Topological properties of (tall) monotone complexity one spaces

Silvia Sabatini
University of Cologne

24.07.2023

Based on:

- "On topological properties of positive complexity one spaces", S. and Sepe, Transformation Groups 9 (2020).
- "Tall and monotone complexity one spaces of dimension six", Charton, PhD Thesis, Cologne 2021.
- "Compact monotone tall complexity one T-spaces" Charton, S. and Sepe, arXiv:2307.04198 [math.SG].

Positive monotone

Positive monotone

(M, ω) : compact, connected symplectic manifold of dimension $2 n$
ω symplectic \leadsto non-degenerate, closed 2-form on M
(M, ω) : compact, connected symplectic manifold of dimension $2 n$
ω symplectic \leadsto non-degenerate, closed 2-form on M
J : almost complex structure compatible with ω $(\omega(\cdot, J \cdot)$ is a Riemannian metric)
(M, ω) : compact, connected symplectic manifold of dimension $2 n$
ω symplectic \leadsto non-degenerate, closed 2-form on M
J : almost complex structure compatible with ω $(\omega(\cdot, J \cdot)$ is a Riemannian metric)
c_{1} : first Chern class of $(T M, J) \leadsto(T M, \omega)$

Positive monotone

(M, ω) : compact, connected symplectic manifold of dimension $2 n$
ω symplectic \leadsto non-degenerate, closed 2-form on M
J : almost complex structure compatible with ω
$(\omega(\cdot, J \cdot)$ is a Riemannian metric)
c_{1} : first Chern class of $(T M, J) \leadsto(T M, \omega)$

Definition

A symplectic manifold (M, ω) is called (positive) monotone if

$$
c_{1}=\lambda[\omega] \quad(\text { with } \lambda>0)
$$

Positive monotone

(M, ω) : compact, connected symplectic manifold of dimension $2 n$
ω symplectic \leadsto non-degenerate, closed 2-form on M
J : almost complex structure compatible with ω
$(\omega(\cdot, J \cdot)$ is a Riemannian metric)
c_{1} : first Chern class of $(T M, J) \leadsto(T M, \omega)$

Definition

A symplectic manifold (M, ω) is called (positive) monotone if

$$
c_{1}=\lambda[\omega] \quad(\text { with } \lambda>0)
$$

Henceforth consider positive monotone symplectic manifolds

Positive monotone vs. Fano

Positive monotone symplectic manifolds
Fano varieties:

Positive monotone symplectic manifolds \sim Fano varieties:
Fano variety: Kähler manifold, such that Kähler form ω satisfies

$$
c_{1}=[\omega]
$$

Positive monotone symplectic manifolds $\approx \quad$ Fano varieties:
Fano variety: Kähler manifold, such that Kähler form ω satisfies

$$
c_{1}=[\omega]
$$

Facts:

Fano varieties are simply connected and their Todd genus $T d$ is 1.

Positive monotone vs. Fano

Positive monotone symplectic manifolds $\sim \quad$ Fano varieties:
Fano variety: Kähler manifold, such that Kähler form ω satisfies

$$
c_{1}=[\omega]
$$

Facts:

Fano varieties are simply connected and their Todd genus $T d$ is 1.
(Example: $\operatorname{dim}_{\mathbb{C}}(Y)=1 \Longrightarrow T d(Y)=\frac{c_{1}}{2}[Y]$,
$\operatorname{dim}_{\mathbb{C}}(Y)=2 \Longrightarrow T d(Y)=\frac{c_{1}^{2}+c_{2}}{12}[Y]$,
$\left.\operatorname{dim}_{\mathbb{C}}(Y)=3 \Longrightarrow T d(Y)=\frac{c_{1} c_{2}}{24}[Y]\right)$

Positive monotone vs. Fano

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

Positive monotone vs. Fano

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

- $\operatorname{dim}(M)=2,4$:

Positive monotone vs. Fano

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

- $\operatorname{dim}(M)=2,4:$ always (McDuff)

Positive monotone vs. Fano

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

- $\operatorname{dim}(M)=2,4:$ always (McDuff)
- $\operatorname{dim}(M) \geq 12$:

Positive monotone vs. Fano

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

- $\operatorname{dim}(M)=2,4$: always (McDuff)
- $\operatorname{dim}(M) \geq 12$: not always (Fine - Panov)

Positive monotone vs. Fano

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

- $\operatorname{dim}(M)=2,4$: always (McDuff)
- $\operatorname{dim}(M) \geq 12$: not always (Fine - Panov)

What if one assumes that (M, ω) has symmetries?

Symmetries

(M, ω) : compact symplectic manifold of dimension $2 n$

Symmetries

(M, ω): compact symplectic manifold of dimension $2 n$
T : compact torus of dimension d

Assume $T \backsim(M, \omega)$

Symmetries

(M, ω) : compact symplectic manifold of dimension $2 n$
T : compact torus of dimension d
Assume $T \backsim(M, \omega)$ is Hamiltonian:
$\exists \psi:(M, \omega) \rightarrow \operatorname{Lie}(T)^{*}($ moment map $)$ s.t.

- ψ is T-invariant
- $\forall \xi \in \operatorname{Lie}(T)$

$$
d\langle\psi, \xi\rangle=-\iota X_{\xi} \omega
$$

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective
- complexity of $(M, \omega, \psi): \operatorname{dim}(M) / 2-\operatorname{dim}(T)$

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective
- complexity of $(M, \omega, \psi): \operatorname{dim}(M) / 2-\operatorname{dim}(T)$

Facts:

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective
- complexity of $(M, \omega, \psi): \operatorname{dim}(M) / 2-\operatorname{dim}(T)$

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective
- complexity of $(M, \omega, \psi): \operatorname{dim}(M) / 2-\operatorname{dim}(T)$

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective
- complexity of (M, ω, ψ) : $\operatorname{dim}(M) / 2-\operatorname{dim}(T)$

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- \exists Hamiltonian action:

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective
- complexity of (M, ω, ψ) : $\operatorname{dim}(M) / 2-\operatorname{dim}(T)$

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- \exists Hamiltonian action: monotone \Longleftrightarrow positive monotone

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective
- complexity of (M, ω, ψ) : $\operatorname{dim}(M) / 2-\operatorname{dim}(T)$

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- \exists Hamiltonian action: monotone \Longleftrightarrow positive monotone

Equivalence

($M_{1}, \omega_{1}, \psi_{1}$) and ($M_{2}, \omega_{2}, \psi_{2}$) are equivalent if

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective
- complexity of (M, ω, ψ) : $\operatorname{dim}(M) / 2-\operatorname{dim}(T)$

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- \exists Hamiltonian action: monotone \Longleftrightarrow positive monotone

Equivalence

($M_{1}, \omega_{1}, \psi_{1}$) and ($M_{2}, \omega_{2}, \psi_{2}$) are equivalent if
\exists symplectomorphism $\Psi:\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ and $a \in G L\left(\ell^{*}\right) \ltimes \mathfrak{t}^{*}$

Symmetries

Definition:

- Hamiltonian T-space: (M, ω, ψ), where the action is effective
- complexity of (M, ω, ψ) : $\operatorname{dim}(M) / 2-\operatorname{dim}(T)$

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- \exists Hamiltonian action: monotone \Longleftrightarrow positive monotone

Equivalence

($M_{1}, \omega_{1}, \psi_{1}$) and ($M_{2}, \omega_{2}, \psi_{2}$) are equivalent if
\exists symplectomorphism $\Psi:\left(M_{1}, \omega_{1}\right) \rightarrow\left(M_{2}, \omega_{2}\right)$ and $a \in G L\left(\ell^{*}\right) \ltimes \mathfrak{t}^{*}$ such that

$$
\psi_{2} \circ \Psi=a \circ \psi_{1}
$$

Driving Questions:

Driving Questions:

Conjecture (Fine, Panov 2010)
Every monotone Hamiltonian S^{1}-space of dimension 6 is diffeomorphic to a Fano threefold

Driving Questions:

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^{1}-space of dimension 6 is diffeomorphic to a Fano threefold

Question

Find necessary and sufficient conditions for a compact monotone Hamiltonian T-space to be diffeomorphic to a Fano variety.

Driving Questions:

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^{1}-space of dimension 6 is diffeomorphic to a Fano threefold

Question

Find necessary and sufficient conditions for a compact monotone Hamiltonian T-space to be diffeomorphic to a Fano variety.

- \exists (equivariant) symplectomorphism?

Driving Questions:

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^{1}-space of dimension 6 is diffeomorphic to a Fano threefold

Question

Find necessary and sufficient conditions for a compact monotone Hamiltonian T-space to be diffeomorphic to a Fano variety.

- \exists (equivariant) symplectomorphism?
- Finitely many examples in each dimension? (Modulo equivalence)

Symmetries

Monotone vs. Fano with symmetries:

Symmetries

Monotone vs. Fano with symmetries:
Two approaches:

Symmetries

Monotone vs. Fano with symmetries:
Two approaches:
(1) Low dimension of M and/or

Symmetries

Monotone vs. Fano with symmetries:
Two approaches:
(1) Low dimension of M and/or
(2) Low complexity

Symmetries

Monotone vs. Fano with symmetries:
Two approaches:
(1) Low dimension of M and/or
(2) Low complexity
(1) Low dimension of M :

Symmetries

Monotone vs. Fano with symmetries:
Two approaches:
(1) Low dimension of M and/or
(2) Low complexity
(1) Low dimension of M :

- Monotone Ham. S^{1}-space of $\operatorname{dim} 2$:

Symmetries

Monotone vs. Fano with symmetries:
Two approaches:
(1) Low dimension of M and/or
(2) Low complexity
(1) Low dimension of M :

- Monotone Ham. S^{1}-space of dim 2: $\mathbb{C} P^{1}$

Symmetries

Monotone vs. Fano with symmetries:

Two approaches:
(1) Low dimension of M and/or
(2) Low complexity
(1) Low dimension of M :

- Monotone Ham. S^{1}-space of dim 2: $\mathbb{C} P^{1}$
- Monotone Ham. S^{1}-space of $\operatorname{dim} 4$:

Symmetries

Monotone vs. Fano with symmetries:
Two approaches:
(1) Low dimension of M and/or
(2) Low complexity
(1) Low dimension of M :

- Monotone Ham. S^{1}-space of dim 2: $\mathbb{C} P^{1}$
- Monotone Ham. S^{1}-space of $\operatorname{dim} 4$:
$\left(^{*}\right) S^{1}$-action extends to T^{2}-action

Symmetries

Monotone vs. Fano with symmetries:

Two approaches:
(1) Low dimension of M and/or
(2) Low complexity
(1) Low dimension of M :

- Monotone Ham. S^{1}-space of dim 2: $\mathbb{C} P^{1}$
- Monotone Ham. S^{1}-space of dim 4:
$\left.{ }^{*}\right) S^{1}$-action extends to T^{2}-action
(**) Equiv. sympl. to Fano 2-folds with S^{1}-action

Symmetries

Monotone vs. Fano with symmetries:

Two approaches:
(1) Low dimension of M and/or
(2) Low complexity
(1) Low dimension of M :

- Monotone Ham. S^{1}-space of dim 2: $\mathbb{C} P^{1}$
- Monotone Ham. S^{1}-space of dim 4:
$\left(^{*}\right) S^{1}$-action extends to T^{2}-action
(**) Equiv. sympl. to Fano 2-folds with S^{1}-action
(***) Finitely many examples (modulo equivalence)

Symmetries

Monotone vs. Fano with symmetries:

Two approaches:
(1) Low dimension of M and/or
(2) Low complexity
(1) Low dimension of M :

- Monotone Ham. S^{1}-space of dim 2: $\mathbb{C} P^{1}$
- Monotone Ham. S^{1}-space of dim 4:
$\left.{ }^{*}\right) S^{1}$-action extends to T^{2}-action
(**) Equiv. sympl. to Fano 2-folds with S^{1}-action
(***) Finitely many examples (modulo equivalence)
(Karshon's classification)

Symmetries

Monotone vs. Fano with symmetries:

Two approaches:
(1) Low dimension of M and/or
(2) Low complexity
(1) Low dimension of M :

- Monotone Ham. S^{1}-space of $\operatorname{dim} 2: \mathbb{C} P^{1}$
- Monotone Ham. S^{1}-space of dim 4:
$\left.{ }^{*}\right) S^{1}$-action extends to T^{2}-action
(**) Equiv. sympl. to Fano 2-folds with S^{1}-action
(***) Finitely many examples (modulo equivalence)
(Karshon's classification)
- ... dim 6 ...

Results in Dimension 6:

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^{1}-space of dimension 6 is diffeomorphic to a Fano threefold

Results in Dimension 6:

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^{1}-space of dimension 6 is diffeomorphic to a Fano threefold

Theorem (Lindsay, Panov 2019)

Every monotone Hamiltonian S^{1}-space of dimension 6 is simply connected and has Todd genus 1

Results in Dimension 6:

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^{1}-space of dimension 6 is diffeomorphic to a Fano threefold

Theorem (Lindsay, Panov 2019)

Every monotone Hamiltonian S^{1}-space of dimension 6 is simply connected and has Todd genus 1

Theorem (Charton, Kessler 2023)
Every monotone Hamiltonian GKM space of dimension 6 is diffeomorphic to a Fano threefold

Results in Dimension 6:

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^{1}-space of dimension 6 is diffeomorphic to a Fano threefold

Theorem (Lindsay, Panov 2019)

Every monotone Hamiltonian S^{1}-space of dimension 6 is simply connected and has Todd genus 1

Theorem (Charton, Kessler 2023)

Every monotone Hamiltonian GKM space of dimension 6 is diffeomorphic to a Fano threefold

Remark: GKM action \Longrightarrow the torus acting is T^{2}

Symmetries

(2) Low complexity of (M, ω, T, ψ) :

- Complexity zero:

Symmetries

(2) Low complexity of (M, ω, T, ψ) :

- Complexity zero:

Monotone symplectic toric manifolds

Symmetries

(2) Low complexity of (M, ω, T, ψ) :

- Complexity zero:

Monotone symplectic toric manifolds

Symmetries

(2) Low complexity of (M, ω, T, ψ) :

- Complexity zero:

Monotone symplectic toric manifolds
$\left(^{*}\right)$ They are equiv. sympl. to toric Fano n-folds

Symmetries

(2) Low complexity of (M, ω, T, ψ) :

- Complexity zero:

Monotone symplectic toric manifolds
$\left.{ }^{*}\right)$ They are equiv. sympl. to toric Fano n-folds $\left({ }^{* *}\right)\left(c_{1}=[\omega]\right)$:

Symmetries

(2) Low complexity of (M, ω, T, ψ) :

- Complexity zero:

Monotone symplectic toric manifolds
${ }^{(*)}$ They are equiv. sympl. to toric Fano n-folds
$\left({ }^{* *}\right)\left(c_{1}=[\omega]\right)$: Finitely many examples in each dimension $2 n$

Symmetries

(2) Low complexity of (M, ω, T, ψ) :

- Complexity zero:

Monotone symplectic toric manifolds
$\left.{ }^{*}\right)$ They are equiv. sympl. to toric Fano n-folds
$\left({ }^{* *}\right)\left(c_{1}=[\omega]\right)$: Finitely many examples in each dimension $2 n$ (**)' Finitely many (Delzant/smooth) reflexive polytopes in each dimension n.

Symmetries

(2) Low complexity of (M, ω, T, ψ) :

- Complexity zero:

Monotone symplectic toric manifolds
$\left.{ }^{*}\right)$ They are equiv. sympl. to toric Fano n-folds
$\left({ }^{* *}\right)\left(c_{1}=[\omega]\right)$: Finitely many examples in each dimension $2 n$ (**)' Finitely many (Delzant/smooth) reflexive polytopes in each dimension n.
E.g. $\operatorname{dim}(M)=4$,

Symmetries

(2) Low complexity of (M, ω, T, ψ) :

- Complexity zero:

Monotone symplectic toric manifolds
$\left.{ }^{*}\right)$ They are equiv. sympl. to toric Fano n-folds
$\left({ }^{* *}\right)\left(c_{1}=[\omega]\right)$: Finitely many examples in each dimension $2 n$ $(* *)$ ' Finitely many (Delzant/smooth) reflexive polytopes in each dimension n.
E.g. $\operatorname{dim}(M)=4$, modulo $G L(2, \mathbb{Z}), \quad \psi(M)=$

Results complexity one:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Results complexity one:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)
Every monotone complexity one space is simply connected and has Todd genus equal to 1

Results complexity one:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to 1

Tall complexity one spaces:

Results complexity one:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to 1

Tall complexity one spaces: reduced spaces are never points; always "surfaces".

Results complexity one:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to 1

Tall complexity one spaces: reduced spaces are never points; always "surfaces". (Karshon-Tolman classification)

Results complexity one:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to 1

Tall complexity one spaces: reduced spaces are never points; always "surfaces".
(Karshon-Tolman classification)

Theorem (Charton 2021)

Monotone, tall Hamiltonian T^{2}-space if dimension 6.

Results complexity one:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to 1

Tall complexity one spaces: reduced spaces are never points; always "surfaces".
(Karshon-Tolman classification)

Theorem (Charton 2021)

Monotone, tall Hamiltonian T^{2}-space if dimension 6.

- T^{2} action extends to a toric action

Results complexity one:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to 1

Tall complexity one spaces: reduced spaces are never points; always "surfaces".
(Karshon-Tolman classification)

Theorem (Charton 2021)

Monotone, tall Hamiltonian T^{2}-space if dimension 6.

- T^{2} action extends to a toric action
- Finitely many with $c_{1}=[\omega]$

Results complexity one:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to 1

Tall complexity one spaces:
reduced spaces are never points; always "surfaces".
(Karshon-Tolman classification)

Theorem (Charton 2021)

Monotone, tall Hamiltonian T^{2}-space if dimension 6.

- T^{2} action extends to a toric action
- Finitely many with $c_{1}=[\omega]$
- Diffeomorphic to Fano 3-folds endowed with T^{2} action

Results complexity one:

Theorem (Charton-S.-Sepe 2023):
 Monotone, complexity one, tall Hamiltonian T-space of dim $2 n$.

Results complexity one:

Theorem (Charton-S.-Sepe 2023):
Monotone, complexity one, tall Hamiltonian T-space of dim $2 n$.

- For each n, finitely many with $c_{1}=[\omega]$.

Results complexity one:

Theorem (Charton-S.-Sepe 2023):
Monotone, complexity one, tall Hamiltonian T-space of $\operatorname{dim} 2 n$.

- For each n, finitely many with $c_{1}=[\omega]$.
- T action extends to a toric action.

Results complexity one:

Theorem (Charton-S.-Sepe 2023):

Monotone, complexity one, tall Hamiltonian T-space of $\operatorname{dim} 2 n$.

- For each n, finitely many with $c_{1}=[\omega]$.
- T action extends to a toric action.
- Equiv. sympl. to Fano n-folds endowed with T action.

Results complexity one:

Theorem (S., Sepe 2020)
 Every monotone complexity one space is simply connected and has Todd genus equal to 1 .

Proof of simple connectedness:

Consequence of

(a) Theorem (Li)

Let (M, ω, ψ) be a compact Hamiltonian T-space. For any $\alpha \in \psi(M), \pi_{1}(M) \simeq \pi_{1}\left(M_{\alpha}\right)$, where $M_{\alpha}=\psi^{-1}(\alpha) / T$ is the reduced space at α.

Proof of simple connectedness:

Consequence of

(a) Theorem (Li)

Let (M, ω, ψ) be a compact Hamiltonian T-space. For any $\alpha \in \psi(M), \pi_{1}(M) \simeq \pi_{1}\left(M_{\alpha}\right)$, where $M_{\alpha}=\psi^{-1}(\alpha) / T$ is the reduced space at α.
and

(b) Theorem (S., Sepe)

Let (M, ω, ψ) be a positive monotone complexity one space. Then the connected components of the fixed point set M^{T} are either points or spheres.

Proof of simple connectedness:

Consequence of

(a) Theorem (Li)

Let (M, ω, ψ) be a compact Hamiltonian T-space. For any $\alpha \in \psi(M), \pi_{1}(M) \simeq \pi_{1}\left(M_{\alpha}\right)$, where $M_{\alpha}=\psi^{-1}(\alpha) / T$ is the reduced space at α.
and

(b) Theorem (S., Sepe)

Let (M, ω, ψ) be a positive monotone complexity one space. Then the connected components of the fixed point set M^{T} are either points or spheres.

Suppose that $\psi^{-1}(v)$ is a surface for all vertices $v \in \psi(M)$.

Proof of simple connectedness:

Consequence of

(a) Theorem (Li)

Let (M, ω, ψ) be a compact Hamiltonian T-space. For any $\alpha \in \psi(M), \pi_{1}(M) \simeq \pi_{1}\left(M_{\alpha}\right)$, where $M_{\alpha}=\psi^{-1}(\alpha) / T$ is the reduced space at α.
and

(b) Theorem (S., Sepe)

Let (M, ω, ψ) be a positive monotone complexity one space. Then the connected components of the fixed point set M^{T} are either points or spheres.

Suppose that $\psi^{-1}(v)$ is a surface for all vertices $v \in \psi(M)$. To prove (b): prove that $\psi^{-1}(v)$ is a sphere.

Duistermaat-Heckman function

$$
D H: \quad \psi(M) \rightarrow \mathbb{R}
$$

Duistermaat-Heckman function

$$
D H: \quad \psi(M) \rightarrow \mathbb{R}
$$

For a Hamiltonian T-space:

Duistermaat-Heckman function

$$
D H: \quad \psi(M) \rightarrow \mathbb{R}
$$

For a Hamiltonian T-space:

- $D H(\alpha)=$ symplectic volume of $M_{\alpha}, \quad \alpha$ regular (Duistermaat-Heckman)

Duistermaat-Heckman function

$$
D H: \quad \psi(M) \rightarrow \mathbb{R}
$$

For a Hamiltonian T-space:

- $D H(\alpha)=$ symplectic volume of $M_{\alpha}, \quad \alpha$ regular (Duistermaat-Heckman)
- There exists a continuous representative of $D H$.

Duistermaat-Heckman function

$$
D H: \quad \psi(M) \rightarrow \mathbb{R}
$$

For a Hamiltonian T-space:

- $D H(\alpha)=$ symplectic volume of $M_{\alpha}, \quad \alpha$ regular (Duistermaat-Heckman)
- There exists a continuous representative of $D H$.

For complexity one:

- The DH-function is piece-wise linear (Duistermaat-Heckman)

Duistermaat-Heckman function

$$
D H: \quad \psi(M) \rightarrow \mathbb{R}
$$

For a Hamiltonian T-space:

- $D H(\alpha)=$ symplectic volume of $M_{\alpha}, \quad \alpha$ regular (Duistermaat-Heckman)
- There exists a continuous representative of $D H$.

For complexity one:

- The DH-function is piece-wise linear (Duistermaat-Heckman)
- $\log (D H)$ is concave (Cho-Kim)

Duistermaat-Heckman function

$$
D H: \quad \psi(M) \rightarrow \mathbb{R}
$$

For a Hamiltonian T-space:

- $D H(\alpha)=$ symplectic volume of $M_{\alpha}, \quad \alpha$ regular (Duistermaat-Heckman)
- There exists a continuous representative of $D H$.

For complexity one:

- The DH-function is piece-wise linear (Duistermaat-Heckman)
- $\log (D H)$ is concave (Cho-Kim)
$\Longrightarrow D H$ is concave

Proof of (b)

$D H$ attains its minimum at a vertex $v_{\text {min }}$ of $\psi(M)$,
$D H$ attains its minimum at a vertex $v_{\text {min }}$ of $\psi(M), \Sigma:=\psi^{-1}\left(v_{\text {min }}\right)$,
$D H$ attains its minimum at a vertex $v_{\text {min }}$ of $\psi(M), \Sigma:=\psi^{-1}\left(v_{\text {min }}\right)$,

- $N_{\Sigma}=N_{1} \oplus \cdots \oplus N_{n-1}$
- $M_{i}:=\psi^{-1}\left(e_{i}\right)$: compact symplectic 4-dimensional submanifold with a Hamiltonian S^{1} action, $\Sigma \subset M_{i}$, for all $i=1, \ldots, n-1$
- Normal bundle to Σ in M_{i} is N_{i}

Proof of (b)

- $D H: \psi\left(M_{i}\right)=\left[v_{\min }, v^{\prime}\right] \rightarrow \mathbb{R}$ restricted to $\left[v_{\min }, v+\epsilon\right)$ is:

Proof of (b)

- $D H: \psi\left(M_{i}\right)=\left[v_{\min }, v^{\prime}\right] \rightarrow \mathbb{R}$ restricted to $\left[v_{\text {min }}, v+\epsilon\right)$ is:

$$
D H(x)=\int_{\Sigma} \omega-c_{1}\left(N_{i}\right)[\Sigma]\left(x-v_{\min }\right)
$$

Proof of (b)

- $D H: \psi\left(M_{i}\right)=\left[v_{\min }, v^{\prime}\right] \rightarrow \mathbb{R}$ restricted to $\left[v_{\min }, v+\epsilon\right)$ is:

$$
D H(x)=\int_{\Sigma} \omega-c_{1}\left(N_{i}\right)[\Sigma]\left(x-v_{\min }\right)
$$

- DH attains its minimum at $v_{\text {min }} \Longrightarrow$

$$
c_{1}\left(N_{i}\right)[\Sigma] \leq 0 \quad \forall i=1, \ldots, n-1
$$

Proof of (b)

- $c_{1}=[\omega]$

Proof of (b)

- $c_{1}=[\omega] \Longrightarrow c_{1}[\Sigma]>0(\Sigma$ is a symplectic surface $)$

Proof of (b)

- $c_{1}=[\omega] \Longrightarrow c_{1}[\Sigma]>0(\Sigma$ is a symplectic surface $)$

Proof of (b)

- $c_{1}=[\omega] \Longrightarrow c_{1}[\Sigma]>0(\Sigma$ is a symplectic surface $)$

$$
\underbrace{c_{1}[\Sigma]}_{>0}=\underbrace{\sum_{i=1}^{n-1} c_{1}\left(N_{i}\right)[\Sigma]}_{\leq 0}+c_{1}(T \Sigma)[\Sigma]
$$

Proof of (b)

- $c_{1}=[\omega] \Longrightarrow c_{1}[\Sigma]>0(\Sigma$ is a symplectic surface $)$

$$
\underbrace{c_{1}[\Sigma]}_{>0}=\underbrace{\sum_{i=1}^{n-1} c_{1}\left(N_{i}\right)[\Sigma]}_{\leq 0}+c_{1}(T \Sigma)[\Sigma]
$$

$\Longrightarrow c_{1}(T \Sigma)[\Sigma]>0$, namely $\Sigma=S^{2}$.

Proof of (b)

- $c_{1}=[\omega] \Longrightarrow c_{1}[\Sigma]>0(\Sigma$ is a symplectic surface $)$

$$
\underbrace{c_{1}[\Sigma]}_{>0}=\underbrace{\sum_{i=1}^{n-1} c_{1}\left(N_{i}\right)[\Sigma]}_{\leq 0}+c_{1}(T \Sigma)[\Sigma]
$$

$\Longrightarrow c_{1}(T \Sigma)[\Sigma]>0$, namely $\Sigma=S^{2}$.
Rmk: It either holds

Proof of (b)

- $c_{1}=[\omega] \Longrightarrow c_{1}[\Sigma]>0(\Sigma$ is a symplectic surface $)$

$$
\underbrace{c_{1}[\Sigma]}_{>0}=\underbrace{\sum_{i=1}^{n-1} c_{1}\left(N_{i}\right)[\Sigma]}_{\leq 0}+c_{1}(T \Sigma)[\Sigma]
$$

$\Longrightarrow c_{1}(T \Sigma)[\Sigma]>0$, namely $\Sigma=S^{2}$.
Rmk: It either holds

- $c_{1}\left(N_{i}\right)[\Sigma]=0$ for all $i=1, \ldots, n-1$, or

Proof of (b)

- $c_{1}=[\omega] \Longrightarrow c_{1}[\Sigma]>0(\Sigma$ is a symplectic surface $)$

$$
\underbrace{c_{1}[\Sigma]}_{>0}=\underbrace{\sum_{i=1}^{n-1} c_{1}\left(N_{i}\right)[\Sigma]}_{\leq 0}+c_{1}(T \Sigma)[\Sigma]
$$

$\Longrightarrow c_{1}(T \Sigma)[\Sigma]>0$, namely $\Sigma=S^{2}$.
Rmk: It either holds

- $c_{1}\left(N_{i}\right)[\Sigma]=0$ for all $i=1, \ldots, n-1$, or
- $c_{1}\left(N_{i}\right)[\Sigma]=0$ for all $i=1, \ldots, n-2$ and $c_{1}\left(N_{n-1}\right)[\Sigma]=-1$.
- $c_{1}=[\omega] \Longrightarrow c_{1}[\Sigma]>0(\Sigma$ is a symplectic surface $)$

$$
\underbrace{c_{1}[\Sigma]}_{>0}=\underbrace{\sum_{i=1}^{n-1} c_{1}\left(N_{i}\right)[\Sigma]}_{\leq 0}+c_{1}(T \Sigma)[\Sigma]
$$

$\Longrightarrow c_{1}(T \Sigma)[\Sigma]>0$, namely $\Sigma=S^{2}$.
Rmk: It either holds

- $c_{1}\left(N_{i}\right)[\Sigma]=0$ for all $i=1, \ldots, n-1$, or
- $c_{1}\left(N_{i}\right)[\Sigma]=0$ for all $i=1, \ldots, n-2$ and $c_{1}\left(N_{n-1}\right)[\Sigma]=-1$.
\leadsto There are two possibilities for the DH -function around $v_{\text {min }}$.

Duistermaat-Heckman function

Two possibilities for the DH -function around $v_{\text {min }}$:

On the classification result:

Theorem (Charton-S.-Sepe 2023):
Monotone ($c_{1}=[\omega]$), complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

On the classification result:

Theorem (Charton-S.-Sepe 2023):

Monotone ($c_{1}=[\omega]$), complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

- For each n, finitely many.

On the classification result:

Theorem (Charton-S.-Sepe 2023):

Monotone ($c_{1}=[\omega]$), complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

- For each n, finitely many.
- T action extends to a toric action.

On the classification result:

Theorem (Charton-S.-Sepe 2023):

Monotone ($c_{1}=[\omega]$), complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

- For each n, finitely many.
- T action extends to a toric action.
- Equiv. sympl. to Fano n-folds endowed with T action.

On the classification result:

Theorem (Charton-S.-Sepe 2023):

Monotone ($c_{1}=[\omega]$), complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

- For each n, finitely many.
- T action extends to a toric action.
- Equiv. sympl. to Fano n-folds endowed with T action.

Strategy of the proof:

On the classification result:

Theorem (Charton-S.-Sepe 2023):

Monotone $\left(c_{1}=[\omega]\right)$, complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

- For each n, finitely many.
- T action extends to a toric action.
- Equiv. sympl. to Fano n-folds endowed with T action.

Strategy of the proof:

- (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of $\operatorname{dim} n-1$

On the classification result:

Theorem (Charton-S.-Sepe 2023):

Monotone $\left(c_{1}=[\omega]\right)$, complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

- For each n, finitely many.
- T action extends to a toric action.
- Equiv. sympl. to Fano n-folds endowed with T action.

Strategy of the proof:

- (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of $\operatorname{dim} n-1$
- Classify all the possible DH-functions that can arise

On the classification result:

Theorem (Charton-S.-Sepe 2023):

Monotone $\left(c_{1}=[\omega]\right)$, complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

- For each n, finitely many.
- T action extends to a toric action.
- Equiv. sympl. to Fano n-folds endowed with T action.

Strategy of the proof:

- (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of $\operatorname{dim} n-1$
- Classify all the possible DH-functions that can arise : There are finitely many possibilities!

On the classification result:

Theorem (Charton-S.-Sepe 2023):

Monotone ($c_{1}=[\omega]$), complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

- For each n, finitely many.
- T action extends to a toric action.
- Equiv. sympl. to Fano n-folds endowed with T action.

Strategy of the proof:

- (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of $\operatorname{dim} n-1$
- Classify all the possible DH-functions that can arise : There are finitely many possibilities!
- Prove that the DH -function determines the space (up to equiv. symplectomorphisms)

On the classification result:

Theorem (Charton-S.-Sepe 2023):

Monotone ($c_{1}=[\omega]$), complexity one, tall Hamiltonian T-space, $\operatorname{dim}(M)=2 n$.

- For each n, finitely many.
- T action extends to a toric action.
- Equiv. sympl. to Fano n-folds endowed with T action.

Strategy of the proof:

- (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of $\operatorname{dim} n-1$
- Classify all the possible DH-functions that can arise : There are finitely many possibilities!
- Prove that the DH -function determines the space (up to equiv. symplectomorphisms)
- Prove that each of those "comes" from a toric one

On the classification result:

Example:

Moment polytope of the toric extension

THANK YOU!

