Bochner Laplacians and Bergman kernels for families

Nikhil Savale
Universität zu Köln
July 27, 2022

Quantization in Symplectic Geometry

Bergman kernel

Analytic localization Toeplitz operators

Bergman kernel

Let $\left(Y^{n}, h^{T Y}\right)$ be a compact, complex Hermitian manifold.
Let $\left(E, h^{E}\right)$ be a holomorphic, Hermitian vector bundle.

Bergman $\left(L^{2}-\right)$ projection: $\Pi_{E}: C^{\infty}(Y ; E) \rightarrow \underbrace{H^{0}(Y ; E)}_{=\text {hol. sections }}$
Bergman (Schwartz) kernel: $\Pi_{E}\left(y, y^{\prime}\right) \in C^{\infty}\left(Y \times Y ; \pi_{1}^{*} E \otimes \pi_{2}^{*} E^{*}\right)$

$$
\Pi_{E}\left(y, y^{\prime}\right)=\sum_{j=1}^{\operatorname{dim} H^{0}(Y ; E)} \underbrace{s_{j}(y)}_{=\text {orth. basis }} \otimes s_{j}\left(y^{\prime}\right)^{*}
$$

Bergman kernel

Analytic localization Toeplitz operators

Bergman kernel

Let $\left(Y^{n}, h^{T Y}\right)$ be a compact, complex Hermitian manifold.
Let $\left(E, h^{E}\right)$ be a holomorphic, Hermitian vector bundle.

Bergman $\left(L^{2}-\right)$ projection: $\Pi_{E}: C^{\infty}(Y ; E) \rightarrow \underbrace{H^{0}(Y ; E)}_{=\text {hol. sections }}$
Bergman (Schwartz) kernel: $\Pi_{E}\left(y, y^{\prime}\right) \in C^{\infty}\left(Y \times Y ; \pi_{1}^{*} E \otimes \pi_{2}^{*} E^{*}\right)$

$$
\Pi_{E}\left(y, y^{\prime}\right)=\sum_{j=1}^{\operatorname{dim} H^{0}(Y ; E)} \underbrace{s_{j}(y)}_{-} \otimes s_{j}\left(y^{\prime}\right)^{*}
$$

General problem: Understand the behavior (asymptotics) of the Bergman kernel.

Bergman kernel

Analytic localization Toeplitz operators

Bergman kernel

Let $\left(Y^{n}, h^{T Y}\right)$ be a compact, complex Hermitian manifold.
Let $\left(E, h^{E}\right)$ be a holomorphic, Hermitian vector bundle.

Bergman $\left(L^{2}-\right)$ projection: $\Pi_{E}: C^{\infty}(Y ; E) \rightarrow \underbrace{H^{0}(Y ; E)}_{=\text {hol. sections }}$
Bergman (Schwartz) kernel: $\Pi_{E}\left(y, y^{\prime}\right) \in C^{\infty}\left(Y \times Y ; \pi_{1}^{*} E \otimes \pi_{2}^{*} E^{*}\right)$

$$
\Pi_{E}\left(y, y^{\prime}\right)=\sum_{j=1}^{\operatorname{dim} H^{0}(Y ; E)} \underbrace{s_{j}(y)}_{=\text {orth. basis }} \otimes s_{j}\left(y^{\prime}\right)^{*}
$$

General problem: Understand the behavior (asymptotics) of the Bergman kernel.
Various applications to complex analysis, Kahler geometry, canonical metrics, geometric quantization ..

Bergman kernel

Analytic localization Toeplitz operators

Bergman kernel

Classical case of asymptotics is for tensor powers.

Namely let $E=L^{k}$, where L is a line bundle.
And assume the Chern curvature R^{L} is positive,
An application/corollary of the Boutet de Monvel-Sjöstrand '75 parametrix is

$$
\Pi_{L^{k}}(y, y) \sim k^{n}\left[a_{0}(y)+k^{-1} a_{1}(y)+\ldots\right], \quad \text { as } k \rightarrow \infty
$$

with $a_{0}=\operatorname{det}\left(\frac{\dot{R}^{L}}{2 \pi}\right)$.

Bergman kernel

Analytic localization Toeplitz operators

Bergman kernel

Classical case of asymptotics is for tensor powers.

Namely let $E=L^{k}$, where L is a line bundle.
And assume the Chern curvature R^{L} is positive,
An application/corollary of the Boutet de Monvel-Sjöstrand '75 parametrix is

$$
\Pi_{L^{k}}(y, y) \sim k^{n}\left[a_{0}(y)+k^{-1} a_{1}(y)+\ldots\right], \quad \text { as } k \rightarrow \infty .
$$

with $a_{0}=\operatorname{det}\left(\frac{\dot{R}^{L}}{2 \pi}\right)$.

Another technique based on the use analytic localization technique of Bismut-Lebeau '91 developed in Dai-Liu-Ma \& Ma-Marinescu

Bergman kernel

Spectral gap \& analytic localization

Main step in analytic localization is the spectral gap property (cf. Kodaira, Bismut-Vasserot):

For L positive line bundle and $\square_{k}: \Omega^{0,0}\left(L^{k}\right) \rightarrow \Omega^{0,0}\left(L^{k}\right)$ the Kodaira Laplacian $\exists c>0$ such that

$$
\operatorname{Spec}\left(\square_{k}\right) \subset\{0\} \cup[c k-c, \infty)
$$

for each $k \in \mathbb{N}$.

Bergman kernel

Analytic localization

Spectral gap \& analytic localization

Main step in analytic localization is the spectral gap property (cf. Kodaira, Bismut-Vasserot):

For L positive line bundle and $\square_{k}: \Omega^{0,0}\left(L^{k}\right) \rightarrow \Omega^{0,0}\left(L^{k}\right)$ the Kodaira Laplacian $\exists c>0$ such that

$$
\operatorname{Spec}\left(\square_{k}\right) \subset\{0\} \cup[c k-c, \infty)
$$

for each $k \in \mathbb{N}$.

Similar result on symplectic manifolds: Guillemin-Uribe '88, Ma-Marinescu '01.

Toeplitz operators

Application to geometric quantization.
Generalization of Bergman projector:

Toeplitz operator: $T_{f, E}: H^{0}(Y ; E) \rightarrow \underbrace{H^{0}(Y ; E)}_{=\text {hol. sections }}$,

$$
T_{f, E}:=\Pi_{E} \circ f \circ \Pi_{E} \quad \text { quantizes the function } f \in C^{\infty}(Y)
$$

(eg. $T_{1, E}=\Pi_{E}$)

Toeplitz operators

Application to geometric quantization.
Generalization of Bergman projector:

Toeplitz operator: $T_{f, E}: H^{0}(Y ; E) \rightarrow \underbrace{H^{0}(Y ; E)}_{=\text {hol. sections }}$,

$$
T_{f, E}:=\Pi_{E} \circ f \circ \Pi_{E} \quad \text { quantizes the function } f \in C^{\infty}(Y)
$$

(eg. $T_{1, E}=\Pi_{E}$)

Generalized Toeplitz operator: $T_{k}: H^{0}\left(Y ; L^{k}\right) \rightarrow H^{0}\left(Y ; L^{k}\right)$,

$$
T_{k} \sim \sum_{j=0}^{\infty} k^{-j} T_{f_{j}, L^{k}}
$$

where

$$
f_{j} \in C^{\infty}(Y), j=0,1 \ldots
$$

Toeplitz operators

Toeplitz operators provide a geometric quantization scheme (cf. Boutet de Monvel-Guillemin '81, Bordemann-Meinrenken-Schlichenmaier '94).

For any $f, g \in C^{\infty}(Y)$

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\|T_{f, L^{k}}\right\| & =\|f\|_{\infty} \\
{\left[T_{f, L^{k}}, T_{g, L^{k}}\right] } & =\frac{i}{k} T_{\{f, g\}, L^{k}}+O\left(k^{-2}\right)
\end{aligned}
$$

as $k \rightarrow \infty$.

Toeplitz operators

Toeplitz operators provide a geometric quantization scheme
(cf. Boutet de Monvel-Guillemin '81, Bordemann-Meinrenken-Schlichenmaier '94).

For any $f, g \in C^{\infty}(Y)$

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\|T_{f, L^{k}}\right\| & =\|f\|_{\infty} \\
{\left[T_{f, L^{k}}, T_{g, L^{k}}\right] } & =\frac{i}{k} T_{\{f, g\}, L^{k}}+O\left(k^{-2}\right)
\end{aligned}
$$

as $k \rightarrow \infty$.
The set $\mathcal{A}_{Y}=\left\{T_{k} \in \operatorname{End} H^{0}\left(Y ; L^{k}\right)\right.$ generalized Toeplitz operator $\}$ is an algebra (quantizing the algebra of smooth functions).

Toeplitz operators

Toeplitz operators provide a geometric quantization scheme
(cf. Boutet de Monvel-Guillemin '81, Bordemann-Meinrenken-Schlichenmaier '94).

For any $f, g \in C^{\infty}(Y)$

$$
\begin{aligned}
\lim _{k \rightarrow \infty}\left\|T_{f, L^{k}}\right\| & =\|f\|_{\infty} \\
{\left[T_{f, L^{k}}, T_{g, L^{k}}\right] } & =\frac{i}{k} T_{\{f, g\}, L^{k}}+O\left(k^{-2}\right)
\end{aligned}
$$

as $k \rightarrow \infty$.
The set $\mathcal{A}_{Y}=\left\{T_{k} \in \operatorname{End} H^{0}\left(Y ; L^{k}\right)\right.$ generalized Toeplitz operator $\}$ is an algebra (quantizing the algebra of smooth functions).

The Schwartz kernel of a Toeplitz operator has a full on-diagonal expansion:

$$
T_{f, L^{k}}(y, y) \sim k^{n}\left[a_{0}^{f}(y)+k^{-1} a_{1}^{f}(y)+\ldots\right] .
$$

Bergman kernel

Motivating question

(Semi)-Classical Bergman kernel asymptotics is for positive, line bundles

Motivating question:
Can this be generalized to

1. Semi-positive bundles (i.e. $R^{E}(w, \bar{w}) \geq 0$)
2. Bundles of higher rank (eg. $\operatorname{Sym}^{k} E, \mathrm{rk} E>1$)

Semi-positive bundles Highest weight family Direct Image bundles Main results

Semi-positive line bundles

Consider $\left(Y^{2}, h^{T Y}\right)$ be a Riemann surface (L, h^{L}) Hermitian hol. with R^{L} semipositive.

Define:

$$
\begin{aligned}
r: Y & \rightarrow \mathbb{R} \cup\{\infty\} \\
r_{y}-2= & \underbrace{\operatorname{ord}_{y}\left(R^{L}\right)}_{=\text {order of vanishing of curvature }}
\end{aligned}
$$

Semi-positive line bundles

Consider $\left(Y^{2}, h^{T Y}\right)$ be a Riemann surface (L, h^{L}) Hermitian hol. with R^{L} semipositive.
Define:

$$
\begin{aligned}
r: Y & \rightarrow \mathbb{R} \cup\{\infty\} \\
r_{y}-2= & \underbrace{\operatorname{ord}_{y}\left(R^{L}\right)}_{=\text {order of vanishing of curvature }}
\end{aligned}
$$

Theorem (Marinescu-S. '18)

Let $\left(Y^{2}, h^{T Y}\right)$ Riemann surface \& R^{L} semi-positive of finite order vanishing order

$$
\Pi_{k}(y, y) \sim k^{2 / r_{y}}\left[\sum_{j=0}^{N} c_{j}(y) k^{-j / r_{y}}\right]
$$

where $r_{y}-2=\operatorname{ord}\left(R_{y}^{L}\right)<\infty$.
Unresolved: higher dimensional semipositive case.

Semi-positive bundles
Highest weight family Direct Image bundles Main results

Bochner Laplacian

Proof uses analytic localization technique.
Crucial again is

$$
\begin{array}{lrl}
\text { Spectral gap: } & \operatorname{Spec}\left(\square_{k}\right) & \subset\{0\} \cup\left[c_{1} k^{2 / r}-c_{2}, \infty\right) \\
\text { Lichnerowicz: } & \underbrace{2 \square_{k}}_{\text {Kodaira }} & =\underbrace{\Delta_{k}}_{\text {Bochner }}+k\left[R^{L}(w, \bar{w})\right], \text { on } \Omega^{0,1}
\end{array}
$$

Semi-positive bundles
Highest weight family Direct Image bundles Main results

Bochner Laplacian

Proof uses analytic localization technique.
Crucial again is

$$
\begin{aligned}
\text { Spectral gap: } & \operatorname{Spec}\left(\square_{k}\right) & \subset\{0\} \cup\left[c_{1} k^{2 / r}-c_{2}, \infty\right) . \\
\text { Lichnerowicz: } & \underbrace{2 \square_{k}}_{\text {Kodaira }} & =\underbrace{\Delta_{k}}_{\text {Bochner }}+k\left[R^{L}(w, \bar{w})\right], \quad \text { on } \Omega^{0,1} .
\end{aligned}
$$

Theorem (Marinescu-S. '18)

Let $\left(Y, g^{T Y}\right)$ Riemannian manifold \& $\left(L, h^{L}, \nabla^{L}\right)$ complex Hermitian line bundle with unitary connection.
Then

$$
\underbrace{\lambda_{0}^{k}}_{\text {smallest eigenvalue of } \Delta_{k}} \sim C k^{2 / r}
$$

where $r=\max _{y \in Y} r_{y}$.

Proved using subelliptic estimates on the unit circle.

Semi-positive bundles

 Highest weight family Direct Image bundles Main results
Higher rank

General problem for higher rank (cf. Guillemin-Uribe '88).

Higher rank

General problem for higher rank (cf. Guillemin-Uribe '88).

Let $P \rightarrow Y$ principal G-bundle with connection $A \in \Omega^{1}(P ; \mathfrak{g})$
Let $T \subset G$, maximal torus and $\nu \in \mathfrak{t}^{*}$ dominant integral weight.
Associated highest weight family of hol. Hermitian bundles $\left(V^{k \nu}, h^{k \nu}, \nabla^{k \nu}\right), k \in \mathbb{N}$. (eg. $G=U(n), \nu=(1,0, \ldots 0) \rightsquigarrow V^{k \nu}=\operatorname{Sym}^{k} V^{\nu}$)

Higher rank

General problem for higher rank (cf. Guillemin-Uribe '88).

Let $P \rightarrow Y$ principal G-bundle with connection $A \in \Omega^{1}(P ; \mathfrak{g})$
Let $T \subset G$, maximal torus and $\nu \in \mathfrak{t}^{*}$ dominant integral weight.
Associated highest weight family of hol. Hermitian bundles $\left(V^{k \nu}, h^{k \nu}, \nabla^{k \nu}\right), k \in \mathbb{N}$. (eg. $G=U(n), \nu=(1,0, \ldots 0) \rightsquigarrow V^{k \nu}=\operatorname{Sym}^{k} V^{\nu}$)

Problem:
Describe asymptotics of its Bergman kernel and spectrum Bochner/Kodaira Laplacians.

Semi-positive bundles Highest weight family Direct Image bundles Main results

Families setting

However, Borel-Weil-Bott: $V^{k \nu}=H^{0}(\underbrace{G / T}_{\text {Aag manifold homogeneous line bundle }} ;$

Semi-positive bundles Highest weight family Direct Image bundles Main results

Families setting

However, Borel-Weil-Bott: $V^{k \nu}=H^{0}(\underbrace{G / T}_{\text {flag manifold }} ; \underbrace{L_{\nu}^{k}}_{\text {homogeneous line bundle }})$

Hence more generally consider the setting of families:
Let $\left(W, h^{T W}\right) \xrightarrow{\pi}\left(Y, h^{T Y}\right)$ holomorphic submersion
Let $\left(L, h^{L}\right) \rightarrow W$ Hermitian holomorphic

Families setting

However, Borel-Weil-Bott: $V^{k \nu}=H^{0}(\underbrace{G / T}_{\text {flag manifold }} ; \underbrace{L_{\nu}^{k}}_{\text {homogeneous line bundle }})$
Hence more generally consider the setting of families:
Let $\left(W, h^{T W}\right) \xrightarrow{\pi}\left(Y, h^{T Y}\right)$ holomorphic submersion
Let $\left(L, h^{L}\right) \rightarrow W$ Hermitian holomorphic
(A0) Suppose R^{L} is fiberwise positive
\rightsquigarrow Direct image bundle $\mathcal{E}_{k, y}:=\left(R^{0} \pi_{*} L^{k}\right)_{y}=H^{0}\left(W_{y},\left.L^{k}\right|_{W_{y}}\right)$
$h^{\mathcal{E}_{k}}=L^{2}$ metric,
$\nabla^{\mathcal{E}_{k}}=$ Chern connection.

Semi-positive bundles Highest weight family Direct Image bundles Main results

Families setting

Define

$$
\begin{aligned}
& r: W \rightarrow \mathbb{R} \cup\{\infty\} \\
& r_{w}-2= \underbrace{\operatorname{ord}_{w}^{H}\left(R^{L, H}\right)}_{\text {=horizontal order of vanishing }}
\end{aligned}
$$

where horizontal curvature: $R^{L, H}=\left.R^{L}\right|_{T^{H} W^{\prime}}$,

$$
\overline{\operatorname{Spec}}\left(\dot{R}^{L, H}\right)=\left\{a_{1}(w), \ldots, a_{m}(w)\right\}
$$

(A1) Suppose r is fiberwise constant and finite

Semi-positive bundles Highest weight family Direct Image bundles Main results

Families setting

Define

$$
\begin{aligned}
& r: W \rightarrow \mathbb{R} \cup\{\infty\} \\
& r_{w}-2= \underbrace{\operatorname{ord}_{w}^{H}\left(R^{L, H}\right)}_{\text {=horizontal order of vanishing }}
\end{aligned}
$$

where horizontal curvature: $R^{L, H}=\left.R^{L}\right|_{T^{H} W^{\prime}}$,

$$
\overline{\operatorname{Spec}}\left(\dot{R}^{L, H}\right)=\left\{a_{1}(w), \ldots, a_{m}(w)\right\}
$$

(A1) Suppose r is fiberwise constant and finite

Families setting

Define

$$
\begin{aligned}
& r: W \rightarrow \mathbb{R} \cup\{\infty\} \\
& r_{w}-2= \underbrace{\operatorname{ord}_{w}^{H}\left(R^{L, H}\right)}_{\text {=horizontal order of vanishing }}
\end{aligned}
$$

where horizontal curvature: $R^{L, H}=\left.R^{L}\right|_{T^{H} W^{\prime}}$,

$$
\overline{\operatorname{Spec}}\left(\dot{R}^{L, H}\right)=\left\{a_{1}(w), \ldots, a_{m}(w)\right\}
$$

(A1) Suppose r is fiberwise constant and finite
(A2) Suppose R^{L} is horizontally semipositive with comparable eigenvalues (i.e. $\exists c>0$ such that

$$
c^{-1} a_{j}(w) \leq a_{k}(w) \leq c a_{j}(w)
$$

$\forall j, k \in\{1, \ldots m\}$ and $w \in W)$

Main result 1

Bergman kernel expansion for families

Theorem (Ma-Marinescu-S.)

Let $\left(W, h^{T W}\right) \xrightarrow{\pi}\left(Y, h^{T Y}\right)$ be holomorphic submersion of compact, complex Hermitian manifolds.
Let $\left(L, h^{L}\right) \rightarrow W$ Hermitian, holomorphic line bundle.
Suppose
(AO) R^{L} is fiberwise positive
(A1) R^{L} has a fiberwise constant and finite horizontal order of vanishing
(A2) R^{L} is horizontally semi-positive with comparable eigenvalues
Then Bergman kernel of the direct image

$$
\begin{aligned}
\Pi_{\mathcal{E}_{k}}(y, y) & \sim k^{2 n / r_{y}}\left[\sum_{j=0}^{\infty} k^{-2 j / r_{y}} T_{g_{j}}\right] \\
& \in \text { End } H^{0}\left(W_{y} ;\left.L^{k}\right|_{W_{y}}\right)
\end{aligned}
$$

is a generalized Toeplitz operator on each fiber $W_{y}, y \in Y$.

Semi-positive bundles

Main result 2

Bochner Laplacian for families.

Theorem (Ma-Marinescu-S.)

Let $\left(W, h^{T W}\right) \xrightarrow{\pi}\left(Y, h^{T Y}\right)$ be holomorphic submersion of compact complex Hermitian manifolds.
Let $\left(L, h^{L}\right) \rightarrow W$ Hermitian, holomorphic line bundle.
Suppose
(AO) R^{L} is fiberwise positive
(A1) R^{L} has a fiberwise constant and finite horizontal order of vanishing Then the Bochner Laplacian on the direct image satisfies

$$
\underbrace{\lambda_{0}(k)}_{\text {smallest eigenvalue of } \Delta_{\mathcal{E}_{k}}} \sim C k^{2 / r}
$$

where $r=\max _{y \in Y} r_{y}$.

Semi-positive bundles

Main result 2

Bochner Laplacian for families.

Theorem (Ma-Marinescu-S.)

Let $\left(W, h^{T W}\right) \xrightarrow{\pi}\left(Y, h^{T Y}\right)$ be holomorphic submersion of compact complex Hermitian manifolds.
Let $\left(L, h^{L}\right) \rightarrow W$ Hermitian, holomorphic line bundle.
Suppose
(AO) R^{L} is fiberwise positive
(A1) R^{L} has a fiberwise constant and finite horizontal order of vanishing Then the Bochner Laplacian on the direct image satisfies

$$
\underbrace{\lambda_{0}(k)}_{\text {smallest eigenvalue of } \Delta_{\mathcal{E}_{k}}} \sim C k^{2 / r}
$$

where $r=\max _{y \in Y} r_{y}$. Proof sketch

Semi-positive bundles Highest weight family Direct Image bundles
Main results

Main result 2

Special cases:

1. fibers $=p t \rightsquigarrow$ Semipositive line bundles with comparable eigenvalues
2. fibers $=G / T \rightsquigarrow$ Highest weight families $\left(V^{k \nu}, h^{k \nu}, \nabla^{k \nu}\right), k \in \mathbb{N}$.

Main result 2

Special cases:

1. fibers $=p t \rightsquigarrow$ Semipositive line bundles with comparable eigenvalues
2. fibers $=G / T \rightsquigarrow$ Highest weight families $\left(V^{k \nu}, h^{k \nu}, \nabla^{k \nu}\right), k \in \mathbb{N}$.
(Eg. 2) Let $P \rightarrow Y$ principal G-bundle with connection $A \in \Omega^{1}(P ; \mathfrak{g})$
Let $T \subset G$, maximal torus and $\nu \in \mathfrak{t}^{*}$ dominant integral weight.
Highest weight family: $\left(V^{k \nu}, h^{k \nu}, \nabla^{k \nu}\right), k \in \mathbb{N}$.

Main result 2

Special cases:

1. fibers $=p t \rightsquigarrow$ Semipositive line bundles with comparable eigenvalues
2. fibers $=G / T \rightsquigarrow$ Highest weight families $\left(V^{k \nu}, h^{k \nu}, \nabla^{k \nu}\right), k \in \mathbb{N}$.
(Eg. 2) Let $P \rightarrow Y$ principal G-bundle with connection $A \in \Omega^{1}(P ; \mathfrak{g})$
Let $T \subset G$, maximal torus and $\nu \in \mathfrak{t}^{*}$ dominant integral weight.
Highest weight family: $\left(V^{k \nu}, h^{k \nu}, \nabla^{k \nu}\right), k \in \mathbb{N}$.

Corollary (Ma-Marinescu-S.)

The first eigenfunction/eigenvalue $\lambda_{0}^{k \nu}$) of the Bochner Laplacian $\Delta_{k \nu}$ satisfies

$$
\lambda_{0}^{k \nu} \sim C k^{2 / r_{\nu}}
$$

as $k \rightarrow \infty$.
Here; $\quad r_{\nu, y}-2=\operatorname{ord}\left(\nu . R_{y}^{P}\right), \quad \Omega^{2}(Y ; \mathfrak{g}) \ni R_{y}^{P}=$ principal bundle curvature

Proof sketch

Proof uses earlier result.

Theorem (Ma-Zhang '22)

Let $\left(W, h^{T W}\right) \xrightarrow{\pi}\left(Y, h^{T Y}\right)$ be holomorphic submersion of compact complex Hermitian manifolds.
Let $\left(L, h^{L}\right) \rightarrow W$ Hermitian, holomorphic line bundle.
Suppose (AO) R^{L} is fiberwise positive
Then the curvature of the direct image

$$
\begin{aligned}
\frac{1}{k} R_{y}^{\mathcal{E}_{k}} & \sim \sum_{j=0}^{\infty} k^{-j} T_{g_{j}} \\
& \in \text { End } H^{0}\left(W_{y} ;\left.L^{k}\right|_{W_{y}}\right)
\end{aligned}
$$

is a generalized Toeplitz operator on each fiber.
First coefficient:

$$
g_{0}=R^{L, H} \quad \text { (horizontal curvature). }
$$

Proof sketch (of MMS)

1. Computation of first coefficient gives:
$R^{L, H}$ semipositive with comparable eigenvalues
\Longrightarrow same is true for $\frac{1}{k} R^{\mathcal{E}_{k}}=T_{R^{L, H}}+O\left(k^{-1}\right)$.

Proof sketch (of MMS)

1. Computation of first coefficient gives:
$R^{L, H}$ semipositive with comparable eigenvalues
\Longrightarrow same is true for $\frac{1}{k} R^{\mathcal{E}_{k}}=T_{R^{L, H}}+O\left(k^{-1}\right)$.
2. Bochner-Kodaira-Lichnerowicz: $\operatorname{Spec}\left(\square_{\mathcal{E}_{k}}\right) \subset\{0\} \cup\left[c_{1} k^{2 / r}-c_{2}, \infty\right)$.

Proof sketch (of MMS)

1. Computation of first coefficient gives:
$R^{L, H}$ semipositive with comparable eigenvalues
\Longrightarrow same is true for $\frac{1}{k} R^{\mathcal{E}_{k}}=T_{R^{L, H}}+O\left(k^{-1}\right)$.
2. Bochner-Kodaira-Lichnerowicz: Spec $\left(\square_{\mathcal{E}_{k}}\right) \subset\{0\} \cup\left[c_{1} k^{2 / r}-c_{2}, \infty\right)$.
3. In geodesic coordinates centered at $y \in Y$ and a parallel frame for direct image bundle we can write

$$
\nabla^{\mathcal{E}_{k}}=d+\underbrace{\left[\int_{0}^{1} d \rho \rho y^{q} R_{p q}^{\mathcal{E}_{k}}(\rho y)\right]}_{a_{p}^{\mathcal{E}_{k}}} d y_{p}
$$

The Bochner, Kodaira Laplacians $\Delta_{\mathcal{E}_{k}}, \square_{\mathcal{E}_{k}}$ are expressed in terms of $\nabla^{\mathcal{E}_{k}}$ and $R_{y}^{\mathcal{E}_{k}}$. Hence both are differential operators with coefficients valued in the algebra of Toeplitz operators of the fibers $\operatorname{Diff}(Y) \otimes \mathcal{A}_{W_{y}}$.

Proof sketch (of MMS)

1. Computation of first coefficient gives:
$R^{L, H}$ semipositive with comparable eigenvalues
\Longrightarrow same is true for $\frac{1}{k} R^{\mathcal{E}_{k}}=T_{R^{L, H}}+O\left(k^{-1}\right)$.
2. Bochner-Kodaira-Lichnerowicz: Spec $\left(\square_{\mathcal{E}_{k}}\right) \subset\{0\} \cup\left[c_{1} k^{2 / r}-c_{2}, \infty\right)$.
3. In geodesic coordinates centered at $y \in Y$ and a parallel frame for direct image bundle we can write

$$
\nabla^{\mathcal{E}_{k}}=d+\underbrace{\left[\int_{0}^{1} d \rho \rho y^{q} R_{p q}^{\mathcal{E}_{k}}(\rho y)\right]}_{a_{p}^{\mathcal{E}_{k}}} d y_{p}
$$

The Bochner, Kodaira Laplacians $\Delta_{\mathcal{E}_{k}}, \square_{\mathcal{E}_{k}}$ are expressed in terms of $\nabla^{\mathcal{E}_{k}}$ and $R_{y}^{\mathcal{E}_{k}}$. Hence both are differential operators with coefficients valued in the algebra of Toeplitz operators of the fibers $\operatorname{Diff}(Y) \otimes \mathcal{A}_{W_{y}}$.
Apply usual rescaling $y \mapsto k^{-\frac{1}{2}} y$ and local index theory for operators in $\operatorname{Diff}(Y) \otimes \mathcal{A}_{W_{y}}$.

Thank you.

