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Positive monotone

(M, ω): compact, connected symplectic manifold of dimension 2n

ω symplectic ↝ non-degenerate, closed 2-form on M

J: almost complex structure compatible with ω
(ω(⋅, J ⋅) is a Riemannian metric)

c1: first Chern class of (TM, J) ↝ (TM, ω)

Definition
A symplectic manifold (M, ω) is called (positive) monotone if

c1 = λ[ω] (with λ > 0)

Henceforth consider positive monotone symplectic manifolds
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Positive monotone vs. Fano

Positive monotone symplectic manifolds ¢ Fano varieties:

Fano variety: Kähler manifold, such that Kähler form ω satisfies

c1 = [ω]

Facts:
Fano varieties are simply connected and their Todd genus Td is 1.

(Example: dimC(Y ) = 1 Ô⇒ Td(Y ) = c1
2 [Y ],

dimC(Y ) = 2 Ô⇒ Td(Y ) = c2
1+c2
12 [Y ],

dimC(Y ) = 3 Ô⇒ Td(Y ) = c1c2
24 [Y ])
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Positive monotone vs. Fano

When is a positive monotone symplectic manifold (M, ω)
diffeomorphic to a Fano variety?

dim(M) = 2,4: always (McDuff)
dim(M) ≥ 12: not always (Fine – Panov)

What if one assumes that (M, ω) has symmetries?
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Symmetries

(M, ω): compact symplectic manifold of dimension 2n

T : compact torus of dimension d

Assume T À (M, ω) is Hamiltonian:

∃ ψ∶ (M, ω) → Lie(T )∗ (moment map) s.t.
ψ is T -invariant
∀ξ ∈ Lie(T )

d⟨ψ, ξ⟩ = −ιXξ
ω
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Symmetries

Definition:
Hamiltonian T -space: (M, ω,ψ), where the action is effective

complexity of (M, ω,ψ): dim(M)/2 − dim(T )

Facts:
ψ(M) is a convex polytope (Atiyah, Guillemin-Sternberg)
Complexity is ≥ 0
∃ Hamiltonian action: monotone ⇐⇒ positive monotone

Equivalence

(M1, ω1, ψ1) and (M2, ω2, ψ2) are equivalent if
∃ symplectomorphism Ψ∶ (M1, ω1) → (M2, ω2) and a ∈ GL(`∗) ⋉ t∗

such that
ψ2 ○Ψ = a ○ ψ1
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Driving Questions:

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S1-space of dimension 6 is
diffeomorphic to a Fano threefold

Question
Find necessary and sufficient conditions for a compact monotone
Hamiltonian T -space to be diffeomorphic to a Fano variety.

∃ (equivariant) symplectomorphism?
Finitely many examples in each dimension?
(Modulo equivalence)
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Symmetries

Monotone vs. Fano with symmetries:

Two approaches:
(1) Low dimension of M and/or
(2) Low complexity

(1) Low dimension of M:
Monotone Ham. S1-space of dim 2 : CP1

Monotone Ham. S1-space of dim 4 :
(*) S1-action extends to T 2-action
(**) Equiv. sympl. to Fano 2-folds with S1-action
(***) Finitely many examples (modulo equivalence)
(Karshon’s classification)
... dim 6 ...
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Results in Dimension 6:

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S1-space of dimension 6 is
diffeomorphic to a Fano threefold

Theorem (Lindsay, Panov 2019)

Every monotone Hamiltonian S1-space of dimension 6 is simply
connected and has Todd genus 1

Theorem (Charton, Kessler 2023)

Every monotone Hamiltonian GKM space of dimension 6 is
diffeomorphic to a Fano threefold

Remark: GKM action Ô⇒ the torus acting is T 2
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Symmetries

(2) Low complexity of (M, ω,T , ψ):
Complexity zero:

Monotone symplectic toric manifolds ✓
(*) They are equiv. sympl. to toric Fano n-folds
(**) (c1 = [ω]): Finitely many examples in each dimension 2n
(**)’ Finitely many (Delzant/smooth) reflexive polytopes in

each dimension n.
E.g. dim(M) = 4, modulo GL(2,Z), ψ(M) =
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Results complexity one:

(2) Low complexity of (M, ω,T , ψ): Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has
Todd genus equal to 1

Tall complexity one spaces:
reduced spaces are never points; always “surfaces”.
(Karshon-Tolman classification)

Theorem (Charton 2021)

Monotone, tall Hamiltonian T 2-space if dimension 6.
T 2 action extends to a toric action
Finitely many with c1 = [ω]
Diffeomorphic to Fano 3-folds endowed with T 2 action
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Results complexity one:

Theorem (Charton–S.–Sepe 2023):

Monotone, complexity one, tall Hamiltonian T -space of dim 2n.

For each n, finitely many with c1 = [ω].
T action extends to a toric action.
Equiv. sympl. to Fano n-folds endowed with T action.
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Results complexity one:

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and
has Todd genus equal to 1.
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Proof of simple connectedness:

Consequence of

(a) Theorem (Li)

Let (M, ω,ψ) be a compact Hamiltonian T -space. For any
α ∈ ψ(M), π1(M) ≃ π1(Mα), where Mα = ψ−1(α)/T is the
reduced space at α.

and

(b) Theorem (S., Sepe)

Let (M, ω,ψ) be a positive monotone complexity one space. Then
the connected components of the fixed point set MT are either
points or spheres.

Suppose that ψ−1(v) is a surface for all vertices v ∈ ψ(M).
To prove (b): prove that ψ−1(v) is a sphere.
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The Duistermaat-Heckman function

Duistermaat-Heckman function

DH ∶ ψ(M) → R

For a Hamiltonian T -space:
DH(α) = symplectic volume of Mα, α regular
(Duistermaat-Heckman)
There exists a continuous representative of DH.

For complexity one:
The DH-function is piece-wise linear (Duistermaat-Heckman)
log(DH) is concave (Cho-Kim)
Ô⇒ DH is concave
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Proof of (b)

DH attains its minimum at a vertex vmin of ψ(M),

Σ ∶= ψ−1(vmin),
NΣ = N1 ⊕⋯⊕Nn−1
Mi ∶= ψ−1(ei): compact symplectic 4-dimensional submanifold
with a Hamiltonian S1 action, Σ ⊂Mi , for all i = 1, . . . ,n − 1
Normal bundle to Σ in Mi is Ni

!
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Proof of (b)

DH ∶ψ(Mi) = [vmin, v
′] → R restricted to [vmin, v + ε) is:

DH(x) = ∫
Σ
ω − c1(Ni)[Σ](x − vmin)

DH attains its minimum at vmin Ô⇒

c1(Ni)[Σ] ≤ 0 ∀i = 1, . . . ,n − 1
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Proof of (b)

c1 = [ω]

Ô⇒ c1[Σ] > 0 (Σ is a symplectic surface)

c1[Σ]
´¹¹¸¹¹¶
>0

=
n−1
∑
i=1

c1(Ni)[Σ]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

+c1(TΣ)[Σ]

Ô⇒ c1(TΣ)[Σ] > 0, namely Σ = S2.

Rmk: It either holds
c1(Ni)[Σ] = 0 for all i = 1, . . . ,n − 1, or

c1(Ni)[Σ] = 0 for all i = 1, . . . ,n − 2 and c1(Nn−1)[Σ] = −1.
↝ There are two possibilities for the DH-function around vmin.
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Duistermaat-Heckman function

Two possibilities for the DH-function around vmin:

=
**

-
"
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On the classification result:

Theorem (Charton–S.–Sepe 2023):

Monotone (c1 = [ω]), complexity one, tall Hamiltonian T -space,
dim(M) = 2n.

For each n, finitely many.
T action extends to a toric action.
Equiv. sympl. to Fano n-folds endowed with T action.

Strategy of the proof:
(Modulo translation) ψ(M) is a Delzant reflexive polytope of
dim n − 1
Classify all the possible DH-functions that can arise :
There are finitely many possibilities!
Prove that the DH-function determines the space
(up to equiv. symplectomorphisms)
Prove that each of those “comes” from a toric one
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On the classification result:

Example:

Moment polytope of theGraph of DH toric extension
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THANK YOU!
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