Random eigenstates of the QCM

Random eigenstates of the Quantum Cat Map

Stéphane Nonnenmacher + Nir Schwartz

Institut de Mathématiques d'Orsay, Université Paris-Saclay

Quantization in Geometry 24-28 July 2023

Cat map ©L.Poon

A random state on T² © F.Faure

୬୯୯

A question in Quantum Chaos

How do the eigenmodes of classically chaotic systems look like?

 $-\Delta_{\Omega}\psi_n = \lambda_n^2 \psi_n$ Helmholtz equation: λ_n = eigenfrequency

Examples:

- eigenmode of the (Dirichlet) Laplacian on a chaotic Euclidean billiards (figure ©Arnd Bäcker)

- Laplacian on a compact manifold of negative curvature (M, g).

It is assumed that the billiard flow / geodesic flow enjoys chaotic dynamical properties : ergodicity, mixing, exponential instability of the trajectories.

The strongest form of chaos is satisfied by Anosov flows (e.g. on manifolds of negative curvature).

(ロ) (同) (三) (三) (三) (○) (○)

Macroscopic properties of chaotic modes: Quantum Ergodicity

The connection between wave dynamics and ray dynamics can be realized in the high frequency (\equiv semiclassical) regime $\lambda_n \gg 1$.

• Quantum ergodicity [SCHNIRELMAN, ZELDITCH, COLIN DE VERDIÈRE, ZELDITCH-ZWORSKI,..] Assume the billiard / geodesic flow on $S^*\Omega$ is ergodic. Then, there is a density-1 subsequence $\mathbb{S} \subset \mathbb{N}$ such that,

$$\text{for any open } \omega \subset \Omega, \qquad \int_{\omega} \left| \psi_n(x) \right|^2 dL(x) \xrightarrow{\mathbb{S} \ni n \to \infty} \frac{\mathsf{Vol}(\omega)}{\mathsf{Vol}(\Omega)}$$

Almost all the eigenmodes are asymptotically equidistributed over Ω (at the *macroscopic* scale).

Equidistibution as well on phase space $S^*\Omega$: $\langle \psi_n, \operatorname{Op}(a)\psi_n \rangle \rightarrow \frac{\int_{S^*\Omega} a(x,\xi) \, dxd\xi}{\operatorname{Vol}(S^*\Omega)}$, for $a(x,\xi)$ a 0-homogeneous function.

• If the flow is Anosov: small scale QE [HAN, HEZARI-RIVIÈRE] Equidistribution in discs of sizes $\sim (\log \lambda_n)^{-\alpha}$.

• [RUDNICK-SARNAK]: Quantum Unique Ergodicity conjecture on manifolds of negative curvature: all eigenmodes equidistribute when $n \to \infty$.

Microscopic properties of chaotic modes: a Random Wave Model

Eigenmode of a 2D Sinai billiard ©Alex Barnett, and a zoom.

Statistical properties at microscopic scale (wavelength $\sim \lambda_n^{-1}$) ?

• Random Wave model [BERRY'77] (d = 2): random combination of many plane waves of same frequency λ_n but arbitrary directions $\xi_j \in \{|\xi| = 1\}$:

$$\psi_{RW,\lambda}(x) = \operatorname{Re} \sum_{j=1}^{J(\lambda)} a_j e^{i\lambda \xi_j \cdot x}$$
, with a_j iid $\sim \mathcal{N}_{\mathbb{C}}(0, 1)$.

 \sim Monochromatic Gaussian random field on \mathbb{R}^2 : $\mathbb{E}(\psi_{BW,\lambda}(x)) = 0$, correlations $\mathbb{E}(\psi_{BW,\lambda}(x)\psi_{BW,\lambda}(x+y/\lambda)) = J_0(|y|)$ at scale λ^{-1} .

 \rightsquigarrow the *value distribution* of $\psi_{RW,\lambda}(x)$ is Gaussian

• RW Conjecture [BERRY'77]: the local statistical properties of the eigenmodes ψ_n should converge to those of ψ_{RW,λ_n} when $n \to \infty$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Random quasimodes of the Laplacian (1)

 \ominus The RW conjecture for Laplacian eigenstates of chaotic billiards / manifolds remains wide open.

 \oplus Weaker ambition [ZELDITCH'09]: on (M, g), take random linear combinations of eigenstates of Δ in spectral windows $I_{\lambda} := [\lambda, \lambda + W]$. Random state in the spectral space $\mathcal{V}_{I_{\lambda}}$. Random quasimode.

$$\Phi_{I_{\lambda}} = \sum_{\lambda_n \in I_{\lambda}} a_n \psi_n, \qquad a_n \text{ random i.i.d. Gaussian }.$$

Alternatively: randomly choose a state in the unit sphere of $\mathcal{V}_{I_{\lambda}}$ (Haar meas.).

[BURQ-LEBEAU'11,MAPLES'13,ZELDITCH'14] Consider spectral windows I_{λ} of widths $W = W(\lambda) \rightarrow \infty$. Then a generalized Weyl's law holds on the $\mathcal{V}_{I_{\lambda}}$:

$$\frac{\operatorname{Tr}(\operatorname{Op}(a)\Pi_{l_{\lambda}})}{\operatorname{Tr}(\Pi_{l_{\lambda}})} \xrightarrow{\lambda \to \infty} \frac{1}{\operatorname{Vol}(S^*M)} \int_{S^*M} a(x,\xi) \, dx d\xi$$

 \sim probabilistic estimates show that random quasimodes in $\mathcal{V}_{l_{\lambda}}$ almost surely equidistribute when $\lambda \to \infty$.

Random quasimodes of the Laplacian (2)

[BURQ-LEBEAU'11,MAPLES'13,ZELDITCH'14] Consider spectral windows I_{λ} of widths $W(\lambda) \gg 1$. Generalized Weyl's law holds on the $\mathcal{V}_{I_{\lambda}}$:

$$\frac{\operatorname{Tr}(\operatorname{Op}(a)\Pi_{I_{\lambda}})}{\operatorname{Tr}(\Pi_{I_{\lambda}})} \xrightarrow{\lambda \to \infty} \frac{1}{\operatorname{Vol}(S^*M)} \int_{S^*M} a(x,\xi) \, dx d\xi$$

 \sim random quasimodes in windows I_{λ} a. s. satisfy QUE when $\lambda \rightarrow \infty$.

 \ominus This result holds on any (M, g), no use of chaotic dynamics. What is special about chaotic manifolds?

• On a surface (M, g) of negative curvature, the remainder in Weyl's law is $O(\lambda/\log \lambda)$ [Bérard'77]

 \sim The generalized Weyl's law holds on thinner windows of widths $W(\lambda) \gg 1/\log \lambda$ [KEELER'19, CANZANI-GALKOWSKI'20]

 \sim Random quasimodes in windows I_{λ} of widths $W(\lambda) \gg 1/\log \lambda$ will a.s. satisfy QUE.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● の へ ⊙

Random eigenstates in presence of large spectral multiplicities

In case of manifolds featuring spectral multiplicities, the space $\mathcal{V}_{l_{\lambda}}$ may reduce to a single eigenspace, and hence $\Phi_{l_{\lambda}}$ to a random eigenstate.

Two well-known (non chaotic) surfaces:

• Round sphere \mathbb{S}^2 [ZELDITCH'92,VANDERKAM,NAZAROV-SODIN]: eigenspace \mathcal{V}_ℓ of dimension $2\ell + 1 \simeq \lambda = \sqrt{\ell(\ell+2)}$. $\sim \Phi_\ell$ random spherical harmonic in \mathcal{V}_ℓ . Convergence to the RW local statistics when $\ell \to \infty$.

• Square torus \mathbb{T}^2 . Spectral multiplicities $\sim \log \lambda$, strong arithmetic dependence ($\lambda_n^2 = k_1^2 + k_n^2, k_i \in \mathbb{Z}$).

Random eigenstates = Arithmetic Random Waves.

For a generic subsequence (λ_{n_k}) , random eigenstates Φ_{n_k} asymp. enjoy the same local statistics as Berry's RW. [KRISHNAPUR-KURLBERG-WIGMAN'13]

• On a surface of negative curvature, Weyl's law bounds multiplicities by $\Im(\lambda/\log\lambda)$.

Yet, no surface of negative curvature is known to enjoy such high multiplicities when $\lambda \to \infty.$

・ロット (雪) (日) (日)

Now, let us present our toy model of quantized chaotic dynamics:

the Quantum Cat Map

The Quantum Cat Map

Discrete time dynamics: symplectic map on the compact phase space \mathbb{T}^2 .

 $S \in SL(2, \mathbb{Z})$ acts on \mathbb{T}^2 . If Tr(S) > 2, the matrix is hyperbolic (eigenvalues $e^{\pm \Lambda}$). Anosov diffeomorphism.

"Arnold's Cat Map"

Quantization of S: [HANNAY-BERRY'80]

• The linear map $S : \mathbb{R}^2_{x,\xi} \to \mathbb{R}^2_{x,\xi}$ can be quantized into a metaplectic operator $M_{\hbar}(S)$ acting on $S'(\mathbb{R}_x)$ ($\hbar \in \mathbb{R}^*_+$ arbitrary semiclassical parameter).

• How to "project" on $\mathbb{T}^2_{x,\xi} = \mathbb{R}^2/\mathbb{Z}^2$? Consider distributions $\psi \in S'(\mathbb{R})$ such that ψ and its \hbar -Fourier transform $\mathcal{F}_{\hbar}\psi$ are \mathbb{Z} -periodic. Nontrivial iff $\hbar = (2\pi N)^{-1}$ for $N \in \mathbb{N}^*$: *N*-dimensional space of distributions \mathcal{H}_N , spanned by $\{\delta_{\frac{1}{N}+\mathbb{Z}}, j = 1, ..., N\}$. Set a Hermitian structure on \mathcal{H}_N . \rightsquigarrow Ladder of quantum spaces $(\mathcal{H}_N)_{N>1}$ assoc. with the torus phase space.

• If $S \in SL_{\theta}(2, \mathbb{Z})$ ($ac \equiv bd \equiv 0 \mod 2$), then $M_{h}(S)$ preserves \mathcal{H}_{N} , acting through a unitary operator $U_{N}(S)$. Quantum cat map $\equiv (U_{N}(S))_{N>1}$.

The Quantum Cat Map through Toeplitz quantization

Remark that $\mathbb{T}^2 \equiv \mathbb{T}_{\mathbb{C}} = \mathbb{C}/(\mathbb{Z} + i\mathbb{Z})$. Hermitian holomorphic line bundle $(L, h) \to \mathbb{T}^2$: each section $\phi \in C^{\infty}(\mathbb{T}_{\mathbb{C}}, L)$ can be identified with a function $\tilde{\phi} : \mathbb{C} \to \mathbb{C}$ with quasiperiodicity properties:

 $\tilde{\phi}(z+1) = e^{\pi(1/2+z)} \tilde{\phi}(z), \quad \tilde{\phi}(z+i) = e^{\pi(1/2-iz)} \tilde{\phi}(z);$

Hermitian metric $\langle \phi(z), \phi(z) \rangle_h = |\tilde{\phi}(z)|^2 e^{-\pi |z|^2}$.

• $\forall N \in \mathbb{N}^*$, the space H_N of holomorphic sections $\mathbb{T}_{\mathbb{C}} \to L^{\otimes N}$ is the *N*-dimensional space of theta functions of degree *N* on $\mathbb{T}_{\mathbb{C}}$.

The Bargmann transform unitarily maps \mathcal{H}_N to H_N : $\psi \in \mathcal{H}_N \mapsto \mathcal{B}_N \psi \in H_N$. $z \mapsto \langle \mathcal{B}_N \psi(z), \mathcal{B}_N \psi(z) \rangle_{h^N}$ is called the Husimi function of $\psi \in \mathcal{H}_N$.

• [ZELDITCH'97] the action of $U_N(S)$ on \mathcal{H}_N is equivalent with the following action on H_N :

 $\phi \in H_N \mapsto c_S \Pi_N(\phi \circ S^{-1})$, for some explicit constant $c_S > 0$.

Here Π_N is the Bergman projector on H_N . Toeplitz quantization of *S*.

Quantum Ergodicity of the Quantum Cat Map

Instead of a single operator Δ_g quantizing a geodesic flow, we now have a ladder of unitary operators $(U_N(S))_{N\geq 1}$ (quantum propagators), quantizing the Anosov diffeomorphism *S*.

Semiclassical limit: $N \to \infty$.

Unitarity \implies each $U_N(S)$ admits an o.n.b of eigenstates $(\psi_j^{(N)})_{j=1,...,N}$. Each $\psi_j^{(N)}$ is a *N*-dimensional vector in the basis $(\delta_{j_n+\mathbb{Z}})_{j=1,...,N}$ of \mathcal{H}_N .

To test the localization properties of ψ_j^(N) on the phase space T², use (Weyl) quantization: to each test function f ∈ C[∞](T²) corresponds an operator Op_N(f) acting on H_N.

Quantum Ergodicity [BOUZOUINA-DEBIÈVRE'96, HAN'20]: there is a density 1 subsequence § s.t.

 $\forall f \in \boldsymbol{C}^{\infty}(\mathbb{T}^2,\mathbb{C}), \quad \langle \psi_j^{(N)}, \operatorname{Op}_N(f) \, \psi_j^{(N)} \rangle \xrightarrow{\mathfrak{s} \ni (N,j) \to \infty} \int_{\mathbb{T}^2} f(x,\xi) \, dx d\xi$

• [DEGLI ESPOSTI-GRAFFI-ISOLA'93, KURLBERG-RUDNICK'00,'01] construct "Hecke" (arithmetic) eigenstates of $U_N(S)$, which satisfy QUE.

Quantum periods of the quantum cat map

- U_N is a (proj.) representation of $SL_{\theta}(2,\mathbb{Z})$: $U_N(S) U_N(S') = e^{i\varphi_N}U_N(SS')$
- U_N(S) only depends on S mod 2N
- \implies quantum periodicity: $\forall N \ge 1$, there is an integer $P_N > 1$ s.t.

$$(U_N(S))^{P_N} = e^{i heta_N} Id_N$$
 for some $heta_N \in [0, 2\pi)$

- \implies eigenphases $\alpha_{\ell,N} = \frac{2\pi(\ell+\theta_N)}{P_N}, \ell = 1 \dots, P_N.$
- \implies explicit expression for the projector on the eigenspace $\mathcal{V}_{\ell,N} \subset \mathcal{H}_N$:

$$\Pi_{\ell,N} = \frac{1}{P_N} \sum_{k=0}^{P_N-1} e^{-ik\alpha_{\ell,N}} \left(U_N(\mathcal{S}) \right)^k, \qquad \ell = 1, \ldots, P_N.$$

The quantum periods P_N are essentially those of ($S^k \mod 2N$), they depend erratically of N, within the range

$$\frac{2\log N}{\Lambda} - C \le P_N \le N\log N \qquad \text{[Keating'91, Kurlberg'03]}$$

There exists a (scarce) subsequence S_{short} such that $P_N = \frac{2 \log N}{\Lambda} + O(1)$: short (minimal) periods. [BONECHI-DE BIÈVRE'03]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

25

Quantum periods : numerics

Top: quantum periods of $U_N(S_0)$, for $S_0 = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ (linear-linear scale).

Bottom: the rare short periods (log-linear scale).

Local statistics of Quantum Cat eigenstates

Each eigenstate $\psi_i^{(N)}$ is a (normalized) vector in $\mathcal{H}_N \equiv \mathbb{C}^N$.

Inspired by Berry's Random Wave conjecture for the Laplacian eigenmodes, we are interested in the *statistical* properties of our eigenvectors $\psi_i^{(N)}$.

What model to replace Berry's Random Waves?

- Take the random vector on the unit sphere of \mathcal{H}_N (Haar measure).
- Up to normalization, equivalent with random Gaussian vector:

$$\begin{split} \Phi^{(N)}_{Gauss} = \sum_{\ell=0}^{N-1} a_j \, \delta_{\frac{j}{N} + \mathbb{Z}}, \qquad a_j \text{ } i.i.d. \sim \mathcal{N}_{\mathbb{C}}(0, 1). \end{split}$$
 equivalently $\Phi^{(N)}_{Gauss} \sim \mathcal{N}_{\mathbb{C}}(0, \textit{Id}_N). \end{split}$

 \ominus [KURLBERG-RUDNICK'01] For *N* along the sequence S_{sp} of "split primes", explicitly compute the "Hecke" eigenstates.

 \implies when $S_{sp} \ni N \to \infty$, the value distribution of the Hecke eigenstates converges to a non-Gaussian distribution.

Short quantum periods ~> non-QUE eigenstates

Short quantum periods $P_N \leftrightarrow$ large spectral multiplicities

- [KURLBERG-RUDNICK'01, BOURGAIN'07]: for any $\varepsilon > 0$, consider the (dense) subsequence S_{long} such that $P_N \ge N^{\varepsilon}$. Then, for any choice of eigenbases, QUE holds along S_{long} .
- Let us focus on $N \in S_{short}$: $P_N = \frac{2}{\Lambda} \log N + O(1)$. \rightarrow maximal spectral multiplicities $\approx \frac{N}{P_M} \asymp \frac{N}{\log N}$ (cf. Bérard's bound $O(\frac{\lambda}{\log \lambda})$).

[FAURE-N-DEBIÈVRE'03] constructed eigenstates which do not equidistribute as $N \to \infty$: failure of QUE. Trick: project on $\mathcal{V}_{\ell,N}$ a coherent state centered on a periodic point (x_0, ξ_0) of S: $\psi_{\ell,N} := \prod_{\ell,N} \eta_{(x_0,\xi_0)}$.

Husimi functions for two eigenmodes of $U_N(S_0)$ for $N \in S_{short}$. They are partially concentrated on a periodic orbit of S_0 .

(The modes differ by the choice of $\eta_{(x_0,\xi_0)}$).

・ロト・西・・山・・ ・ 日・

(日) (日) (日) (日) (日) (日) (日)

Short quantum periods: random eigenstates of $U_N(S)$

The Cat Map model allows us to conjugate classical chaos with large spectral multiplicities \rightsquigarrow random eigenstates are "very random".

• Take $N \in S_{short}$, choose on each eigenspace $\mathcal{V}_{\ell,N}$ a random o.n.b. $\mathcal{O}_{\ell,N}$. $\Rightarrow \mathcal{O} = (\bigoplus_{\ell=1}^{P_N} \mathcal{O}_{\ell,N})_{N \in S_{short}}$ sequence of random eigenbases.

Theorem (N-Schwartz'22)

Almost surely, the sequence of eigenbases $\mathbb O$ satisfies QUE, down to the scale $N^{-1/4+\varepsilon}.$

• For $N \in S_{short}$, choose a random eigenstate $\Phi_{\ell,N} \in \mathcal{V}_{\ell,N}$, normalized by $\|\Phi_{\ell,N}\| = \sqrt{N}$.

Theorem (N-Schwartz'22)

Fix $r \in \mathbb{N}^*$. For each $N \in S_{short}$, choose a r-uplet $(i_1, \ldots, i_r) \subset [1, N]$. Then, when $N \to \infty$, the random r-uplets $(\Phi_{\ell,N}(i_1), \ldots, \Phi_{\ell,N}(i_r))$ converge in law to the r-uplet $(\Phi_{Gauss}^{(N)}(i_1), \ldots, \Phi_{Gauss}^{(N)}(i_r)) \sim \mathcal{N}_{\mathbb{C}}(0, 1)^r$.

As a consequence, the value distribution of the random eigenvectors $\Phi_{\ell,N}$ a.s. converge to the Gaussian distribution.

 \oplus First example of chaotic eigenstates verifying universal local statistics.

Elements of proof: almost sure QUE

Following the proofs of [ZELDITCH,BURQ-LEBEAU], the main step is to prove a generalized Weyl's law on the eigenspaces $\mathcal{V}_{\ell,N}$:

$$\forall f \in \boldsymbol{C}^{\infty}(\mathbb{T}^2), \quad \frac{1}{\dim \mathcal{V}_{\ell,N}} \operatorname{Tr} \left(\Pi_{\ell,N} \operatorname{Op}_N(f) \right) = \int_{\mathbb{T}^2} f(x,\xi) \, dx d\xi + o_f(1)_{N \to \infty}.$$

• We use the explicit representation of the projector:

$$\Pi_{\ell,N} = \frac{1}{P_N} \sum_{k=-P_N/2}^{P_N/2-1} e^{-ik\alpha_{\ell,N}} (U_N)^k, \text{ and the Fourier expansion } f = \sum_{\boldsymbol{m} \in \mathbb{Z}^2} \hat{f}_{\boldsymbol{m}} \boldsymbol{e}_{\boldsymbol{m}}.$$

• Exact (dressed) Gutzwiller's trace formula (generalizes [KEATING'91]):

$$\operatorname{Tr}\left(\left(U_{N}\right)^{k}\operatorname{Op}_{N}(\boldsymbol{e}_{\boldsymbol{m}})\right) = \sum_{\rho \in \operatorname{Fix}(S^{k})} \frac{1}{\sqrt{|\det(S^{k} - I)|}} e^{i\phi(\rho;k;\boldsymbol{m};N)}$$

 $\#\operatorname{Fix}(S^k) \sim Ce^{\Lambda|k|}$, while $\sqrt{|\det(S^k - I)|} \sim c'e^{\Lambda|k|/2}$, so we get the bound

$$\operatorname{Tr}\left(\left(U_{N}\right)^{k}\operatorname{Op}_{N}(e_{m})\right)=\mathbb{O}(e^{\Lambda|k|/2}) \quad \text{for} \quad k\neq 0$$

(notice the bound is indep. of *N*)

Elements of proof: almost sure QUE (2)

$$\begin{aligned} &\mathsf{Tr}\left(\left(U_{N}\right)^{k}\mathsf{Op}_{N}(\boldsymbol{e_{m}})\right) = \mathbb{O}(\boldsymbol{e}^{\Lambda|k|/2}) \quad \text{for} \quad 0 < |k| \leq P_{N}/2 \\ &\mathsf{Tr}\left(\left(U_{N}\right)^{0}\mathsf{Op}_{N}(\boldsymbol{e_{m}})\right) = \begin{cases} N, & \boldsymbol{m} \equiv 0 \bmod N, \\ 0, & \text{otherwise} \end{cases} \end{aligned}$$

Maximal time in the sum: $P_N/2 = \frac{\log N}{\Lambda} + O(1)$

 $\implies d_{\ell,N} := \operatorname{Tr} \Pi_{\ell,N} = \frac{N}{P_N} + \mathcal{O}(N^{1/2}), \qquad \operatorname{Tr}(\Pi_{\ell,N} \boldsymbol{e_m}) = \mathcal{O}(N^{1/2}), \ \forall \boldsymbol{m} \neq 0 \ \mathrm{mod} \ N$

Summing over Fourier modes, we obtain the generalized Weyl's law:

$$\frac{1}{d_{\ell,N}}\operatorname{Tr}\left(\Pi_{\ell,N}\operatorname{Op}_{N}(f)\right)=\int_{\mathbb{T}^{2}}f(x,\xi)\,dxd\xi+\mathfrak{O}_{f}(N^{-1/2+\varepsilon}).$$

• Use large deviation estimates for indiv. $\Phi_{\ell,N}$ [RUDELSON-VERSHYNIN'13]:

$$\forall t > 0, \quad \mathbb{P}\Big(\big| \langle \Phi_{\ell,N}, \mathsf{Op}_N(f) \Phi_{\ell,N} \rangle - \frac{1}{d_{\ell,N}} \operatorname{Tr} \big(\Pi_{\ell,N} \operatorname{Op}_N(f) \big) \big| > t \Big) \leq \exp(-Cd_{\ell,N} t^2)$$

 $t = N^{-\alpha}$ controls the deviations from $\int_{\mathbb{T}^2} f(x,\xi) dx d\xi$ with high proba.

・

うつつ 川 へきゃくきゃくむゃ

Elements of proof: local statistics of $\Phi_{i,N}$

Recall that $\Phi_{\ell,N}$ is a (Haar)-random eigenstate in $\mathcal{V}_{\ell,N}$, of norm $\|\Phi_{\ell,N}\| = \sqrt{N}$.

• Observation: since the dimension $d_{\ell,N} >> 1$, $\Phi_{\ell,N}$ statistically resembles the **Gaussian** random eigenstate

$$\Psi_{\ell,N} = \sqrt{P_N} \, \Pi_{\ell,N} \, \Phi_{Gauss}^{(N)} \,,$$

which has covariance matrix $\Sigma_{\ell,N} = P_N \prod_{\ell,N}$ and typical norm $\sqrt{N} + O(1)$.

• Computation of $\Sigma_{\ell,N} = \frac{I_N}{N} + \sum_{1 \le |k| \le P_N/2} e^{-ik\alpha_{\ell,N}} (U_N)^k$.

We use explicit expressions for the matrices $(U_N)^k = U_N(S^k)$ [HANNAY-BERRY'80], and the explicit construction of *N* along S_{short} [BONECHI-DE BIÈVRE'03]

 $\sim (U_N^k)_{ij} = \mathcal{O}(N^{-1/4})$, uniformly for $1 \le |k| \le P_N/2 - 1$.

 $\implies \quad \Sigma_{\ell,N} = I_N + {\rm O}(N^{-1/4}) \quad \text{componentwise}.$

- Notice that I_N is the covariance matrix of $\Phi_{Gauss}^{(N)}$
- $\implies \Psi_{\ell,N}$, and then $\Phi_{\ell,N}$, have the same local statistics as $\Phi_{Gauss}^{(N)}$

A few remarks and questions

- By randomizing over an eigenspace of dimension $N/\log N$, it is not so surprising to obtain a universal (Gaussian) statistical behaviour, and QUE. On the contrary, Hecke eigenstates are QUE, but are not universal.
- We used some very particular properties of the Quantum Cat Map: periodiciy, maximally large spectral multiplicities.
- we had to control the propagator U_N^k up to the Ehrenfest time $\frac{\log N}{\Lambda}$: can we generalize some of the estimates to more generic quantized symplectic maps (e.g. nonlinear perturbations of the cat map)?
- [FAURE'07]: approximate Gutzwiller's trace formula for times $k \leq C \log N$.

– could we control the matrix elements of U_N^k for nonlinear maps, up to the Ehrenfest time?

• Identify other symplectic manifolds carrying chaotic symplectomorphisms, leading to new examples of quantum maps ?

EXTRA: Controlling the entries of $U_N(S)^k$ along S_{short}

Ex: $S_0 = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ gives $U_N(S_0)_{jl} = \frac{1}{\sqrt{N}} \exp(\frac{2i\pi}{N}(j^2 + l^2 - jl)) = \frac{e^{j\phi}}{\sqrt{N}}$. Writing $S_0^k = \begin{pmatrix} \bullet & b^{(k)} \\ \bullet & \bullet \end{pmatrix}$, the nonzero entries of $U_N(S_0)^k = U_N(S_0^k)$ will be of modulus $\sqrt{\frac{\gcd(N,b^{(k)})}{N}}$.

• To estimate the gcd: use the recurrence

$$S_0^k = n_k S_0 - n_{k-1}, \quad ext{where} \ \ n_{k+1} = ext{Tr}(S_0) n_k - n_{k-1}, \quad n_1 = 1, \ n_0 = 0 \,,$$

to compute the entry $b^{(k)} = n_k$. Note $n_k \sim ce^{\Lambda|k|}$ when $|k| \nearrow$.

- $N \in S_{short}$ is of the form $N = N_{2K+1} = n_{K+1} + n_K$, corresponding to the minimal period $P_N = 2K + 1$. So we must control $gcd(N_{2K+1}, n_k)$ for times $1 \le |k| \le K$.
- Due to arithmetic properties of the n_k (and the fact that we restrict ouselves to odd periods), the largest $gcd(N_{2K+1}, n_k)$ occurs for $|k| \approx K/2$, where it is bounded by $O(e^{\Lambda K/2}) = O(N^{1/2})$

$$\implies (U_N^k)_{|l} = \mathcal{O}(N^{-1/4}), \quad \text{uniformly for all } 1 \le |k| \le P_N/2 - 1.$$