The connection beween wave dynamics and ray dynamics can be realized in
the high frequency (≡ semiclassical) regime λn � 1.

• Quantum ergodicity [SCHNIRELMAN, ZELDITCH, COLIN DE VERDIÈRE,
ZELDITCH-ZWORSKI,..] Assume the billiard / geodesic flow on S∗Ω is ergodic.
Then, there is a density-1 subsequence S ⊂ N such that,

for any open ω ⊂ Ω,
∫
ω

|ψn(x)|2 dL(x)
S3n→∞−−−−−→ Vol(ω)

Vol(Ω)

Almost all the eigenmodes are asymptotically equidistributed over Ω
(at the macroscopic scale).

Equidistibution as well on phase space S∗Ω:
〈ψn,Op(a)ψn〉 →

∫
S∗Ω a(x,ξ) dxdξ

Vol(S∗Ω)
, for a(x , ξ) a 0-homogeneous function.

• If the flow is Anosov: small scale QE [HAN, HEZARI-RIVIÈRE]
Equidistribution in discs of sizes ∼ (log λn)−α.

• [RUDNICK-SARNAK]: Quantum Unique Ergodicity conjecture on
manifolds of negative curvature: all eigenmodes equidistribute when n→∞.
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Microscopic properties of chaotic modes: a Random Wave Model

Eigenmode of a 2D Sinai
billiard c©Alex Barnett, and a
zoom.

Statistical properties at
microscopic scale
(wavelength ∼ λ−1

n ) ?

• Random Wave model [BERRY’77] (d = 2): random combination of many
plane waves of same frequency λn but arbitrary directions ξj ∈ {|ξ| = 1}:

ψRW ,λ(x) = Re
∑J(λ)

j=1 ajeiλξj ·x , with aj iid ∼ NC(0, 1).

; Monochromatic Gaussian random field on R2: E(ψRW ,λ(x)) = 0,
correlations E(ψRW ,λ(x)ψRW ,λ(x + y/λ)) = J0(|y |) at scale λ−1.

; the value distribution of ψRW ,λ(x) is Gaussian

• RW Conjecture [BERRY’77]: the local statistical properties of the
eigenmodes ψn should converge to those of ψRW ,λn when n→∞.
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Random quasimodes of the Laplacian (1)

	 The RW conjecture for Laplacian eigenstates of chaotic billiards /
manifolds remains wide open.

⊕Weaker ambition [ZELDITCH’09]: on (M, g), take random linear
combinations of eigenstates of ∆ in spectral windows Iλ := [λ, λ+ W ].
Random state in the spectral space VIλ . Random quasimode.

ΦIλ =
∑
λn∈Iλ

an ψn, an random i.i.d. Gaussian .

Alternatively: randomly choose a state in the unit sphere of VIλ (Haar meas.).

[BURQ-LEBEAU’11,MAPLES’13,ZELDITCH’14] Consider spectral windows Iλ of
widths W = W (λ)→∞. Then a generalized Weyl’s law holds on the VIλ :

Tr(Op(a)ΠIλ)

Tr(ΠIλ)
λ→∞−−−−→ 1

Vol(S∗M)

∫
S∗M

a(x , ξ) dxdξ

; probabilistic estimates show that random quasimodes in VIλ almost surely
equidistribute when λ→∞.
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Random quasimodes of the Laplacian (2)

[BURQ-LEBEAU’11,MAPLES’13,ZELDITCH’14] Consider spectral windows Iλ of
widths W (λ)� 1. Generalized Weyl’s law holds on the VIλ :

Tr(Op(a)ΠIλ)

Tr(ΠIλ)
λ→∞−−−−→ 1

Vol(S∗M)

∫
S∗M

a(x , ξ) dxdξ

; random quasimodes in windows Iλ a. s. satisfy QUE when λ→∞.

	 This result holds on any (M, g), no use of chaotic dynamics.
What is special about chaotic manifolds?

• On a surface (M, g) of negative curvature, the remainder in Weyl’s law is
O(λ/log λ) [BÉRARD’77]

; The generalized Weyl’s law holds on thinner windows of widths
W (λ)� 1/ log λ [KEELER’19, CANZANI-GALKOWSKI’20]

; Random quasimodes in windows Iλ of widths W (λ)� 1/ log λ will a.s.
satisfy QUE.
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Random eigenstates in presence of large spectral multiplicities

In case of manifolds featuring spectral multiplicities, the space VIλ may
reduce to a single eigenspace, and hence ΦIλ to a random eigenstate.

Two well-known (non chaotic) surfaces:

• Round sphere S2 [ZELDITCH’92,VANDERKAM,NAZAROV-SODIN]: eigenspace
V` of dimension 2`+ 1� λ =

√
`(`+ 2).

; Φ` random spherical harmonic in V`. Convergence to the RW local
statistics when `→∞.

• Square torus T2. Spectral multiplicities ∼ log λ, strong arithmetic
dependence (λ2

n = k2
1 + k2

2 , ki ∈ Z).
Random eigenstates = Arithmetic Random Waves.
For a generic subsequence (λnk ), random eigenstates Φnk asymp. enjoy the
same local statistics as Berry’s RW. [KRISHNAPUR-KURLBERG-WIGMAN’13]

• On a surface of negative curvature, Weyl’s law bounds multiplicities by
O(λ/ log λ).
Yet, no surface of negative curvature is known to enjoy such high multiplicities
when λ→∞.
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Now, let us present our toy model of quantized
chaotic dynamics:

the Quantum Cat Map
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The Quantum Cat Map
Discrete time dynamics: symplectic map on the compact phase space T2.

x

ξ  
  

x

ξe−Λ
e   >1Λ    

2
 On T  :   

S ∈ SL(2,Z) acts on T2.
If Tr(S) > 2, the matrix is hyperbolic
(eigenvalues e±Λ).
Anosov diffeomorphism.

“Arnold’s Cat Map”

Quantization of S: [HANNAY-BERRY’80]
• The linear map S : R2

x,ξ → R2
x,ξ can be quantized into a metaplectic

operator M~(S) acting on S′(Rx ) (~ ∈ R∗+ arbitrary semiclassical parameter).

• How to “project” on T2
x,ξ = R2/Z2? Consider distributions ψ ∈ S′(R) such

that ψ and its ~-Fourier transform F~ψ are Z-periodic. Nontrivial iff
~ = (2πN)−1 for N ∈ N∗: N-dimensional space of distributions HN , spanned
by {δ j

N +Z, j = 1, . . . ,N}. Set a Hermitian structure on HN .
; Ladder of quantum spaces (HN)N≥1 assoc. with the torus phase space.

• If S ∈ SLθ(2,Z) (ac ≡ bd ≡ 0 mod 2), then M~(S) preserves HN , acting
through a unitary operator UN(S). Quantum cat map = (UN(S))N≥1.
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The Quantum Cat Map through Toeplitz quantization

Remark that T2 ≡ TC = C/(Z + iZ). Hermitian holomorphic line bundle
(L, h)→ T2: each section φ ∈ C∞(TC, L) can be identified with a function
φ̃ : C→ C with quasiperiodicity properties:

φ̃(z + 1) = eπ(1/2+z) φ̃(z), φ̃(z + i) = eπ(1/2−iz) φ̃(z) ;

Hermitian metric 〈φ(z), φ(z)〉h = |φ̃(z)|2 e−π|z|
2
.

• ∀N ∈ N∗, the space HN of holomorphic sections TC → L⊗N is the
N-dimensional space of theta functions of degree N on TC.

The Bargmann transform unitarily maps HN to HN : ψ ∈ HN 7→ BNψ ∈ HN .

z 7→ 〈BNψ(z),BNψ(z)〉hN is called the Husimi function of ψ ∈ HN .

• [ZELDITCH’97] the action of UN(S) on HN is equivalent with the following
action on HN :

φ ∈ HN 7→ cS ΠN(φ ◦ S−1), for some explicit constant cS > 0.

Here ΠN is the Bergman projector on HN . Toeplitz quantization of S.
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Quantum Ergodicity of the Quantum Cat Map

Instead of a single operator ∆g quantizing a geodesic flow, we now have a
ladder of unitary operators (UN(S))N≥1 (quantum propagators), quantizing
the Anosov diffeomorphism S.

Semiclassical limit: N →∞.

Unitarity =⇒ each UN(S) admits an o.n.b of eigenstates (ψ
(N)
j )j=1,...,N .

Each ψ(N)
j is a N-dimensional vector in the basis (δ j

N +Z)j=1,...,N of HN .

• To test the localization properties of ψ(N)
j on the phase space T2, use

(Weyl) quantization: to each test function f ∈ C∞(T2) corresponds an
operator OpN(f ) acting on HN .

Quantum Ergodicity [BOUZOUINA-DEBIÈVRE’96, HAN’20]: there is a density 1
subsequence S s.t.

∀f ∈ C∞(T2,C), 〈ψ(N)
j ,OpN(f )ψ

(N)
j 〉

S3(N,j)→∞−−−−−−−→
∫
T2 f (x , ξ) dxdξ

• [DEGLI ESPOSTI-GRAFFI-ISOLA’93, KURLBERG-RUDNICK’00,’01] construct
”Hecke” (arithmetic) eigenstates of UN(S), which satisfy QUE .
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Quantum periods of the quantum cat map

• UN is a (proj.) representation of SLθ(2,Z): UN(S) UN(S′) = eiϕN UN(SS′)

• UN(S) only depends on S mod 2N
=⇒ quantum periodicity: ∀N ≥ 1, there is an integer PN > 1 s.t.

(UN(S))PN = eiθN IdN for some θN ∈ [0, 2π)

=⇒ eigenphases α`,N = 2π(`+θN )
PN

, ` = 1 . . . ,PN .

=⇒ explicit expression for the projector on the eigenspace V`,N ⊂ HN :

Π`,N =
1

PN

PN−1∑
k=0

e−ikα`,N (UN(S))k , ` = 1, . . . ,PN .

The quantum periods PN are essentially those of (Sk mod 2N), they depend
erratically of N, within the range

2 log N
Λ

− C ≤ PN ≤ N log N [KEATING’91, KURLBERG’03]

There exists a (scarce) subsequence Sshort such that PN = 2 log N
Λ

+ O(1):
short (minimal) periods. [BONECHI-DE BIÈVRE’03]
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Quantum periods : numerics

Top: quantum periods
of UN(S0), for

S0 =

(
2 1
3 2

)
(linear-linear scale).

Bottom: the rare short
periods (log-linear
scale).
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Local statistics of Quantum Cat eigenstates

Each eigenstate ψ(N)
j is a (normalized) vector in HN ≡ CN .

Inspired by Berry’s Random Wave conjecture for the Laplacian eigenmodes,
we are interested in the statistical properties of our eigenvectors ψ(N)

j .

What model to replace Berry’s Random Waves?

• Take the random vector on the unit sphere of HN (Haar measure).
• Up to normalization, equivalent with random Gaussian vector:

Φ
(N)
Gauss =

N−1∑
`=0

aj δ j
N +Z, aj i .i .d . ∼ NC(0, 1).

equivalently Φ
(N)
Gauss ∼ NC(0, IdN) .

	 [KURLBERG-RUDNICK’01] For N along the sequence Ssp of ”split primes”,
explicitly compute the ”Hecke” eigenstates.

=⇒ when Ssp 3 N →∞, the value distribution of the Hecke eigenstates
converges to a non-Gaussian distribution.
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Short quantum periods ; non-QUE eigenstates

Short quantum periods PN ←→ large spectral multiplicities

• [KURLBERG-RUDNICK’01, BOURGAIN’07]: for any ε > 0, consider the (dense)
subsequence Slong such that PN ≥ Nε. Then, for any choice of eigenbases,
QUE holds along Slong .

• Let us focus on N ∈ Sshort : PN = 2
Λ

log N + O(1).
→ maximal spectral multiplicities ≈ N

PN
� N

log N (cf. Bérard’s bound O( λ
log λ

)).

[FAURE-N-DEBIÈVRE’03] constructed eigenstates which do not equidistribute
as N →∞: failure of QUE. Trick: project on V`,N a coherent state centered
on a periodic point (x0, ξ0) of S: ψ`,N := Π`,N η(x0,ξ0).

x

ξ

x

ξ

Husimi functions for two
eigenmodes of UN(S0) for
N ∈ Sshort .
They are partially
concentrated on a periodic
orbit of S0.

(The modes differ by the
choice of η(x0,ξ0)).
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Short quantum periods: random eigenstates of UN(S)

The Cat Map model allows us to conjugate classical chaos with large spectral
multiplicities ; random eigenstates are ”very random”.

• Take N ∈ Sshort , choose on each eigenspace V`,N a random o.n.b. O`,N .
; O = (

⊕PN
`=1 O`,N)N∈Sshort sequence of random eigenbases.

Theorem (N-Schwartz’22)
Almost surely, the sequence of eigenbases O satisfies QUE, down to the
scale N−1/4+ε.

• For N ∈ Sshort , choose a random eigenstate Φ`,N ∈ V`,N , normalized by
‖Φ`,N‖ =

√
N.

Theorem (N-Schwartz’22)
Fix r ∈ N∗. For each N ∈ Sshort , choose a r-uplet (i1, . . . , ir ) ⊂ [1,N]. Then,
when N →∞, the random r-uplets (Φ`,N(i1), . . . ,Φ`,N(ir )) converge in law to
the r-uplet (Φ

(N)
Gauss(i1), . . . ,Φ

(N)
Gauss(ir )) ∼ NC(0, 1)r .

As a consequence, the value distribution of the random eigenvectors Φ`,N
a.s. converge to the Gaussian distribution.

⊕ First example of chaotic eigenstates verifying universal local statistics.
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Elements of proof: almost sure QUE

Following the proofs of [ZELDITCH,BURQ-LEBEAU], the main step is to prove a
generalized Weyl’s law on the eigenspaces V`,N :

∀f ∈ C∞(T2),
1

dimV`,N
Tr
(
Π`,N OpN(f )

)
=

∫
T2

f (x , ξ) dxdξ + of (1)N→∞.

• We use the explicit representation of the projector:

Π`,N =
1

PN

PN/2−1∑
k=−PN/2

e−ikα`,N (UN)k , and the Fourier expansion f =
∑

m∈Z2

f̂m em.

• Exact (dressed) Gutzwiller’s trace formula (generalizes [KEATING’91]):

Tr
(
(UN)k OpN(em)

)
=

∑
ρ∈Fix(Sk )

1√
| det(Sk − I)|

eiφ(ρ;k ;m;N)

#Fix(Sk ) ∼ CeΛ|k|, while
√
| det(Sk − I)| ∼ c′eΛ|k|/2, so we get the bound

Tr
(
(UN)k OpN(em)

)
= O(eΛ|k|/2) for k 6= 0

(notice the bound is indep. of N)
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Elements of proof: almost sure QUE (2)

Tr
(
(UN)k OpN(em)

)
= O(eΛ|k|/2) for 0 < |k | ≤ PN/2

Tr
(
(UN)0 OpN(em)

)
=

{
N, m ≡ 0 mod N,
0, otherwise

Maximal time in the sum: PN/2 = log N
Λ

+ O(1)

=⇒ d`,N := Tr Π`,N =
N
PN

+O(N1/2), Tr(Π`,Nem) = O(N1/2), ∀m 6≡ 0 mod N

Summing over Fourier modes, we obtain the generalized Weyl’s law:

1
d`,N

Tr
(
Π`,N OpN(f )

)
=

∫
T2

f (x , ξ) dxdξ + Of (N
−1/2+ε).

• Use large deviation estimates for indiv. Φ`,N [RUDELSON-VERSHYNIN’13]:

∀t > 0, P
(∣∣〈Φ`,N ,OpN(f )Φ`,N〉−

1
d`,N

Tr
(
Π`,N OpN(f )

)∣∣ > t
)
≤ exp(−Cd`,N t2)

t = N−α controls the deviations from
∫
T2 f (x , ξ) dxdξ with high proba. �
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Elements of proof: local statistics of Φj,N

Recall that Φ`,N is a (Haar)-random eigenstate in V`,N , of norm ‖Φ`,N‖ =
√

N.

• Observation: since the dimension d`,N >> 1, Φ`,N statistically resembles
the Gaussian random eigenstate

Ψ`,N =
√

PN Π`,N Φ
(N)
Gauss ,

which has covariance matrix Σ`,N = PN Π`,N and typical norm
√

N + O(1).

• Computation of Σ`,N = IN +
∑

1≤|k|≤PN/2 e−ikα`,N (UN)k .

We use explicit expressions for the matrices (UN)k = UN(Sk )
[HANNAY-BERRY’80], and the explicit construction of N along Sshort [BONECHI-DE

BIÈVRE’03]

; (Uk
N)ij = O(N−1/4), uniformly for 1 ≤ |k | ≤ PN/2− 1.

=⇒ Σ`,N = IN + O(N−1/4) componentwise.

• Notice that IN is the covariance matrix of Φ
(N)
Gauss

=⇒ Ψ`,N , and then Φ`,N , have the same local statisics as Φ
(N)
Gauss

�
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A few remarks and questions

• By randomizing over an eigenspace of dimension N/ log N, it is not so
surprising to obtain a universal (Gaussian) statistical behaviour, and QUE.
On the contrary, Hecke eigenstates are QUE, but are not universal.

• We used some very particular properties of the Quantum Cat Map:
periodiciy, maximally large spectral multiplicities.

• we had to control the propagator Uk
N up to the Ehrenfest time log N

Λ
: can we

generalize some of the estimates to more generic quantized symplectic maps
(e.g. nonlinear perturbations of the cat map)?

– [FAURE’07]: approximate Gutzwiller’s trace formula for times k ≤ C log N.

– could we control the matrix elements of Uk
N for nonlinear maps, up to the

Ehrenfest time?

• Identify other symplectic manifolds carrying chaotic symplectomorphisms,
leading to new examples of quantum maps ?
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EXTRA: Controlling the entries of UN(S)k along Sshort

Ex: S0 =

(
2 1
3 2

)
gives UN(S0)jl = 1√

N
exp( 2iπ

N (j2 + l2 − jl)) = eiφ
√

N
.

Writing Sk
0 =

(
• b(k)

• •

)
, the nonzero entries of UN(S0)k = UN(Sk

0 ) will be of

modulus
√

gcd(N,b(k))
N .

• To estimate the gcd: use the recurrence

Sk
0 = nk S0 − nk−1, where nk+1 = Tr(S0)nk − nk−1, n1 = 1, n0 = 0 ,

to compute the entry b(k) = nk . Note nk ∼ ceΛ|k| when |k | ↗.

• N ∈ Sshort is of the form N = N2K +1 = nK +1 + nK , corresponding to the
minimal period PN = 2K + 1. So we must control gcd(N2K +1, nk ) for times
1 ≤ |k | ≤ K .

• Due to arithmetic properties of the nk (and the fact that we restrict
ouselves to odd periods), the largest gcd(N2K +1, nk ) occurs for |k | ≈ K/2,
where it is bounded by O(eΛK/2) = O(N1/2)

=⇒ (Uk
N)jl = O(N−1/4), uniformly for all 1 ≤ |k | ≤ PN/2− 1.


	Quantum chaos for the Laplacian
	Quantum Cat Map
	Quantum periods of the QCM
	Random eigenstates of the QCM

