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Let (Y”,hTy) be a compact, complex Hermitian manifold.

Let (E,hT) be a holomorphic, Hermitian vector bundle.

Bergman (L2-) projection: Mg : C® (Y;E) — H°(Y;E)

=hol. sections

Ug (y,y") = >

——
Bergman (Schwartz) kernel: Ilg (y,y') € C° (Y x Y;nfE @ w3 E*)
dimH® (Y;E)
j=1

)

®s; (y')"
——
=orth. basis
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Bergman kernel

Let (Y™, hTY) be a compact, complex Hermitian manifold.
Let (E,hT) be a holomorphic, Hermitian vector bundle.

Bergman (L2-) projection: Mg : C® (Y;E) — H°(Y;E)
——
=hol. sections

Bergman (Schwartz) kernel: Ilg (y,y') € C° (Y x Y;nfE @ w3 E*)

imH9 ; *
g () = S5 P sim) @8 ()

=orth. basis

General problem: Understand the behavior (asymptotics) of the Bergman kernel.
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Bergman kernel

Let (Y™, hTY) be a compact, complex Hermitian manifold.
Let (E,hT) be a holomorphic, Hermitian vector bundle.

Bergman (L2-) projection: Mg : C® (Y;E) — H°(Y;E)
——
=hol. sections

Bergman (Schwartz) kernel: Ilg (y,y') € C° (Y x Y;nfE @ w3 E*)

imH9 ; *
g () = S5 P sim) @8 ()

=orth. basis

General problem: Understand the behavior (asymptotics) of the Bergman kernel.

Various applications to complex analysis, Kahler geometry, canonical metrics,
geometric quantization ..
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Bergman kernel

Classical case of asymptotics is for tensor powers.

Namely let £ = Lk’, where L is a line bundle.
And assume the Chern curvature R is positive,

An application/corollary of the Boutet de Monvel-Sjdstrand '75 parametrix is

Mok (y,y) ~ k" [ao () + ka1 (y) +...], as k — oo

with ag = det (%) .
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Bergman kernel

Classical case of asymptotics is for tensor powers.

Namely let £ = Lk’, where L is a line bundle.
And assume the Chern curvature R is positive,

An application/corollary of the Boutet de Monvel-Sjdstrand '75 parametrix is

Mok (y,y) ~ k" [ao () + ka1 (y) +...], as k — oo

with ag = det (%) .

Another technique based on the use analytic localization technique of Bismut-Lebeau
'91 developed in Dai-Liu-Ma & Ma-Marinescu

Nikhil Savale Families Bergman kernel



Introduction Bergman kernel
New results Analytic localization
Proof sketch Toeplitz operators

Spectral gap & analytic localization

Main step in analytic localization is the spectral gap property
(cf. Kodaira, Bismut-Vasserot):

For L positive line bundle and Oy, : Q00 (L*) — Q00 (L*) the Kodaira Laplacian

Je > 0 such that
Spec (Og) C {0} U [ck — ¢, 00)

for each k € N.
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Spectral gap & analytic localization

Main step in analytic localization is the spectral gap property
(cf. Kodaira, Bismut-Vasserot):

For L positive line bundle and Oy, : Q00 (L*) — Q00 (L*) the Kodaira Laplacian

Je > 0 such that
Spec (Og) C {0} U [ck — ¢, 00)

for each k € N.

Similar result on symplectic manifolds: Guillemin-Uribe '88, Ma-Marinescu '01.
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Application to geometric quantization.

Generalization of Bergman projector:

Toeplitz operator: Ty g : HO (Y;E) — H°(Y;E) ,

=hol. sections
Tf,E = HEOfOHE
(eg. Tl,E = HE)

quantizes the function f € C° (Y),
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Toeplitz operators

Application to geometric quantization.

Generalization of Bergman projector:

Toeplitz operator: Ty g : HO (Y;E) — H°(Y;E) ,
N———

=hol. sections

Ty p=Igofollg quantizes the function f € C° (Y),

(eg. Tl,E = HE)

Generalized Toeplitz operator: Ty, : HO (Y; L*¥) — HO (Y; L¥),
Ty ~ Z]Oio k_JTfJ,Lk’
where f; €C®(Y),7=0,1...
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Toeplitz operators provide a geometric quantization scheme

(cf. Boutet de Monvel-Guillemin '81, Bordemann-Meinrenken-Schlichenmaier '94).
For any f,g € C*° (Y)

LN O R

[TfyLk T, Lk
as k — oo.

i _
] = i ey or TO (67
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Toeplitz operators

Toeplitz operators provide a geometric quantization scheme
(cf. Boutet de Monvel-Guillemin '81, Bordemann-Meinrenken-Schlichenmaier '94).

For any f,g € C*° (Y)
dim |75 e = 1
T T _ip O (k=2
[ F.Lk gﬂ*] S () N (k%)
as k — oo.

The set Ay = {T}, € EndH° (Y; L*) generalized Toeplitz operator} is an algebra
(quantizing the algebra of smooth functions).
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Toeplitz operators

Toeplitz operators provide a geometric quantization scheme
(cf. Boutet de Monvel-Guillemin '81, Bordemann-Meinrenken-Schlichenmaier '94).

For any f,g € C*° (Y)
dim |7y 2 || = 171l
T T =iy O (k2
{ F.Lk gﬂ*] S () N (k%)
as k — oo.

The set Ay = {T}, € EndH° (Y; L*) generalized Toeplitz operator} is an algebra
(quantizing the algebra of smooth functions).

The Schwartz kernel of a Toeplitz operator has a full on-diagonal expansion:
Ty pn W) ~ k" [of () + k7 1af () + ).
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Motivating question

(Semi)-Classical Bergman kernel asymptotics is for positive, line bundles

Motivating question:

Can this be generalized to
1. Semi-positive bundles (i.e. R (w,w) > 0)
2. Bundles of higher rank (eg. Sym”E , rkE > 1)
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Consider (YQ,hTY) be a Riemann surface

(L, hl) Hermitian hol. with R semipositive.
Define:

r:Y — RU{oo}
Ty —2=

ordy (RL )

=order of vanishing of curvature
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Semi-positive line bundles

Consider (Y2, hTY) be a Riemann surface
(L, hY) Hermitian hol. with RY semipositive.

Define:
r:Y - RU{oo}
ry —2= ordy (RL)

=order of vanishing of curvature

Theorem (Marinescu-S. '18)

Let (Y2,hTY) Riemann surface & RL semi-positive of finite order vanishing order

N
Ik (y,y) ~ K7 | D ej (y) k=977
=0

where r; — 2 = ord (RL) < cc.

Unresolved: higher dimensional semipositive case.
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Proof uses analytic localization technique.
Crucial again is

Spectral gap:

Spec (Og) C {0} U [cle/’" - cz,oo) .
Lichnerowicz:
Kodaira

o = Ay +k [RL(w,E)}, on Q0L
~—~
Bochner
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Bochner Laplacian

Proof uses analytic localization technique.
Crucial again is

Spectral gap: Spec (Og) C {0} U [clkZ/" — ca, oo) .

Lichnerowicz: 20, = Ap +k [RL (w,ﬁ)], on Q1.
~~ -~

Kodaira Bochner

Theorem (Marinescu-S. '18)

Let (Y,gTY) Riemannian manifold & (L,h™, VL) complex Hermitian line bundle
with unitary connection.
Then

Ak ~ Ck2/T
smallest eigenvalue of Ay

where r = maxycy 7y.

Proved using subelliptic estimates on the unit circle.
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General problem for higher rank (cf. Guillemin-Uribe '88).
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Higher rank

General problem for higher rank (cf. Guillemin-Uribe '88).

Let P — Y principal G-bundle with connection A € Q! (P;g)
Let 7' C G, maximal torus and v € t* dominant integral weight.

Associated highest weight family of hol. Hermitian bundles (Vk”7 hkv, V’“”), keN.
(eg. G=U (n),v=(1,0,...0) ~ VF = Sym*V*)
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Higher rank

General problem for higher rank (cf. Guillemin-Uribe '88).

Let P — Y principal G-bundle with connection A € Q! (P;g)
Let 7' C G, maximal torus and v € t* dominant integral weight.

Associated highest weight family of hol. Hermitian bundles (Vk”7 hkv, V’“”), keN.
(eg. G=U (n),v=(1,0,...0) ~ VF = Sym*V*)

Problem:
Describe asymptotics of its Bergman kernel and spectrum Bochner/Kodaira
Laplacians.
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However, Borel-Weil-Bott: V*v = HO
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Families setting

However, Borel-Weil-Bott: VEv = HO G/T Lk

v

N~
flag manifold homogeneous line bundle

Hence more generally consider the setting of families:

Let (W,R™W) 55 (Y,hTY) holomorphic submersion

Let (L,h") — W Hermitian holomorphic
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Families setting

However, Borel-Weil-Bott: VEv = HO G/T Lk

v

N~ ~—~
flag manifold homogeneous line bundle

Hence more generally consider the setting of families:

Let (W,R™W) 55 (Y,hTY) holomorphic submersion
Let (L,h") — W Hermitian holomorphic

(AD) Suppose R! is fiberwise positive
~~ Direct image bundle & ,, == (Rm.L*) = H° (Wy, Lk|W )
Y

y
hék = L2 metric,
VEk = Chern connection.

Nikhil Savale Families Bergman kernel



Define

rw — 2=

r: W = RU{co}

ordX (RL’H)
where horizontal curvature;: RLH = RL|THW,

=horizontal order of vanishing

Spec (RL~H) ={a1 (W),...,am (w)}
(A1) Suppose r is fiberwise constant and finite
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Define

rw — 2=

r: W = RU{co}

ordX (RL’H)
where horizontal curvature;: RLH = RL|THW,

=horizontal order of vanishing

Spec (RL~H) ={a1 (W),...,am (w)}
(A1) Suppose r is fiberwise constant and finite
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Families setting

Define

r: W — RU{oco}
o — 2= ord (RL*H>
=horizontal order of vanishing

where horizontal curvature: RL-H — RL'THW’

Spec (RLvH) = {a1 (W), ..., am (W)}

(A1) Suppose r is fiberwise constant and finite

(A2) Suppose R” is horizontally semipositive with comparable eigenvalues
(i.e. Jc > 0 such that

¢ laj (w) < ag (w) < caj (w),

Vi, ke {l,...m} and w € W)
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Main result 1

Bergman kernel expansion for families

Theorem (Ma-Marinescu-S.)

Let (W, h™W) 5 (Y, hTY) be holomorphic submersion of compact, complex
Hermitian manifolds.
Let (L,hY) — W Hermitian, holomorphic line bundle.

Suppose
(A0) RL is fiberwise positive
(A1) RF has a fiberwise constant and finite horizontal order of vanishing

(A2)RL is horizontally semi-positive with comparable eigenvalues
Then Bergman kernel of the direct image

oo
g, (y,y) ~ k2" | > k=2/vTy,
j=0

€ End H° (Wy; Lk‘ )
Wy

is a generalized Toeplitz operator on each fiber Wy, y € Y.
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Main result 2

Bochner Laplacian for families.

Theorem (Ma-Marinescu-S.)

Let (W7 hTW) SRS (Y7 hTY) be holomorphic submersion of compact complex
Hermitian manifolds.
Let (L,h™) — W Hermitian, holomorphic line bundle.

Suppose
(A0) RE is fiberwise positive
(A1) RL has a fiberwise constant and finite horizontal order of vanishing
Then the Bochner Laplacian on the direct image satisfies
Ao (k) ~ CK*/"

smallest eigenvalue of Agk

where r = max,cy Ty.
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Main result 2

Bochner Laplacian for families.

Theorem (Ma-Marinescu-S.)

Let (W7 hTW) SRS (Y7 hTY) be holomorphic submersion of compact complex
Hermitian manifolds.
Let (L,h™) — W Hermitian, holomorphic line bundle.

Suppose
(A0) RE is fiberwise positive
(A1) RL has a fiberwise constant and finite horizontal order of vanishing
Then the Bochner Laplacian on the direct image satisfies
Ao (k) ~ CK*/"

smallest eigenvalue of Agk

where r = max,cy Ty.
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Special cases:

1. fibers = pt ~» Semipositive line bundles with comparable eigenvalues
2. fibers = G/T ~~ Highest weight families (Vk”,hk",vk") .k eN.

A

a
u]
v
a
v
a
it
v
a
i
v
it



. Semi-positive bundles
Introduction . . 5
Highest weight family
New results .
Direct Image bundles
Proof sketch 5
Main results

Main result 2

Special cases:
1. fibers = pt ~» Semipositive line bundles with comparable eigenvalues
2. fibers = G/T ~~ Highest weight families (V’W7 hkv, Vk“) ,keN.

(Eg. 2) Let P — Y principal G-bundle with connection A € Q! (P;g)
Let T" C G, maximal torus and v € t* dominant integral weight.

Highest weight family: (V* hFv VFV) k€ N.
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Main result 2

Special cases:
1. fibers = pt ~» Semipositive line bundles with comparable eigenvalues
2. fibers = G/T ~~ Highest weight families (V’W7 hkv, Vk“) ,keN.

(Eg. 2) Let P — Y principal G-bundle with connection A € Q! (P;g)
Let T" C G, maximal torus and v € t* dominant integral weight.

Highest weight family: (V* hFv VFV) k€ N.

Corollary (Ma-Marinescu-S.)

The first eigenfunction/eigenvalue \§V) of the Bochner Laplacian Ay, satisfies
v~ oE2/mY

as k — oo.
Here; Tuy — 2= ord (V.Rf), Q2 (Y;9) 2 Rg’ =principal bundle curvature
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Proof uses earlier result.

Theorem (Ma-Zhang '22)

Let (W, h™W) 5 (Y, hTY) be holomorphic submersion of compact complex
Hermitian manifolds.
Let (L,h%) — W Hermitian, holomorphic line bundle.

Suppose (A0) RY is fiberwise positive
Then the curvature of the direct image

1 ¢ = .
ERyk ~ Zki]Tgw
J=0

€ End H° (Wy; L’“‘ )
Wy

is a generalized Toeplitz operator on each fiber.
First coefficient:

go = RH (horizontal curvature).
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1. Computation of first coefficient gives:
RLH 5

emipositive with comparable eigenvalues

= same is true for 1R = Tpr,m + O (k71).
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1. Computation of first coefficient gives:
RL,H

semipositive with comparable eigenvalues

= same is true for 1R = Tpr,m + O (k71).

2. Bochner-Kodaira-Lichnerowicz: Spec (Og, ) C {0} U [clk2/’" —¢2,00) .
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Proof sketch (of MMS)

1. Computation of first coefficient gives:

RLH semipositive with comparable eigenvalues
— same is true for %Rsk =Tgeu + 0O (k71).

2. Bochner-Kodaira-Lichnerowicz: Spec (ng) c {otu [clkz/" — ¢, oo) .

3. In geodesic coordinates centered at y € Y and a parallel frame for direct image
bundle we can write

1

E

V= d+ [ dp py? Ry (py) | dyp
0

R
The Bochner, Kodaira Laplacians Ag, ,Ug, are expressed in terms of V& and Ri“’.

Hence both are differential operators with coefficients valued in the algebra of Toeplitz
operators of the fibers Diff (Y) ® Aw, .
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Proof sketch (of MMS)

1. Computation of first coefficient gives:
RLH semipositive with comparable eigenvalues
— same is true for %Rsk =Tgeu + 0O (k71).

2. Bochner-Kodaira-Lichnerowicz: Spec (ng) c {otu [clkz/" — ¢, oo) .

3. In geodesic coordinates centered at y € Y and a parallel frame for direct image
bundle we can write

1

E

V= d+ [ dp py? Ry (py) | dyp
0

Ek
ap

The Bochner, Kodaira Laplacians Ag, ,Ug, are expressed in terms of V& and Ri“’.
Hence both are differential operators with coefficients valued in the algebra of Toeplitz
operators of the fibers Diff (Y) ® Aw, .

Apply usual rescaling y — k*%y and local index theory for operators in
Diff (V) ® Aw, .
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Thank you.
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