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Bergman kernel

Let
(
Y n, hTY

)
be a compact, complex Hermitian manifold.

Let (E, hE) be a holomorphic, Hermitian vector bundle.

Bergman (L2-) projection: ΠE : C∞ (Y ;E) → H0 (Y ;E)︸ ︷︷ ︸
=hol. sections

Bergman (Schwartz) kernel: ΠE (y, y′) ∈ C∞ (
Y × Y ;π∗

1E ⊗ π∗
2E

∗)
ΠE (y, y′) =

∑dimH0(Y ;E)
j=1 sj (y)︸ ︷︷ ︸

=orth. basis

⊗sj (y
′)∗

General problem: Understand the behavior (asymptotics) of the Bergman kernel.

Various applications to complex analysis, Kahler geometry, canonical metrics,
geometric quantization ..
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Bergman kernel

Classical case of asymptotics is for tensor powers.

Namely let E = Lk, where L is a line bundle.
And assume the Chern curvature RL is positive,

An application/corollary of the Boutet de Monvel-Sjöstrand '75 parametrix is

ΠLk (y, y) ∼ kn
[
a0 (y) + k−1a1 (y) + . . .

]
, as k → ∞.

with a0 = det
(

ṘL

2π

)
.

Another technique based on the use analytic localization technique of Bismut-Lebeau
'91 developed in Dai-Liu-Ma & Ma-Marinescu
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Spectral gap & analytic localization

Main step in analytic localization is the spectral gap property
(cf. Kodaira, Bismut-Vasserot):

For L positive line bundle and □k : Ω0,0
(
Lk

)
→ Ω0,0

(
Lk

)
the Kodaira Laplacian

∃c > 0 such that
Spec (□k) ⊂ {0} ∪ [ck − c,∞)

for each k ∈ N.

Similar result on symplectic manifolds: Guillemin-Uribe '88, Ma-Marinescu '01.
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Toeplitz operators

Application to geometric quantization.

Generalization of Bergman projector:

Toeplitz operator: Tf,E : H0 (Y ;E) → H0 (Y ;E)︸ ︷︷ ︸
=hol. sections

,

Tf,E := ΠE ◦ f ◦ΠE ::::::
quantizes the function f ∈ C∞ (Y ),

(eg. T1,E = ΠE)

Generalized Toeplitz operator: Tk : H0
(
Y ;Lk

)
→ H0

(
Y ;Lk

)
,

Tk ∼
∑∞

j=0 k
−jTfj ,Lk ,

where fj ∈ C∞ (Y ) , j = 0, 1 . . ..
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Toeplitz operators

Toeplitz operators provide a geometric quantization scheme
(cf. Boutet de Monvel-Guillemin '81, Bordemann-Meinrenken-Schlichenmaier '94).

For any f, g ∈ C∞ (Y )

lim
k→∞

∥∥∥Tf,Lk

∥∥∥ = ∥f∥∞[
Tf,Lk , Tg,Lk

]
=

i

k
T{f,g},Lk +O

(
k−2

)
as k → ∞.

The set AY =
{
Tk ∈ EndH0

(
Y ;Lk

)
generalized Toeplitz operator

}
is an algebra

(quantizing the algebra of smooth functions).

The Schwartz kernel of a Toeplitz operator has a full on-diagonal expansion:

Tf,Lk (y, y) ∼ kn
[
af0 (y) + k−1af1 (y) + . . .

]
.
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Motivating question

(Semi)-Classical Bergman kernel asymptotics is for positive, line bundles

Motivating question:

Can this be generalized to
1. Semi-positive bundles (i.e. RE (w, w̄) ≥ 0)
2. Bundles of higher rank (eg. SymkE , rkE > 1)
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Semi-positive line bundles

Consider
(
Y 2, hTY

)
be a Riemann surface(

L, hL
)
Hermitian hol. with RL semipositive.

De�ne:

r : Y → R ∪ {∞}

ry − 2 = ordy

(
RL

)
︸ ︷︷ ︸

=order of vanishing of curvature

.

Theorem (Marinescu-S. '18)

Let
(
Y 2, hTY

)
Riemann surface & RL semi-positive of �nite order vanishing order

Πk (y, y) ∼ k2/ry

 N∑
j=0

cj (y) k
−j/ry


where ry − 2 = ord

(
RL

y

)
< ∞.

Unresolved: higher dimensional semipositive case.
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Bochner Laplacian
Proof uses analytic localization technique.
Crucial again is

Spectral gap: Spec (□k) ⊂ {0} ∪
[
c1k

2/r − c2,∞
)
.

Lichnerowicz: 2□k︸︷︷︸
Kodaira

= ∆k︸︷︷︸
Bochner

+k
[
RL (w,w)

]
, on Ω0,1.

Theorem (Marinescu-S. '18)

Let
(
Y, gTY

)
Riemannian manifold &

(
L, hL,∇L

)
complex Hermitian line bundle

with unitary connection.
Then

λk
0︸︷︷︸

smallest eigenvalue of ∆k

∼ Ck2/r

where r = maxy∈Y ry .

Proved using subelliptic estimates on the unit circle.
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Higher rank

General problem for higher rank (cf. Guillemin-Uribe '88).

Let P → Y principal G-bundle with connection A ∈ Ω1 (P ; g)

Let T ⊂ G, maximal torus and ν ∈ t∗ dominant integral weight.

Associated highest weight family of hol. Hermitian bundles
(
V kν , hkν ,∇kν

)
, k ∈ N.

(eg. G = U (n) ,ν = (1, 0, . . . 0) ⇝ V kν = SymkV ν)

Problem:
Describe asymptotics of its Bergman kernel and spectrum Bochner/Kodaira
Laplacians.
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Families setting

However, Borel-Weil-Bott: V kν = H0

 G/T︸ ︷︷ ︸
�ag manifold

; Lk
ν︸︷︷︸

homogeneous line bundle



Hence more generally consider the setting of families:

Let
(
W,hTW

) π−→
(
Y, hTY

)
holomorphic submersion

Let
(
L, hL

)
→ W Hermitian holomorphic

(A0) Suppose RL is �berwise positive

⇝ Direct image bundle Ek,y :=
(
R0π∗Lk

)
y
= H0

(
Wy , Lk

∣∣
Wy

)
hEk = L2 metric,
∇Ek = Chern connection.
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Families setting

De�ne

r : W → R ∪ {∞}

rw − 2 = ordHw

(
RL,H

)
︸ ︷︷ ︸

=horizontal order of vanishing

where horizontal curvature: RL,H = RL
∣∣
THW

,

Spec
(
ṘL,H

)
= {a1 (w) , . . . , am (w)}

(A1) Suppose r is �berwise constant and �nite

(A2) Suppose RL is horizontally semipositive with comparable eigenvalues
(i.e. ∃c > 0 such that

c−1aj (w) ≤ ak (w) ≤ caj (w) ,

∀j, k ∈ {1, . . .m} and w ∈ W )
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Main result 1

Bergman kernel expansion for families

Theorem (Ma-Marinescu-S.)

Let
(
W,hTW

) π−→
(
Y, hTY

)
be holomorphic submersion of compact, complex

Hermitian manifolds.
Let

(
L, hL

)
→ W Hermitian, holomorphic line bundle.

Suppose

(A0) RL is �berwise positive

(A1) RL has a �berwise constant and �nite horizontal order of vanishing

(A2)RL is horizontally semi-positive with comparable eigenvalues
Then Bergman kernel of the direct image

ΠEk
(y, y) ∼ k2n/ry

 ∞∑
j=0

k−2j/ryTgj


∈ End H0

(
Wy ; L

k
∣∣∣
Wy

)
is a generalized Toeplitz operator on each �ber Wy , y ∈ Y .
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Main result 2

Bochner Laplacian for families.

Theorem (Ma-Marinescu-S.)

Let
(
W,hTW

) π−→
(
Y, hTY

)
be holomorphic submersion of compact complex

Hermitian manifolds.
Let

(
L, hL

)
→ W Hermitian, holomorphic line bundle.

Suppose

(A0) RL is �berwise positive

(A1) RL has a �berwise constant and �nite horizontal order of vanishing
Then the Bochner Laplacian on the direct image satis�es

λ0 (k)︸ ︷︷ ︸
smallest eigenvalue of ∆Ek

∼ Ck2/r

where r = maxy∈Y ry .
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Main result 2

Special cases:
1. �bers = pt ⇝ Semipositive line bundles with comparable eigenvalues
2. �bers = G/T ⇝ Highest weight families

(
V kν , hkν ,∇kν

)
, k ∈ N.

(Eg. 2) Let P → Y principal G-bundle with connection A ∈ Ω1 (P ; g)

Let T ⊂ G, maximal torus and ν ∈ t∗ dominant integral weight.

Highest weight family:
(
V kν , hkν ,∇kν

)
, k ∈ N.

Corollary (Ma-Marinescu-S.)

The �rst eigenfunction/eigenvalue λkν
0 ) of the Bochner Laplacian ∆kν satis�es

λkν
0 ∼ Ck2/rν

as k → ∞.
Here; rν,y − 2 = ord

(
ν.RP

y

)
, Ω2 (Y ; g) ∋ RP

y =principal bundle curvature
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0 ) of the Bochner Laplacian ∆kν satis�es

λkν
0 ∼ Ck2/rν

as k → ∞.
Here; rν,y − 2 = ord

(
ν.RP

y

)
, Ω2 (Y ; g) ∋ RP

y =principal bundle curvature
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Proof uses earlier result.

Theorem (Ma-Zhang '22)

Let
(
W,hTW

) π−→
(
Y, hTY

)
be holomorphic submersion of compact complex

Hermitian manifolds.
Let

(
L, hL

)
→ W Hermitian, holomorphic line bundle.

Suppose (A0) RL is �berwise positive
Then the curvature of the direct image

1

k
R

Ek
y ∼

∞∑
j=0

k−jTgj ,

∈ End H0

(
Wy ; L

k
∣∣∣
Wy

)
is a generalized Toeplitz operator on each �ber.
First coe�cient:

g0 = RL,H (horizontal curvature).

Nikhil Savale Families Bergman kernel



Introduction
New results
Proof sketch

Proof sketch (of MMS)

1. Computation of �rst coe�cient gives:

RL,H semipositive with comparable eigenvalues
=⇒ same is true for 1

k
REk = TRL,H +O

(
k−1

)
.

2. Bochner-Kodaira-Lichnerowicz: Spec
(
□Ek

)
⊂ {0} ∪

[
c1k2/r − c2,∞

)
.

3. In geodesic coordinates centered at y ∈ Y and a parallel frame for direct image
bundle we can write

∇Ek = d+

[∫ 1

0
dρ ρyqR

Ek
pq (ρy)

]
︸ ︷︷ ︸

a
Ek
p

dyp

The Bochner, Kodaira Laplacians ∆Ek
,□Ek

are expressed in terms of ∇Ek and R
Ek
y .

Hence both are di�erential operators with coe�cients valued in the algebra of Toeplitz
operators of the �bers Di� (Y )⊗AWy .

Apply usual rescaling y 7→ k−
1
2 y and local index theory for operators in

Di� (Y )⊗AWy .
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Thank you.
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