Coherent sheaves, superconnection Riemann-Roch-Grothendieck

joint work J.-M. Bismut & Z. Wei, arXiv:2102.08129, to appear in Progress in Mathematics 347

Shu Shen

IMJ-PRG, Sorbonne Université, Paris

Köln, July 27, 2023

- X: closed complex manifold.
- K(X): K-group of coherent sheaves.
- $H_{BC}(X, \mathbf{R})$: Bott-Chern cohomology.

- \bullet X: closed complex manifold.
- K(X): K-group of coherent sheaves.
- holomorphic analogue of the topological A-theory.
- $H_{BC}(X, \mathbf{R})$: Bott-Chern cohomology.

- X: closed complex manifold.
- K(X): K-group of coherent sheaves.
 - holomorphic analogue of the topological K-theory.
- $H_{BC}(X, \mathbf{R})$: Bott-Chern cohomology

- X: closed complex manifold.
- K(X): K-group of coherent sheaves.
 - ullet holomorphic analogue of the topological K-theory.
- $H_{BC}(X, \mathbf{R})$: Bott-Chern cohomology

- X: closed complex manifold.
- K(X): K-group of coherent sheaves.
 - \bullet holomorphic analogue of the topological K-theory.
- $H_{BC}(X, \mathbf{R})$: Bott-Chern cohomology.
 - holomorphic analogue of the de Rham cohomology.

- X: closed complex manifold.
- K(X): K-group of coherent sheaves.
 - \bullet holomorphic analogue of the topological K-theory.
- $H_{BC}(X, \mathbf{R})$: Bott-Chern cohomology.
 - holomorphic analogue of the de Rham cohomology.

- X: closed complex manifold.
- K(X): K-group of coherent sheaves.
 - holomorphic analogue of the topological K-theory.
- $H_{BC}(X, \mathbf{R})$: Bott-Chern cohomology.
 - holomorphic analogue of the de Rham cohomology.

- There is a Chern character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R}).$
- **2** ch_{BC} satisfies a Riemann-Roch-Grothendieck formula for arbitrary holomorphic map $f: X \to Y$, i.e., the diagram

- X: closed complex manifold.
- K(X): K-group of coherent sheaves.
 - holomorphic analogue of the topological K-theory.
- $H_{BC}(X, \mathbf{R})$: Bott-Chern cohomology.
 - holomorphic analogue of the de Rham cohomology.

- There is a Chern character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R}).$
- $oldsymbol{\circ}$ ch_{BC} satisfies a Riemann-Roch-Grothendieck formula for arbitrary holomorphic map $f:X\to Y$, i.e., the diagram commutes

$$K(X) \xrightarrow{f_!} K(Y)$$

$$\downarrow^{\text{Td}_{\operatorname{BC}}(TX)\operatorname{ch}_{\operatorname{BC}}} \downarrow^{\text{Td}_{\operatorname{BC}}(TY)\operatorname{ch}_{\operatorname{BC}}}$$

$$H_{\operatorname{BC}}(X,\mathbf{R}) \xrightarrow{f_*} H_{\operatorname{BC}}(Y,\mathbf{R})$$

- X: closed complex manifold.
- K(X): K-group of coherent sheaves.
 - ullet holomorphic analogue of the topological K-theory.
- $H_{BC}(X, \mathbf{R})$: Bott-Chern cohomology.
 - holomorphic analogue of the de Rham cohomology.

- There is a Chern character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R}).$
- \bullet ch_{BC} satisfies a Riemann-Roch-Grothendieck formula for arbitrary holomorphic map $f: X \to Y$, i.e., the diagram commutes

$$\begin{split} K(X) & \xrightarrow{f_!} K(Y) \\ & \text{Td}_{\text{BC}}(TX)\text{ch}_{\text{BC}} \bigvee & \bigvee_{\text{}} \text{Td}_{\text{BC}}(TY)\text{ch}_{\text{BC}} \\ & H_{\text{BC}}(X, \mathbf{R}) \xrightarrow{f_*} H_{\text{BC}}(Y, \mathbf{R}) \end{split}$$

- $\Omega^k(X, \mathbf{R})$: smooth k-forms.

Shu Shen

- $\Omega^k(X, \mathbf{R})$: smooth k-forms.
- $d: \Omega^{\bullet}(X, \mathbf{R}) \to \Omega^{\bullet+1}(X, \mathbf{R})$: de Rham operator.

•
$$d^2 = 0$$
.

 $H^p_{\mathrm{JD}}(X,\mathbf{R}) = \ker d \cap \Omega^p(X,\mathbf{R})/d\Omega^{p-1}(X,\mathbf{R})$

- $\Omega^k(X, \mathbf{R})$: smooth k-forms.
- $d: \Omega^{\bullet}(X, \mathbf{R}) \to \Omega^{\bullet+1}(X, \mathbf{R})$: de Rham operator.
- $d^2 = 0$.

Definition (de Rham)

$$H_{\mathrm{dR}}^p(X,\mathbf{R}) = \ker d \cap \Omega^p(X,\mathbf{R})/d\Omega^{p-1}(X,\mathbf{R}).$$

- $\Omega^k(X, \mathbf{R})$: smooth k-forms.
- $d: \Omega^{\bullet}(X, \mathbf{R}) \to \Omega^{\bullet+1}(X, \mathbf{R})$: de Rham operator.
- $d^2 = 0$.

Definition (de Rham)

$$H^p_{\mathrm{dR}}(X, \mathbf{R}) = \ker d \cap \Omega^p(X, \mathbf{R}) / d\Omega^{p-1}(X, \mathbf{R}).$$

- $\Omega^{p,q}(X, \mathbf{C})$: smooth (p,q)-forms.
- $d = \partial + \overline{\partial}$
- Classical relation $\partial^2 = 0$, $\overline{\partial}^2 = 0$, $[\partial, \overline{\partial}] = 0$.

- $\Omega^{p,q}(X, \mathbf{C})$: smooth (p, q)-forms.
- $d = \partial + \overline{\partial}$.
- Classical relation $\partial^2 = 0, \overline{\partial}^2 = 0, [\partial, \overline{\partial}] = 0.$

 $H_{p,q}^{p,q}(X,\mathbb{C}) = \ker d \cap \Omega^{p,q}(X,\mathbb{C})/\overline{\partial}\partial\Omega^{p-1,q-1}(X,\mathbb{C}).$

- $\Omega^{p,q}(X, \mathbf{C})$: smooth (p,q)-forms.
- $d = \partial + \overline{\partial}$.
- Classical relation $\partial^2 = 0$, $\overline{\partial}^2 = 0$, $[\partial, \overline{\partial}] = 0$.

$$H^{p,q}_{\mathrm{BC}}(X,\mathbf{C}) = \ker d \cap \Omega^{p,q}(X,\mathbf{C})/\overline{\partial}\partial\Omega^{p-1,q-1}(X,\mathbf{C}).$$

- $\Omega^{p,q}(X, \mathbf{C})$: smooth (p,q)-forms.
- $d = \partial + \overline{\partial}$.
- Classical relation $\partial^2 = 0$, $\overline{\partial}^2 = 0$, $[\partial, \overline{\partial}] = 0$.

Definition (Bott-Chern)

$$H^{p,q}_{\mathrm{BC}}(X,\mathbf{C}) = \ker d \cap \Omega^{p,q}(X,\mathbf{C})/\overline{\partial}\partial\Omega^{p-1,q-1}(X,\mathbf{C}).$$

- Canonical morphism : $H^{p,q}_{\mathrm{BC}}(X,\mathbf{C}) \to H^{p+q}_{\mathrm{dR}}(X,\mathbf{C})$.
- If X is Kähler, $\bigoplus_{p+q=k} H^{p,q}_{BC}(X, \mathbb{C}) \simeq H^k_{dB}(X, \mathbb{C})$.
- In general, $H_{BC}(X, \mathbb{C}) \not\simeq H_{dR}(X, \mathbb{C})$ (e.g. Iwasawa manifold).

- Canonical morphism : $H^{p,q}_{\mathrm{BC}}(X,\mathbf{C}) \to H^{p+q}_{\mathrm{dR}}(X,\mathbf{C})$.
- If X is Kähler, $\bigoplus_{p+q=k} H^{p,q}_{\mathrm{BC}}(X, \mathbf{C}) \simeq H^k_{\mathrm{dR}}(X, \mathbf{C})$.
- In general, $H_{BC}(X, \mathbb{C}) \not\simeq H_{dB}(X, \mathbb{C})$ (e.g. Iwasawa manifold).

- Canonical morphism : $H^{p,q}_{\mathrm{BC}}(X,\mathbf{C}) \to H^{p+q}_{\mathrm{dR}}(X,\mathbf{C})$.
- If X is Kähler, $\bigoplus_{p+q=k} H^{p,q}_{\mathrm{BC}}(X, \mathbf{C}) \simeq H^k_{\mathrm{dR}}(X, \mathbf{C})$.
- In general, $H_{BC}(X, \mathbf{C}) \not\simeq H_{dR}(X, \mathbf{C})$ (e.g. Iwasawa manifold).

- D: holomorphic vector bundle.
- $\nabla^{D\prime\prime}:\Omega^{0,\bullet}(X,D)\to\Omega^{0,\bullet+1}(X,D)$ holomorphic structure.

Theorem (Koszul-Malgrange, Newlander-Nirenberg)

A smooth vector bundle D is holomorphic iff there is $\nabla^{D''}: \Omega^{0,\bullet}(X,D) \to \Omega^{0,\bullet+1}(X,D)$ with Leibniz rule and $(\nabla^{D''})^2 =$

- D: holomorphic vector bundle.
- $\nabla^{D''}: \Omega^{0,\bullet}(X,D) \to \Omega^{0,\bullet+1}(X,D)$ holomorphic structure.
 - **1** Leibniz rule: $\nabla^{D''}(\alpha s) = \overline{\partial}\alpha \cdot s + (-1)^{\deg \alpha}\alpha \wedge \nabla^{D''}s$
 - $(\nabla^{D''})^2 = 0.$

Theorem (Koszul-Malgrange, Newlander-Nirenberg)

A smooth vector bundle D is holomorphic iff there is

 $\nabla^{D''}:\Omega^{0,\bullet}(X,D)\to\Omega^{0,\bullet+1}(X,D)$ with Leibniz rule and $(\nabla^{D''})^2=$

- D: holomorphic vector bundle.
- $\nabla^{D''}: \Omega^{0,\bullet}(X,D) \to \Omega^{0,\bullet+1}(X,D)$ holomorphic structure.
 - $\bullet \text{ Leibniz rule: } \nabla^{D\prime\prime}(\alpha s) = \overline{\partial}\alpha \cdot s + (-1)^{\deg\alpha}\alpha \wedge \nabla^{D\prime\prime}s$
 - $(\nabla^{D''})^2 = 0.$

Theorem (Koszul-Malgrange, Newlander-Nirenberg)

A smooth vector bundle D is holomorphic iff there is $\nabla^{D''}: \Omega^{0,\bullet}(X,D) \to \Omega^{0,\bullet+1}(X,D)$ with Leibniz rule and $(\nabla^{D''})^2 = 0$.

- D: holomorphic vector bundle.
- $\nabla^{D''}: \Omega^{0,\bullet}(X,D) \to \Omega^{0,\bullet+1}(X,D)$ holomorphic structure.
 - Leibniz rule: $\nabla^{D''}(\alpha s) = \overline{\partial} \alpha \cdot s + (-1)^{\deg \alpha} \alpha \wedge \nabla^{D''} s$
 - $(\nabla^{D''})^2 = 0.$

Theorem (Koszul-Malgrange, Newlander-Nirenberg)

A smooth vector bundle D is holomorphic iff there is $\nabla^{D''}: \Omega^{0,\bullet}(X,D) \to \Omega^{0,\bullet+1}(X,D)$ with Leibniz rule and $(\nabla^{D''})^2 = 0$.

- D: holomorphic vector bundle.
- $\nabla^{D''}: \Omega^{0,\bullet}(X,D) \to \Omega^{0,\bullet+1}(X,D)$ holomorphic structure.
 - Leibniz rule: $\nabla^{D''}(\alpha s) = \overline{\partial}\alpha \cdot s + (-1)^{\deg \alpha}\alpha \wedge \nabla^{D''}s$
 - $(\nabla^{D''})^2 = 0.$

Theorem (Koszul-Malgrange, Newlander-Nirenberg)

A smooth vector bundle D is holomorphic iff there is

$$\nabla^{D\prime\prime}:\Omega^{0,\bullet}(X,D)\to\Omega^{0,\bullet+1}(X,D)$$
 with Leibniz rule and $(\nabla^{D\prime\prime})^2=0.$

- $(D, \nabla^{D''})$: holomorphic vector bundle
- h^D : Hermitian metric on D.
- $\nabla^D = \nabla^{D''} + \nabla^{D'}$: Chern connection. (Unique unitary
- connection whose antiholomorphic part is given by the
 - We have
 - $(\nabla^D)^2 = 0, \quad (\nabla^D)^2 = 0, \quad (\nabla^D)^2 = [\nabla^D', \nabla^D]$
- $P^D = (\nabla^D)^2 \in \Omega^{1,1}(X, \operatorname{End}(D))$

- $(D, \nabla^{D''})$: holomorphic vector bundle.
- h^D : Hermitian metric on D.
- $\nabla^D = \nabla^{D''} + \nabla^{D'}$: Chern connection.

- $(D, \nabla^{D''})$: holomorphic vector bundle.
- h^D : Hermitian metric on D.
- $\nabla^D = \nabla^{D''} + \nabla^{D'}$: Chern connection. (

Shu Shen

- $(D, \nabla^{D''})$: holomorphic vector bundle.
- h^D : Hermitian metric on D.
- $\nabla^D = \nabla^{D''} + \nabla^{D'}$: Chern connection. (Unique unitary connection whose antiholomorphic part is given by the holomorphic structure.)
- We have

$$(\nabla^{D/\prime})^2 = 0, \quad (\nabla^{D/\prime})^2 = 0, \quad (\nabla^D)^2 = [\nabla^{D/\prime}, \nabla^{D/\prime}]^2$$

• $R^D = (\nabla^D)^2 \in \Omega^{1,1}(X, \operatorname{End}(D)))$

- $(D, \nabla^{D''})$: holomorphic vector bundle.
- h^D : Hermitian metric on D.
- $\nabla^D = \nabla^{D''} + \nabla^{D'}$: Chern connection. (Unique unitary connection whose antiholomorphic part is given by the holomorphic structure.)
- We have

$$\left(\nabla^{D^{\prime\prime}}\right)^2=0, \qquad \left(\nabla^{D^\prime}\right)^2=0, \qquad \left(\nabla^D\right)^2=\left[\nabla^{D^{\prime\prime}},\nabla^{D^\prime}\right].$$

• $R^D = (\nabla^D)^2 \in \Omega^{1,1}(X, \operatorname{End}(D)).$

- $(D, \nabla^{D''})$: holomorphic vector bundle.
- h^D : Hermitian metric on D.
- $\nabla^D = \nabla^{D''} + \nabla^{D'}$: Chern connection. (Unique unitary connection whose antiholomorphic part is given by the holomorphic structure.)
- We have

$$\left(\nabla^{D^{\prime\prime}}\right)^2 = 0, \qquad \left(\nabla^{D^\prime}\right)^2 = 0, \qquad \left(\nabla^D\right)^2 = \left[\nabla^{D^{\prime\prime}}, \nabla^{D^\prime}\right].$$

•
$$R^D = (\nabla^D)^2 \in \Omega^{1,1}(X, \operatorname{End}(D))$$

- $(D, \nabla^{D''})$: holomorphic vector bundle.
- h^D : Hermitian metric on D.
- $\nabla^D = \nabla^{D''} + \nabla^{D'}$: Chern connection. (Unique unitary connection whose antiholomorphic part is given by the holomorphic structure.)
- We have

$$\left(\nabla^{D^{\prime\prime}}\right)^2 = 0, \qquad \left(\nabla^{D^\prime}\right)^2 = 0, \qquad \left(\nabla^D\right)^2 = \left[\nabla^{D^{\prime\prime}}, \nabla^{D^\prime}\right].$$

• $R^D = (\nabla^D)^2 \in \Omega^{1,1}(X, \operatorname{End}(D)).$

Definition

$$\operatorname{ch}(D, \nabla^{D''}, h^D) = \operatorname{Tr}\left[\exp(-R^D/2i\pi)\right] \in \Omega(X, \mathbf{C}).$$

Theorem (Chern-Weil, Bott-Chern)

 $\bigoplus_{n \in \mathbb{N}} \operatorname{ch}(D, \nabla^{Dn}, h^D) \in \bigoplus_{p} \Omega^{p,p}(X, \mathbf{R}) \text{ and } d\text{-}closed.$ $\bigoplus_{n \in \mathbb{N}} \operatorname{chno}(D, \nabla^{Dn}) = [\operatorname{ch}(D, \nabla^{Dn}, h^D)] \in \bigoplus_{n \in \mathbb{N}} H_{\mathrm{loc}}^{n,p}(X, \mathbf{R})$

Shu Shen

Definition

$$\operatorname{ch}(D,\nabla^{D\prime\prime},h^D)=\operatorname{Tr}\left[\exp(-R^D/2i\pi)\right]\in\Omega(X,\mathbf{C}).$$

Theorem (Chern-Weil, Bott-Chern)

independent of hD Oco

Definition

$$\operatorname{ch}(D,\nabla^{D\prime\prime},h^D)=\operatorname{Tr}\left[\exp(-R^D/2i\pi)\right]\in\Omega(X,\mathbf{C}).$$

Theorem (Chern-Weil, Bott-Chern)

- \bullet ch $(D, \nabla^{D''}, h^D) \in \bigoplus_p \Omega^{p,p}(X, \mathbf{R})$ and d-closed.

 $H_{
m BC}(X,{
m F})$

Definition

$$\operatorname{ch}(D, \nabla^{D''}, h^D) = \operatorname{Tr}\left[\exp(-R^D/2i\pi)\right] \in \Omega(X, \mathbf{C}).$$

Theorem (Chern-Weil, Bott-Chern)

- $\operatorname{ch}(D, \nabla^{D''}, h^D) \in \bigoplus_p \Omega^{p,p}(X, \mathbf{R})$ and d-closed.

independent of h^D . (holomorphic invariant!)

Definition

$$\mathrm{ch}(D,\nabla^{D\prime\prime},h^D)=\mathrm{Tr}\left[\exp(-R^D/2i\pi)\right]\in\Omega(X,\mathbf{C}).$$

Theorem (Chern-Weil, Bott-Chern)

- $\operatorname{ch}(D, \nabla^{D''}, h^D) \in \bigoplus_p \Omega^{p,p}(X, \mathbf{R})$ and d-closed.

independent of h^D . (holomorphic invariant!)

$$0 \longrightarrow D^r \stackrel{v}{\longrightarrow} D^{r+1} \stackrel{v}{\longrightarrow} \dots \stackrel{v}{\longrightarrow} D^{r'} \longrightarrow 0.$$

- D^i has a holomorphic structure ∇^{D^i}
- v is holomorphic, i.e., $[v, \nabla^{D''}] = 0$.
- $\Omega^{0,p}(X,D^q)$ has total degree p+q.
- $A'' = v + \nabla^{D''} : \Omega^{0, \bullet}(X, D^{\bullet}) \to [\Omega^{0, \bullet}(X, D^{\bullet})]^{+1}$ has total degree 1 and $(A'')^2 = 0$.
- \bullet A'' is an example of antiholomorphic superconnection

$$0 \longrightarrow D^r \stackrel{v}{\longrightarrow} D^{r+1} \stackrel{v}{\longrightarrow} \dots \stackrel{v}{\longrightarrow} D^{r'} \longrightarrow 0.$$

- D^i has a holomorphic structure ∇^{D^i} .
- v is holomorphic, i.e., $[v, \nabla^{D''}] = 0$.
- $\Omega^{0,p}(X,D^q)$ has total degree p+q.
- $A'' = v + \nabla^{D''} : \Omega^{0, \bullet}(X, D^{\bullet}) \to [\Omega^{0, \bullet}(X, D^{\bullet})]^{+1}$ has total degree 1 and $(A'')^2 = 0$.
- \bullet A" is an example of antiholomorphic superconnection

$$0 \longrightarrow D^r \stackrel{v}{\longrightarrow} D^{r+1} \stackrel{v}{\longrightarrow} \dots \stackrel{v}{\longrightarrow} D^{r'} \longrightarrow 0.$$

- D^i has a holomorphic structure ∇^{D^i} ".
- v is holomorphic, i.e., $[v, \nabla^{D''}] = 0$.
- $\Omega^{0,p}(X,D^q)$ has total degree p+q.
- $A'' = v + \nabla^{D''} : \Omega^{0, \bullet}(X, D^{\bullet}) \to [\Omega^{0, \bullet}(X, D^{\bullet})]^{+1}$ has total degree 1 and $(A'')^2 = 0$.
- \bullet A" is an example of antiholomorphic superconnection

$$0 \longrightarrow D^r \stackrel{v}{\longrightarrow} D^{r+1} \stackrel{v}{\longrightarrow} \dots \stackrel{v}{\longrightarrow} D^{r'} \longrightarrow 0 \ .$$

- D^i has a holomorphic structure ∇^{D^i} .
- v is holomorphic, i.e., $[v, \nabla^{D''}] = 0$.
- $\Omega^{0,p}(X,D^q)$ has total degree p+q.
- $A'' = v + \nabla^{D''} : \Omega^{0,\bullet}(X, D^{\bullet}) \to [\Omega^{0,\bullet}(X, D^{\bullet})]^{+1}$ has total degree 1 and $(A'')^2 = 0$.
- A'' is an example of antiholomorphic superconnection

$$0 \longrightarrow D^r \stackrel{v}{\longrightarrow} D^{r+1} \stackrel{v}{\longrightarrow} \dots \stackrel{v}{\longrightarrow} D^{r'} \longrightarrow 0.$$

- D^i has a holomorphic structure ∇^{D^i} ".
- v is holomorphic, i.e., $[v, \nabla^{D''}] = 0$.
- $\Omega^{0,p}(X, D^q)$ has total degree p+q.
- $A'' = v + \nabla^{D''} : \Omega^{0, \bullet}(X, D^{\bullet}) \to [\Omega^{0, \bullet}(X, D^{\bullet})]^{+1}$ has total degree 1 and $(A'')^2 = 0$.
- \bullet A" is an example of antiholomorphic superconnection

$$0 \longrightarrow D^r \xrightarrow{v} D^{r+1} \xrightarrow{v} \dots \xrightarrow{v} D^{r'} \longrightarrow 0.$$

- D^i has a holomorphic structure ∇^{D^i} ".
- v is holomorphic, i.e., $[v, \nabla^{D''}] = 0$.
- $\Omega^{0,p}(X,D^q)$ has total degree p+q.
- $A'' = v + \nabla^{D''} : \Omega^{0, \bullet}(X, D^{\bullet}) \to [\Omega^{0, \bullet}(X, D^{\bullet})]^{+1}$ has total degree 1 and $(A'')^2 = 0$.
- \bullet A'' is an example of antiholomorphic superconnection.

- h^D : **Z**-graded Hermitian metric on D^{\bullet} .
- $A' = v^* + \nabla^{D'}$ ("adjoint" of A'' w.r.t. h^D)
- A = A'' + A' (example of superconnection).
- $(A'')^2 = 0, (A')^2 = 0, A^2 = [A'', A'].$
- $\operatorname{ch}(D, A'', h^D) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}} \left[\exp(-A^2) \right]$

- h^D : **Z**-graded Hermitian metric on D^{\bullet} .
- $A' = v^* + \nabla^{D'}$ ("adjoint" of A'' w.r.t. h^D)
- A = A'' + A' (example of superconnection).
- $(A'')^2 = 0, (A')^2 = 0, A^2 = [A'', A'].$
- $\operatorname{ch}(D, A'', h^D) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}} \left[\exp(-A^2) \right]$

- h^D : **Z**-graded Hermitian metric on D^{\bullet} .
- $A' = v^* + \nabla^{D'}$ ("adjoint" of A'' w.r.t. h^D).
- A = A'' + A' (example of superconnection).
- $(A'')^2 = 0, (A')^2 = 0, A^2 = [A'', A'].$
- $\operatorname{ch}(D, A'', h^D) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}} \left[\exp(-A^2) \right].$

- h^D : **Z**-graded Hermitian metric on D^{\bullet} .
- $A' = v^* + \nabla^{D'}$ ("adjoint" of A'' w.r.t. h^D).
- A = A'' + A' (example of superconnection).
- $(A'')^2 = 0, (A')^2 = 0, A^2 = [A'', A'].$
- $\operatorname{ch}(D, A'', h^D) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}} \left[\exp(-A^2) \right].$

- h^D : **Z**-graded Hermitian metric on D^{\bullet} .
- $A' = v^* + \nabla^{D'}$ ("adjoint" of A'' w.r.t. h^D).
- A = A'' + A' (example of superconnection).
- $(A'')^2 = 0, (A')^2 = 0, A^2 = [A'', A'].$
- $\operatorname{ch}(D, A'', h^D) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}} \left[\exp(-A^2) \right].$

Theorem (Bismut-Gillet-Soulé)

 \bullet ch $(D, A'', h^D) \in \bigoplus_p \Omega^{p,p}(X, \mathbf{R})$ is d-closed.

- h^D : **Z**-graded Hermitian metric on D^{\bullet} .
- $A' = v^* + \nabla^{D'}$ ("adjoint" of A'' w.r.t. h^D).
- A = A'' + A' (example of superconnection).
- $(A'')^2 = 0, (A')^2 = 0, A^2 = [A'', A'].$
- $\operatorname{ch}(D, A'', h^D) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}} \left[\exp(-A^2) \right].$

- \bullet ch $(D, A'', h^D) \in \oplus_v \Omega^{p,p}(X, \mathbf{R})$ is d-closed.
- $\bigoplus_{i,D} \operatorname{cli_{BC}}(D,A'') = [\operatorname{ch}(D,A'',h^D)] \in \bigoplus_{p} H^{p,p}_{\mathrm{BC}}(X,\mathbf{R}) \text{ is independent}$

- h^D : **Z**-graded Hermitian metric on D^{\bullet} .
- $A' = v^* + \nabla^{D'}$ ("adjoint" of A'' w.r.t. h^D).
- A = A'' + A' (example of superconnection).
- $(A'')^2 = 0, (A')^2 = 0, A^2 = [A'', A'].$
- $\operatorname{ch}(D, A'', h^D) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}} \left[\exp(-A^2) \right].$

- \bullet ch $(D, A'', h^D) \in \bigoplus_p \Omega^{p,p}(X, \mathbf{R})$ is d-closed.

- h^D : **Z**-graded Hermitian metric on D^{\bullet} .
- $A' = v^* + \nabla^{D'}$ ("adjoint" of A'' w.r.t. h^D).
- A = A'' + A' (example of superconnection).
- $(A'')^2 = 0, (A')^2 = 0, A^2 = [A'', A'].$
- $\operatorname{ch}(D, A'', h^D) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}} \left[\exp(-A^2) \right].$

- \bullet ch $(D, A'', h^D) \in \bigoplus_p \Omega^{p,p}(X, \mathbf{R})$ is d-closed.
- ② ch_{BC}(D, A") = [ch(D, A", h^D)] ∈ ⊕_pH^{p,p}_{BC}(X, **R**) is independent of h^D.

- h^D : **Z**-graded Hermitian metric on D^{\bullet} .
- $A' = v^* + \nabla^{D'}$ ("adjoint" of A'' w.r.t. h^D).
- A = A'' + A' (example of superconnection).
- $(A'')^2 = 0, (A')^2 = 0, A^2 = [A'', A'].$
- $\operatorname{ch}(D, A'', h^D) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}} \left[\exp(-A^2) \right].$

- \bullet ch $(D, A'', h^D) \in \bigoplus_p \Omega^{p,p}(X, \mathbf{R})$ is d-closed.
- 3 $\operatorname{ch}_{BC}(D, A'') = \sum_{i} (-1)^{i} \operatorname{ch}_{BC}(D^{i}, \nabla^{D^{i}}).$

Definition

 $K^{\bullet}(X)$: Abelian group

Generators: holomorphic vector bundles.

$$\operatorname{ch}_{\operatorname{BC}}: K^{\bullet}(X) \to H_{\operatorname{BC}}(X, \mathbf{R}).$$

Definition

 $K^{\bullet}(X)$: Abelian group

- Generators: holomorphic vector bundles.
- Relations: if we have a short exact sequence,

$$0 \to E \to E' \to E'' \to 0$$

then E' = E + E''.

$$\operatorname{ch}_{\operatorname{BC}}: K^{\bullet}(X) \to H_{\operatorname{BC}}(X, \mathbf{R}).$$

Definition

 $K^{\bullet}(X)$: Abelian group

- Generators: holomorphic vector bundles.
- Relations: if we have a short exact sequence,

$$0 \to E \to E' \to E'' \to 0$$

then E' = E + E''.

$$\mathrm{ch}_{\mathrm{BC}}: K^{\bullet}(X) \to H_{\mathrm{BC}}(X,\mathbf{R})$$

Definition

 $K^{\bullet}(X)$: Abelian group

- Generators: holomorphic vector bundles.
- Relations: if we have a short exact sequence,

$$0 \to E \to E' \to E'' \to 0$$

then
$$E' = E + E''$$
.

$$\operatorname{ch}_{\operatorname{BC}}: K^{\bullet}(X) \to H_{\operatorname{BC}}(X, \mathbf{R}).$$

Definition

 $K^{\bullet}(X)$: Abelian group

- Generators: holomorphic vector bundles.
- Relations: if we have a short exact sequence,

$$0 \to E \to E' \to E'' \to 0$$

then E' = E + E''.

$$\operatorname{ch}_{\operatorname{BC}}: K^{\bullet}(X) \to H_{\operatorname{BC}}(X, \mathbf{R}).$$

- The category of holomorphic vector bundles is not good.
- If $f: D \to \underline{D}$ is a holomorphic bundle map, then ker f and im f are not holomorphic vector bundles.
- Holomorphic vector bundle and complex of holomorphic vector bundles can be generalized to coherent sheaves and \mathcal{O}_X -complex with coherent cohomologies,

$$0 \to \mathscr{F}^r \to \mathscr{F}^{r+1} \to \ldots \to \mathscr{F}^{r'} \to 0.$$

• $K^{\bullet}(X)$ can be generalised to K(X), K-group of coherent sheaves

An O_X -complex (\mathcal{F}^n, n) has coherent cohomologies iff for any small open set $U \subseteq X$, there exist a complex of holomorphic vector bundless (E_1, u_1) on U, and a quasi-isomorphism

$$(\underline{\mathscr{E}_{\mathcal{U}},v_{\mathcal{U}}}) \longrightarrow (\mathscr{F}^*,v)_{|\mathcal{U}^*}$$

- The category of holomorphic vector bundles is not good.
- If $f: D \to \underline{D}$ is a holomorphic bundle map, then ker f and im f are not holomorphic vector bundles.
- Holomorphic vector bundle and complex of holomorphic vector bundles can be generalized to coherent sheaves and \mathcal{O}_X -complex with coherent cohomologies,

$$0 \to \mathcal{F}^r \to \mathcal{F}^{r+1} \to \ldots \to \mathcal{F}^{r'} \to 0.$$

• $K^{\bullet}(X)$ can be generalised to K(X), K-group of coherent sheaves

- The category of holomorphic vector bundles is not good.
- If $f: D \to \underline{D}$ is a holomorphic bundle map, then $\ker f$ and $\operatorname{im} f$ are not holomorphic vector bundles.
- Holomorphic vector bundle and complex of holomorphic vector bundles can be generalized to coherent sheaves and \mathcal{O}_X -complex with coherent cohomologies,

$$0 \to \mathcal{F}^r \to \mathcal{F}^{r+1} \to \ldots \to \mathcal{F}^{r'} \to 0$$

• $K^{\bullet}(X)$ can be generalised to K(X), K-group of coherent sheaves

- The category of holomorphic vector bundles is not good.
- If $f: D \to \underline{D}$ is a holomorphic bundle map, then $\ker f$ and $\operatorname{im} f$ are not holomorphic vector bundles.
- Holomorphic vector bundle and complex of holomorphic vector bundles can be generalized to coherent sheaves and \mathcal{O}_X -complex with coherent cohomologies,

$$0 \to \mathscr{F}^r \to \mathscr{F}^{r+1} \to \ldots \to \mathscr{F}^{r'} \to 0.$$

• $K^{\bullet}(X)$ can be generalised to K(X), K-group of coherent sheaves

- The category of holomorphic vector bundles is not good.
- If $f: D \to \underline{D}$ is a holomorphic bundle map, then $\ker f$ and $\operatorname{im} f$ are not holomorphic vector bundles.
- Holomorphic vector bundle and complex of holomorphic vector bundles can be generalized to coherent sheaves and \mathcal{O}_X -complex with coherent cohomologies,

$$0 \to \mathscr{F}^r \to \mathscr{F}^{r+1} \to \ldots \to \mathscr{F}^{r'} \to 0.$$

• $K^{\bullet}(X)$ can be generalised to K(X), K-group of coherent sheaves.

Theorem

An \mathcal{O}_X -complex $(\mathscr{F}^{\bullet}, v)$ has coherent cohomologies iff for any small open set $U \subset X$, there exist a complex of holomorphic vector bundles (E_U, v_U) on U, and a quasi-isomorphism

$$\underbrace{(\mathcal{E}_U, v_U)} \longrightarrow (\mathscr{F}^{\bullet}, v)_{|U}.$$

sheaves of holo. sections in E_U

- The category of holomorphic vector bundles is not good.
- If $f: D \to \underline{D}$ is a holomorphic bundle map, then $\ker f$ and $\operatorname{im} f$ are not holomorphic vector bundles.
- Holomorphic vector bundle and complex of holomorphic vector bundles can be generalized to coherent sheaves and \mathcal{O}_X -complex with coherent cohomologies,

$$0 \to \mathscr{F}^r \to \mathscr{F}^{r+1} \to \ldots \to \mathscr{F}^{r'} \to 0.$$

• $K^{\bullet}(X)$ can be generalised to K(X), K-group of coherent sheaves.

Theorem

An \mathcal{O}_X -complex $(\mathscr{F}^{\bullet}, v)$ has coherent cohomologies iff for any small open set $U \subset X$, there exist a complex of holomorphic vector bundles (E_U, v_U) on U, and a quasi-isomorphism

$$(\mathscr{E}_U, v_U) \longrightarrow (\mathscr{F}^{\bullet}, v)_{|U}.$$

sheaves of holo. sections in E_U

- If X is projective, (E_U, v_U) exists globally, i.e., U = X
- In general, (E_U, v_U) exists only locally. (Voisin: a generic torus of dimension ≥ 3).
- $V^{0}(Y) \times V(Y)$ subsequent

- If X is projective, (E_U, v_U) exists globally, i.e., U = X.
- In general, (E_U, v_U) exists only locally. (Voisin: a generic torus of dimension ≥ 3).
- $K^{\bullet}(X) < K(X)$ subgroup

- If X is projective, (E_U, v_U) exists globally, i.e., U = X.
- In general, (E_U, v_U) exists only locally. (Voisin: a generic torus of dimension ≥ 3).
- $K^{\bullet}(X) < K(X)$ subgroup

- If X is projective, (E_U, v_U) exists globally, i.e., U = X.
- In general, (E_U, v_U) exists only locally. (Voisin: a generic torus of dimension ≥ 3).
- $K^{\bullet}(X) < K(X)$ subgroup.
 - If X is projective, $K^{\bullet}(X) = K(X)$.
 - In general, $K^{\bullet}(X) \neq K(X)$.

- If X is projective, (E_U, v_U) exists globally, i.e., U = X.
- In general, (E_U, v_U) exists only locally. (Voisin: a generic torus of dimension ≥ 3).
- $K^{\bullet}(X) < K(X)$ subgroup.
 - If X is projective, $K^{\bullet}(X) = K(X)$.
 - In general, $K^{\bullet}(X) \neq K(X)$

Global vs local

- If X is projective, (E_U, v_U) exists globally, i.e., U = X.
- In general, (E_U, v_U) exists only locally. (Voisin: a generic torus of dimension ≥ 3).
- $K^{\bullet}(X) < K(X)$ subgroup.
 - If X is projective, $K^{\bullet}(X) = K(X)$.
 - In general, $K^{\bullet}(X) \neq K(X)$.

Coherent sheaves

Block's antiholomorphic superconnections Chern-Weil theory for superconnecions

Questions

- Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ⓐ Is ch_{BC} compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes

Remark

Shu Shen

- Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ② Is ch_{BC} compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes

- **1** Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ② Is $\operatorname{ch_{BC}}$ compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes

Remark

Chow groups.

- Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ② Is $\operatorname{ch_{BC}}$ compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes!

Remarl

Chow groups.

Atiyah-Hirzebruch 1962: ch taking values in H_{dR} and RRG foundation

- Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ② Is ch_{BC} compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes!

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962 : ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy... 1980~1990.
- Grivaux (2010): ch taking values in $H_{\text{Deligne}}(X, \mathbf{Q})$ and RRG for projective morphism.
- Wu (2020): ch taking values in H_{BC}(X, Q) and RRG for projective morphism.
- Grivaux's unicity theorem: all the constructions of Chern Character are compatible

- **1** Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ② Is $\operatorname{ch_{BC}}$ compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes!

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962 : ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy...1980~1990.
- Grivaux (2010): ch taking values in $H_{\text{Deligne}}(X, \mathbf{Q})$ and RRG for projective morphism.
- Wu (2020): ch taking values in $H_{BC}(X, \mathbf{Q})$ and RRG for projective morphism.
- Grivaux's unicity theorem: all the constructions of Chern Character are compatible

- **1** Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ② Is $\operatorname{ch_{BC}}$ compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes!

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962 : ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy...1980~1990.
- Grivaux (2010): ch taking values in $H_{\text{Deligne}}(X, \mathbf{Q})$ and RRG for projective morphism.
- Wu (2020): ch taking values in $H_{BC}(X, \mathbf{Q})$ and RRG for projective morphism.
- Grivaux's unicity theorem: all the constructions of Chern Character are compatible

- Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ② Is $\operatorname{ch_{BC}}$ compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes!

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962 : ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy...1980~1990.
- Grivaux (2010): ch taking values in $H_{\text{Deligne}}(X, \mathbf{Q})$ and RRG for projective morphism.
- Wu (2020): ch taking values in $H_{BC}(X, \mathbf{Q})$ and RRG for projective morphism.
- Grivaux's unicity theorem: all the constructions of Chern Character are compatible

- Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ② Is $\operatorname{ch_{BC}}$ compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes!

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962 : ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy...1980~1990.
- Grivaux (2010): ch taking values in $H_{\text{Deligne}}(X, \mathbf{Q})$ and RRG for projective morphism.
- Wu (2020): ch taking values in $H_{BC}(X, \mathbf{Q})$ and RRG for projective morphism.
- Grivaux's unicity theorem: all the constructions of Chern Character are compatible.

- Is there a Chern Character $\operatorname{ch}_{\operatorname{BC}}:K(X)\to H_{\operatorname{BC}}(X,\mathbf{R})$?
- ② Is $\operatorname{ch_{BC}}$ compatible with the direct image associated to $f: X \to Y$ (RRG)?

Bismut-S.-Wei 2021: yes!

- Grothendieck 1956: X, Y are projective and ch with taking in Chow groups.
- Atiyah-Hirzebruch 1962 : ch taking values in H_{dR} and RRG for immersion.
- Green, O'Brian, Toledo, Tong, Levy...1980~1990.
- Grivaux (2010): ch taking values in $H_{\text{Deligne}}(X, \mathbf{Q})$ and RRG for projective morphism.
- Wu (2020): ch taking values in $H_{BC}(X, \mathbf{Q})$ and RRG for projective morphism.
- Grivaux's unicity theorem: all the constructions of Chern Character are compatible.

•
$$D^{\bullet} = \bigoplus_{i=r}^{r'} D^i$$
: **Z**-graded smooth vector bundles on X .

Definition (Quillen 85, Block 2010)

 $A'': \Omega^{0,\bullet}(X,D^{\bullet}) \to [\Omega^{0,\bullet}(X,D^{\bullet})]^{+1}$ of total degree 1 is called an anti-holomorphic superconnection, if

•
$$D^{\bullet} = \bigoplus_{i=r}^{r'} D^i : \mathbf{Z}$$
-graded smooth vector bundles on X .

Definition (Quillen 85, Block 2010)

 $A'': \Omega^{0,\bullet}(X, D^{\bullet}) \to [\Omega^{0,\bullet}(X, D^{\bullet})]^{+1}$ of total degree 1 is called an anti holomorphic superconnection, if

 $A'' = v_0 + \nabla^{D''} + v_2 + \dots$ where $v_i \in \Omega^{0,i}(X, \operatorname{End}^{1-i}(D))$ and $\nabla^{D''}$ antiholograph of some connection

• $D^{\bullet} = \bigoplus_{i=r}^{r'} D^i : \mathbf{Z}$ -graded smooth vector bundles on X.

Definition (Quillen 85, Block 2010)

 $A'': \Omega^{0,\bullet}(X, D^{\bullet}) \to [\Omega^{0,\bullet}(X, D^{\bullet})]^{+1}$ of total degree 1 is called an anti-holomorphic superconnection, if

- ① $A'' = v_0 + \nabla^{D''} + v_2 + \dots$ where $v_i \in \Omega^{0,i}(X, \operatorname{End}^{1-i}(D))$ and $\nabla^{D''}$ antiholo. part of some connection,
- $(A'')^2 = 0.$

• $D^{\bullet} = \bigoplus_{i=r}^{r'} D^i : \mathbf{Z}$ -graded smooth vector bundles on X.

Definition (Quillen 85, Block 2010)

 $A'': \Omega^{0,\bullet}(X, D^{\bullet}) \to [\Omega^{0,\bullet}(X, D^{\bullet})]^{+1}$ of total degree 1 is called an anti-holomorphic superconnection, if

- **4** $A'' = v_0 + \nabla^{D''} + v_2 + \dots$ where $v_i \in \Omega^{0,i}(X, \operatorname{End}^{1-i}(D))$ and $\nabla^{D''}$ antiholo. part of some connection,
- $(A'')^2 = 0.$

• $D^{\bullet} = \bigoplus_{i=r}^{r'} D^i : \mathbf{Z}$ -graded smooth vector bundles on X.

Definition (Quillen 85, Block 2010)

 $A'': \Omega^{0,\bullet}(X, D^{\bullet}) \to [\Omega^{0,\bullet}(X, D^{\bullet})]^{+1}$ of total degree 1 is called an anti-holomorphic superconnection, if

- **4** $A'' = v_0 + \nabla^{D''} + v_2 + \dots$ where $v_i \in \Omega^{0,i}(X, \operatorname{End}^{1-i}(D))$ and $\nabla^{D''}$ antiholo. part of some connection,
- $(A'')^2 = 0.$

An example

If
$$v_2 = v_3 = \dots = 0$$
, then
$$(A'')^2 = 0 \iff v_0^2 = 0, \left[\nabla^{D''}, v_0\right] = 0, (\nabla^{D''})^2 = 0.$$

By Koszul-Malgrange/Newlander-Nirenberg, (D, v_0) is a complex of holomorphic vector bundles.

• Given (D^{\bullet}, A'') , we can define a \mathcal{O}_X -complex $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ by

$$U \subset X \text{ open } \to \left(\Omega^{0,\bullet}(U, D^{\bullet}|_U), A''|_U\right).$$

Theorem (Block 2010, Bismut-S.-Wei 2021

⊕ B (D , A) has collected to the "object of the collected to the

• Given (D^{\bullet}, A'') , we can define a \mathcal{O}_X -complex $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ by

$$U \subset X \text{ open } \to (\Omega^{0,\bullet}(U, D^{\bullet}|_U), A''|_U).$$

Theorem (Block 2010, Bismut-S.-Wei 2021

 $\mathcal{E}^{\bullet}(D^{\bullet}, A'')$ has coherent cohomologies.

Proof

• Given (D^{\bullet}, A'') , we can define a \mathcal{O}_X -complex $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ by

$$U \subset X \text{ open } \to \left(\Omega^{0,\bullet}(U, D^{\bullet}|_U), A''|_U\right).$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

- $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ has coherent cohomologies
- 2 Every $(\mathcal{F}^{\bullet}, v)$ can be "obtained" in this way.

Prooi

• Given (D^{\bullet}, A'') , we can define a \mathcal{O}_X -complex $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ by

$$U \subset X \text{ open } \to \left(\Omega^{0,\bullet}(U, D^{\bullet}|_U), A''|_U\right).$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

- $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ has coherent cohomologies.
- ② Every $(\mathscr{F}^{\bullet}, v)$ can be "obtained" in this way.

Proof

• Locally, after conjugason, $A'' \simeq v + \nabla''$ (extension of

Koszul-Malgrange/Newlander-Nirenberg)

* $(D^*,A'') \to \mathcal{E}^*(D^*,A'')$ defines an equivalence of categories.

• Given (D^{\bullet}, A'') , we can define a \mathcal{O}_X -complex $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ by

$$U \subset X \text{ open } \to \left(\Omega^{0,\bullet}(U, D^{\bullet}|_U), A''|_U\right).$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

- $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ has coherent cohomologies.
- 2 Every $(\mathscr{F}^{\bullet}, v)$ can be "obtained" in this way.

Proof

ocally, after conjugason, $A'' \simeq v + \nabla''$ (extension of

Koszul-Malgrange/Newlander-Nirenberg)

• $(D^{\bullet}, A'') \to \mathcal{E}^{\bullet}(D^{\bullet}, A'')$ defines an equivalence of categories

• Given (D^{\bullet}, A'') , we can define a \mathcal{O}_X -complex $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ by

$$U \subset X \text{ open } \to \left(\Omega^{0,\bullet}(U, D^{\bullet}|_U), A''|_U\right).$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

- $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ has coherent cohomologies.
- 2 Every $(\mathscr{F}^{\bullet}, v)$ can be "obtained" in this way.

Proof.

- Locally, after conjugason, $A'' \simeq v + \nabla''$ (extension of Koszul-Malgrange/Newlander-Nirenberg).
- $(D^{\bullet}, A'') \to \mathscr{E}^{\bullet}(D^{\bullet}, A'')$ defines an equivalence of categories

• Given (D^{\bullet}, A'') , we can define a \mathcal{O}_X -complex $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ by

$$U \subset X \text{ open } \to \left(\Omega^{0,\bullet}(U, D^{\bullet}|_U), A''|_U\right).$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

- $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ has coherent cohomologies.
- **2** Every $(\mathscr{F}^{\bullet}, v)$ can be "obtained" in this way.

Proof.

- Locally, after conjugason, $A'' \simeq v + \nabla''$ (extension of Koszul-Malgrange/Newlander-Nirenberg).
- $(D^{\bullet}, A'') \to \mathscr{E}^{\bullet}(D^{\bullet}, A'')$ defines an equivalence of categories.

• Given (D^{\bullet}, A'') , we can define a \mathcal{O}_X -complex $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ by

$$U \subset X \text{ open } \to \left(\Omega^{0,\bullet}(U, D^{\bullet}|_U), A''|_U\right).$$

Theorem (Block 2010, Bismut-S.-Wei 2021)

- $\mathscr{E}^{\bullet}(D^{\bullet}, A'')$ has coherent cohomologies.
- **2** Every $(\mathscr{F}^{\bullet}, v)$ can be "obtained" in this way.

Proof.

- Locally, after conjugason, $A'' \simeq v + \nabla''$ (extension of Koszul-Malgrange/Newlander-Nirenberg).
- $(D^{\bullet}, A'') \to \mathscr{E}^{\bullet}(D^{\bullet}, A'')$ defines an equivalence of categories.

- h: **Z**-graded Hermitian metric on D•.
- A = A'' + A': unitary superconnection.
- $(A'')^2 = 0, (A')^2 = 0$ and $A^2 = [A'', A'].$

Definition

$$ch(D, A'', h) = \frac{1}{(2i\pi)^{N/2}} Tr_s[exp(-A^2)].$$

- h: **Z**-graded Hermitian metric on D•.
- A = A'' + A': unitary superconnection.
- $(A'')^2 = 0, (A')^2 = 0$ and $A^2 = [A'', A'].$

Definition

 $ch(D, A'', h) = \frac{1}{(2i\pi)^{N/2}} Tr_s[exp(-A^2)]$

- h: **Z**-graded Hermitian metric on D•.
- A = A'' + A': unitary superconnection.
- $(A'')^2 = 0, (A')^2 = 0$ and $A^2 = [A'', A'].$

Definition

$$ch(D, A'', h) = \frac{1}{(2i\pi)^{N/2}} Tr_s[exp(-A^2)].$$

- h: **Z**-graded Hermitian metric on D•.
- A = A'' + A': unitary superconnection.
- $(A'')^2 = 0, (A')^2 = 0$ and $A^2 = [A'', A'].$

Definition

$$ch(D, A'', h) = \frac{1}{(2i\pi)^{N/2}} Tr_s[\exp(-A^2)].$$

- h: **Z**-graded Hermitian metric on D•.
- A = A'' + A': unitary superconnection.
- $(A'')^2 = 0, (A')^2 = 0$ and $A^2 = [A'', A'].$

Definition

$$ch(D, A'', h) = \frac{1}{(2i\pi)^{N/2}} Tr_s[\exp(-A^2)].$$

- h: **Z**-graded Hermitian metric on D•.
- A = A'' + A': unitary superconnection.
- $(A'')^2 = 0, (A')^2 = 0$ and $A^2 = [A'', A'].$

Definition

$$ch(D, A'', h) = \frac{1}{(2i\pi)^{N/2}} Tr_s[\exp(-A^2)].$$

- \bullet ch $(D, A'', h) \in \bigoplus_p \Omega^{p,p}(X, \mathbf{R})$ and d-closed.
- \circ ch_{BC} $(D, A'') = [\operatorname{ch}(D, A'', h)]$ in $H_{BC}(X, \mathbf{R})$ is independent of h.
- \bullet ch_{BC} descends to $K(X) \to H_{BC}(X, \mathbf{R})$

- h: **Z**-graded Hermitian metric on D•.
- A = A'' + A': unitary superconnection.
- $(A'')^2 = 0, (A')^2 = 0$ and $A^2 = [A'', A'].$

Definition

$$ch(D, A'', h) = \frac{1}{(2i\pi)^{N/2}} Tr_s[\exp(-A^2)].$$

- \bullet ch $(D, A'', h) \in \bigoplus_p \Omega^{p,p}(X, \mathbf{R})$ and d-closed.
- \circ ch_{BC} $(D, A'') = [\operatorname{ch}(D, A'', h)]$ in $H_{BC}(X, \mathbf{R})$ is independent of h.
- **3** ch_{BC} descends to $K(X) \to H_{BC}(X, \mathbf{R})$.

Proof of RRG: strategy

- Write $f = \pi \circ i$ where
 - $i: X \to X \times Y$ (graph of f) immersion.
 - $\pi: X \times Y \to Y$ projection.
- Thanks to $f_! = \pi_! i_!$ and $f_* = \pi_* i_*$, we need only to show the following two diagrams commute.

$$\begin{split} K(X) & \xrightarrow{i_!} K(X \times Y) & \xrightarrow{\pi_!} K(Y) \\ & \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}} \bigvee_{} & \operatorname{Td}_{\operatorname{BC}}(T(X \times Y)) \operatorname{ch}_{\operatorname{BC}} \bigvee_{} & \operatorname{Td}_{\operatorname{BC}}(TY) \operatorname{ch}_{\operatorname{BC}} \bigvee_{} \\ & H_{\operatorname{BC}}(X, \mathbf{R}) & \xrightarrow{i_*} H_{\operatorname{BC}}(X \times Y, \mathbf{R}) & \xrightarrow{\pi_*} H_{\operatorname{BC}}(Y, \mathbf{R}) \end{split}$$

Proof of RRG: strategy

- Write $f = \pi \circ i$ where
 - $i: X \to X \times Y$ (graph of f) immersion.
 - $\pi: X \times Y \to Y$ projection.
- Thanks to $f_! = \pi_! i_!$ and $f_* = \pi_* i_*$, we need only to show the following two diagrams commute.

Proof of RRG: strategy

- Write $f = \pi \circ i$ where
 - $i: X \to X \times Y$ (graph of f) immersion.
 - $\pi: X \times Y \to Y$ projection.
- Thanks to $f_! = \pi_! i_!$ and $f_* = \pi_* i_*$, we need only to show the following two diagrams commute.

$$\begin{split} K(X) & \xrightarrow{i_!} K(X \times Y) & \xrightarrow{\pi_!} K(Y) \\ & \text{Td}_{\text{BC}}(TX) \text{ch}_{\text{BC}} \Big| & \text{Td}_{\text{BC}}(T(X \times Y)) \text{ch}_{\text{BC}} \Big| & \text{Td}_{\text{BC}}(TY) \text{ch}_{\text{BC}} \Big| \\ & H_{\text{BC}}(X, \mathbf{R}) & \xrightarrow{i_*} H_{\text{BC}}(X \times Y, \mathbf{R}) & \xrightarrow{\pi_*} H_{\text{BC}}(Y, \mathbf{R}) \end{split}$$

.

RRG for immersions: deformation to normal cone

$$W = \mathrm{Bl}_{X \times \infty}(Y \times \mathbf{P}^1).$$

$$W = \mathrm{Bl}_{X \times \infty}(Y \times \mathbf{P}^1).$$

Deform an immersion $X \to Y$ to an other immersion

$$X \to \mathbf{P}(N_{X \times \infty/Y \times \mathbf{P}^1}).$$

- $\pi: M = X \times S \to S$.
 - Assume $\mathscr{F} = \mathscr{E}^{\bullet}(D^{\bullet}, A'') \in K(M)$.
- We need to show

$$\mathrm{ch}_{\mathrm{BC}}(\pi_{!}\mathscr{F}) = \int_{X} \mathrm{Td}_{\mathrm{BC}}(TX) \mathrm{ch}_{\mathrm{BC}}(D^{\bullet}, A'') \text{ in } H_{\mathrm{BC}}(S, \mathbf{R})$$

- $\mathcal{D}^{\bullet} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$: infinite dimensional **Z**-graded vector bundle on S.
- $\Omega^{0,\bullet}(S,\mathcal{D}^{\bullet}) = \Omega^{0,\bullet}(M,\mathcal{D}^{\bullet}).$
- Antiholomorphic superconnection A'' = A''.
- $\pi_! \mathscr{F} = \mathscr{E}^{\bullet}(\mathcal{D}^{\bullet}, \mathcal{A}'')$

- $\pi: M = X \times S \to S$.
- Assume $\mathscr{F} = \mathscr{E}^{\bullet}(D^{\bullet}, A'') \in K(M)$.
- We need to show

$$\operatorname{ch}_{\operatorname{BC}}(\pi_!\mathscr{F}) = \int_X \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D^{\bullet}, A'') \text{ in } H_{\operatorname{BC}}(S, \mathbf{R})$$

- $\mathcal{D}^{\bullet} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$: infinite dimensional **Z**-graded vector bundle on S.
- $\Omega^{0,\bullet}(S,\mathcal{D}^{\bullet}) = \Omega^{0,\bullet}(M,\mathcal{D}^{\bullet}).$
- Antiholomorphic superconnection A'' = A''.
- $\pi_! \mathscr{F} = \mathscr{E}^{\bullet}(\mathcal{D}^{\bullet}, \mathcal{A}'')$

- $\pi: M = X \times S \to S$.
- Assume $\mathscr{F} = \mathscr{E}^{\bullet}(D^{\bullet}, A'') \in K(M)$.
- We need to show

$$\operatorname{ch}_{\operatorname{BC}}(\pi_!\mathscr{F}) = \int_X \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D^{\bullet}, A'') \text{ in } H_{\operatorname{BC}}(S, \mathbf{R})$$

- $\mathcal{D}^{\bullet} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$: infinite dimensional **Z**-graded vector bundle on S.
- Antiholomorphic superconnection A'' = A''.
- $\pi_! \mathscr{F} = \mathscr{E}^{\bullet}(\mathcal{D}^{\bullet}, \mathcal{A}'')$

- $\pi: M = X \times S \to S$.
- Assume $\mathscr{F} = \mathscr{E}^{\bullet}(D^{\bullet}, A'') \in K(M)$.
- We need to show

$$\operatorname{ch}_{\operatorname{BC}}(\pi_!\mathscr{F}) = \int_X \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D^{\bullet}, A'') \text{ in } H_{\operatorname{BC}}(S, \mathbf{R})$$

- $\mathcal{D}^{\bullet} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$: infinite dimensional **Z**-graded vector bundle on S.
- $\Omega^{0,\bullet}(S,\mathcal{D}^{\bullet}) = \Omega^{0,\bullet}(M,\mathcal{D}^{\bullet}).$
- Antiholomorphic superconnection A'' = A''
- $\pi_! \mathscr{F} = \mathscr{E}^{\bullet}(\mathcal{D}^{\bullet}, \mathcal{A}'')$

- \bullet $\pi: M = X \times S \rightarrow S.$
- Assume $\mathscr{F} = \mathscr{E}^{\bullet}(D^{\bullet}, A'') \in K(M)$.
- We need to show

$$\operatorname{ch}_{\operatorname{BC}}(\pi_!\mathscr{F}) = \int_X \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D^{\bullet}, A'') \text{ in } H_{\operatorname{BC}}(S, \mathbf{R})$$

- $\mathcal{D}^{\bullet} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$: infinite dimensional **Z**-graded vector bundle on S.
- $\bullet \ \Omega^{0,\bullet}(S,\mathcal{D}^{\bullet}) = \Omega^{0,\bullet}(M,D^{\bullet}).$
- Antiholomorphic superconnection A'' = A''.
- $\pi_! \mathscr{F} = \mathscr{E}^{\bullet}(\mathcal{D}^{\bullet}, \mathcal{A}'')$

- $\pi: M = X \times S \to S$.
- Assume $\mathscr{F} = \mathscr{E}^{\bullet}(D^{\bullet}, A'') \in K(M)$.
- We need to show

$$\operatorname{ch}_{\operatorname{BC}}(\pi_!\mathscr{F}) = \int_X \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D^{\bullet}, A'') \text{ in } H_{\operatorname{BC}}(S, \mathbf{R})$$

- $\mathcal{D}^{\bullet} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$: infinite dimensional **Z**-graded vector bundle on S.
- $\Omega^{0,\bullet}(S,\mathcal{D}^{\bullet}) = \Omega^{0,\bullet}(M,D^{\bullet}).$
- Antiholomorphic superconnection A'' = A''.

•
$$\pi_! \mathscr{F} = \mathscr{E}^{\bullet}(\mathcal{D}^{\bullet}, \mathcal{A}'')$$

- $\pi: M = X \times S \to S$.
- Assume $\mathscr{F} = \mathscr{E}^{\bullet}(D^{\bullet}, A'') \in K(M)$.
- We need to show

$$\operatorname{ch}_{\operatorname{BC}}(\pi_!\mathscr{F}) = \int_X \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D^{\bullet}, A'') \text{ in } H_{\operatorname{BC}}(S, \mathbf{R})$$

- $\mathcal{D}^{\bullet} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$: infinite dimensional **Z**-graded vector bundle on S.
- $\Omega^{0,\bullet}(S, \mathcal{D}^{\bullet}) = \Omega^{0,\bullet}(M, \mathcal{D}^{\bullet}).$
- Antiholomorphic superconnection A'' = A''.
- $\pi_! \mathscr{F} = \mathscr{E}^{\bullet}(\mathcal{D}^{\bullet}, \mathcal{A}'').$

- Given metrics g^D and g^{TX} , we can define an L^2 -metric on $\mathcal{D} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$.
- A = A'' + A', A^2 fibrewise elliptic.
- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}}[\exp(-\mathcal{A}^2)].$

Theorem (Bismut-S.-Wei 2021)

Proof.

spectral truncation + fibrewise Hodge theory.

- Given metrics g^D and g^{TX} , we can define an L^2 -metric on $\mathcal{D} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$.
- A = A'' + A', A^2 fibrewise elliptic
- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{s}[\exp(-\mathcal{A}^2)].$

Theorem (Bismut-S.-Wei 2021)

Proof.

spectral truncation + fibrewise Hodge theory.

- Given metrics g^D and g^{TX} , we can define an L^2 -metric on $\mathcal{D} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$.
- A = A'' + A', A^2 fibrewise elliptic.
- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}}[\exp(-\mathcal{A}^2)].$

Theorem (Bismut-S.-Wei 2021)

 $igoplus \operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) \in \oplus_p \Omega^{p,p}(S, \mathbf{R}) \text{ and } d\text{-closed.}$

 Its class ch_{BC}(D, A") in H_{BC}(S, R) is independent of g^D, g^{TN} and

Proof

spectral truncation + fibrewise Hodge theory

- Given metrics g^D and g^{TX} , we can define an L^2 -metric on $\mathcal{D} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$.
- A = A'' + A', A^2 fibrewise elliptic.
- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}}[\exp(-\mathcal{A}^2)].$

Theorem (Bismut-S.-Wei 2021)

• Its class $\operatorname{ch}_{\mathrm{BC}}(\mathcal{D}, A'')$ in $H_{\mathrm{BC}}(S, \mathbf{R})$ is independent of g^D, g^{TX} and

spectral truncation + fibrewise Hodge theory.

- Given metrics g^D and g^{TX} , we can define an L^2 -metric on $\mathcal{D} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$.
- A = A'' + A', A^2 fibrewise elliptic.
- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}}[\exp(-\mathcal{A}^2)].$

Theorem (Bismut-S.-Wei 2021)

- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) \in \bigoplus_p \Omega^{p,p}(S, \mathbf{R})$ and d-closed.
- ② Its class $\operatorname{ch}_{\operatorname{BC}}(\mathcal{D}, \mathcal{A}'')$ in $H_{\operatorname{BC}}(S, \mathbf{R})$ is independent of g^D, g^{TX} , and

$$\operatorname{ch}_{\operatorname{BC}}(\mathcal{D}, \mathcal{A}'') = \operatorname{ch}_{\operatorname{BC}}(\pi_! \mathcal{F}).$$

Proof

spectral truncation + fibrewise Hodge theory

- Given metrics g^D and g^{TX} , we can define an L^2 -metric on $\mathcal{D} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$.
- A = A'' + A', A^2 fibrewise elliptic.
- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}}[\exp(-\mathcal{A}^2)].$

Theorem (Bismut-S.-Wei 2021)

- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) \in \bigoplus_p \Omega^{p,p}(S, \mathbf{R})$ and d-closed.
- ② Its class $\operatorname{ch}_{\operatorname{BC}}(\mathcal{D}, \mathcal{A}'')$ in $H_{\operatorname{BC}}(S, \mathbf{R})$ is independent of g^D, g^{TX} , and

$$\mathrm{ch}_{\mathrm{BC}}(\mathcal{D},\mathcal{A}'') = \mathrm{ch}_{\mathrm{BC}}(\pi_!\mathcal{F}).$$

Proof

spectral truncation + fibrewise Hodge theory.

- Given metrics g^D and g^{TX} , we can define an L^2 -metric on $\mathcal{D} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$.
- A = A'' + A', A^2 fibrewise elliptic.
- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}}[\exp(-\mathcal{A}^2)].$

Theorem (Bismut-S.-Wei 2021)

- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) \in \bigoplus_p \Omega^{p,p}(S, \mathbf{R})$ and d-closed.
- ② Its class $\operatorname{ch}_{\operatorname{BC}}(\mathcal{D}, \mathcal{A}'')$ in $H_{\operatorname{BC}}(S, \mathbf{R})$ is independent of g^D, g^{TX} , and

$$\operatorname{ch}_{\operatorname{BC}}(\mathcal{D},\mathcal{A}'') = \operatorname{ch}_{\operatorname{BC}}(\pi_! \mathcal{F}).$$

Proof.

spectral truncation + fibrewise Hodge theory.

- Given metrics g^D and g^{TX} , we can define an L^2 -metric on $\mathcal{D} = \Omega^{0,\bullet}(X, D^{\bullet}|_X)$.
- $\mathcal{A} = \mathcal{A}'' + \mathcal{A}'$, \mathcal{A}^2 fibrewise elliptic.
- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) = \frac{1}{(2i\pi)^{N/2}} \operatorname{Tr}_{\mathbf{s}}[\exp(-\mathcal{A}^2)].$

Theorem (Bismut-S.-Wei 2021)

- $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}) \in \bigoplus_p \Omega^{p,p}(S, \mathbf{R})$ and d-closed.
- ② Its class $\operatorname{ch}_{\operatorname{BC}}(\mathcal{D}, \mathcal{A}'')$ in $H_{\operatorname{BC}}(S, \mathbf{R})$ is independent of g^D, g^{TX} , and

$$\operatorname{ch}_{\operatorname{BC}}(\mathcal{D},\mathcal{A}'') = \operatorname{ch}_{\operatorname{BC}}(\pi_! \mathcal{F}).$$

Proof.

spectral truncation + fibrewise Hodge theory.

$$ch_{BC}(\pi_{!}\mathscr{F}) = ch_{BC}(\mathcal{D}, \mathcal{A}'') = ind(\mathcal{A}_{+})$$

$$= \int_{X} Td_{BC}(TX)ch_{BC}(D, A'').$$

- S general : family index theory of Atiyah-Singer implies RRG in H_{dR} .
- \bullet To get RRG in $H_{\rm BC}$, we need the local family index theorem.

$$\begin{aligned} \operatorname{ch}_{\operatorname{BC}}(\pi_{!}\mathscr{F}) &= \operatorname{ch}_{\operatorname{BC}}(\mathcal{D}, \mathcal{A}'') = \operatorname{ind}(\mathcal{A}_{+}) \\ &= \int_{X} \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D, A''). \end{aligned}$$

- S general : family index theory of Atiyah-Singer implies RRG in H_{dR} .
- To get RRG in $H_{\rm BC}$, we need the local family index theorem.

$$\begin{aligned} \operatorname{ch}_{\operatorname{BC}}(\pi_{!}\mathscr{F}) &= \operatorname{ch}_{\operatorname{BC}}(\mathcal{D}, \mathcal{A}'') = \operatorname{ind}(\mathcal{A}_{+}) \\ &= \int_{X} \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D, A''). \end{aligned}$$

- S general : family index theory of Atiyah-Singer implies RRG in H_{dR} .
- To get RRG in $H_{\rm BC}$, we need the local family index theorem.

$$\begin{aligned} \operatorname{ch}_{\operatorname{BC}}(\pi_{!}\mathscr{F}) &= \operatorname{ch}_{\operatorname{BC}}(\mathcal{D}, \mathcal{A}'') = \operatorname{ind}(\mathcal{A}_{+}) \\ &= \int_{X} \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D, A''). \end{aligned}$$

- S general : family index theory of Atiyah-Singer implies RRG in H_{dR} .
- To get RRG in $H_{\rm BC}$, we need the local family index theorem.

- J^{TX} complex structure on X, $\omega^X = g^{TX}(\cdot, J^{TX}\cdot)$.
- If $\overline{\partial}^X \partial^X \omega^X = 0$, by local family index theorem, as $t \to 0$,

$$\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^D, g^{TX}/t) \to \operatorname{some limit in } \Omega(S, \mathbf{R})$$

$$\equiv \int_X \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D, A'') \text{ in } H_{\operatorname{BC}}(S, \mathbf{R}).$$

- J^{TX} complex structure on X, $\omega^X = g^{TX}(\cdot, J^{TX}\cdot)$.
- If $\partial^{A} \omega^{A} = 0$, by local family index theorem, as $t \to 0$, $\operatorname{ch}(\mathcal{D}, \mathcal{A}'', g^{D}, g^{TX}/t) \to \text{some limit in } \Omega(S, \mathbf{R})$

$$\equiv \int_X \mathrm{Td}_{\mathrm{BC}}(TX) \mathrm{ch}_{\mathrm{BC}}(D,A'') \text{ in } H_{\mathrm{BC}}(S,\mathbf{R})$$

- J^{TX} complex structure on X, $\omega^X = g^{TX}(\cdot, J^{TX}\cdot)$.
- If $\overline{\partial}^X \partial^X \omega^X = 0$, by local family index theorem, as $t \to 0$,

$$\begin{split} \operatorname{ch}(\mathcal{D},\mathcal{A}'',g^D,g^{TX}/t) \to & \operatorname{some\ limit\ in}\ \Omega(S,\mathbf{R}) \\ &\equiv \int_X \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D,A'') \ \text{in}\ H_{\operatorname{BC}}(S,\mathbf{R}). \end{split}$$

- J^{TX} complex structure on X, $\omega^X = g^{TX}(\cdot, J^{TX}\cdot)$.
- If $\overline{\partial}^X \partial^X \omega^X = 0$, by local family index theorem, as $t \to 0$,

$$\begin{split} \operatorname{ch}(\mathcal{D},\mathcal{A}'',g^D,g^{TX}/t) \to & \operatorname{some\ limit\ in}\ \Omega(S,\mathbf{R}) \\ &\equiv \int_X \operatorname{Td}_{\operatorname{BC}}(TX) \operatorname{ch}_{\operatorname{BC}}(D,A'') \ \text{in}\ H_{\operatorname{BC}}(S,\mathbf{R}). \end{split}$$

Dolbeault-Koszul resolution

• $\mathcal{X} = TX$. $Y \in C^{\infty}(\mathcal{X}, \pi^*TX)$.

- $i: X \to \mathcal{X}$ by zero section.
- Dolbeault-Koszul: $i_!\mathcal{O}_X = \mathscr{E}^{\bullet} \left(\pi^* \Lambda^{\bullet}(T^*X), \overline{\partial}^{\mathcal{X}} + i_Y \right)$.

Dolbeault-Koszul resolution

• $\mathcal{X} = TX$. $Y \in C^{\infty}(\mathcal{X}, \pi^*TX)$.

- $i: X \to \mathcal{X}$ by zero section.
- Dolbeault-Koszul: $i_!\mathcal{O}_X = \mathscr{E}^{\bullet} \left(\pi^* \Lambda^{\bullet}(T^*X), \overline{\partial}^{\mathcal{X}} + i_Y \right)$.

Dolbeault-Koszul resolution

• $\mathcal{X} = TX$. $Y \in C^{\infty}(\mathcal{X}, \pi^*TX)$.

- $i: X \to \mathcal{X}$ by zero section.
- Dolbeault-Koszul: $i_!\mathcal{O}_X = \mathscr{E}^{\bullet}\left(\pi^*\Lambda^{\bullet}(T^*X), \overline{\partial}^{\mathcal{X}} + i_Y\right)$.

Enlarge the fibration

• $i_{!}\mathcal{F}$ and \mathcal{F} are expected to have the same direct image on S.

•
$$i_! \mathscr{F} = \mathscr{E}^{\bullet} \left(\underline{\pi}^* \left(\Lambda(T^*X) \widehat{\otimes} D \right), \underline{\pi}^* A'' + i_Y \right)$$

Enlarge the fibration

• $i_! \mathscr{F}$ and \mathscr{F} are expected to have the same direct image on S.

•
$$i_! \mathscr{F} = \mathscr{E}^{\bullet} \left(\underline{\pi}^* \left(\Lambda(T^*X) \widehat{\otimes} D \right), \underline{\pi}^* A'' + i_Y \right)$$

Enlarge the fibration

- $i_!\mathscr{F}$ and \mathscr{F} are expected to have the same direct image on S.
- $i_! \mathscr{F} = \mathscr{E}^{\bullet} \left(\underline{\pi}^* \left(\Lambda(T^*X) \widehat{\otimes} D \right), \underline{\pi}^* A'' + i_Y \right).$

Hypoelliptic deformation

• Infinite dimensional object on S:

$$\left(\underbrace{\Omega^{0,\bullet}(\mathcal{X},\underline{\pi}^*\left(\Lambda(T^*X)\widehat{\otimes}D\right)}_{\mathcal{D}},\mathcal{A}_Y''\right)$$

- $\mathcal{D} = \Omega^{\bullet, \bullet}(X, \Omega^{0, \bullet}(TX) \otimes D).$
- $g^D, g^{TX} \leadsto L^2$ -metric on $\Omega^{0,\bullet}(TX) \otimes D \leadsto$ non degenerate Hermitian form by twisting $r: (x,Y) \to (x,-Y)$.
- $\omega^X \leadsto \text{non degenerate Hermitian form } \left(\frac{i}{2\pi}\right)^{\dim X} \int_X \widetilde{\alpha} \wedge \overline{e^{-i\omega^X}\beta}$
- ullet We get non degenerate Hermitian form on ${\mathcal D}$
- $A_Y = A_Y'' + A_Y'$, A_Y^2 is hypoelliptic

$$\mathcal{A}_Y^2 = \frac{1}{2}(-\Delta^V + |Y|^2 + \dots) + \nabla_{Y^H} + i\partial \overline{\partial}\omega^X + \dots$$

Hypoelliptic deformation

• Infinite dimensional object on S:

$$\left(\underbrace{\Omega^{0,\bullet}(\mathcal{X},\underline{\pi}^*\left(\Lambda(T^*X)\widehat{\otimes}D\right)},\mathcal{A}_Y''\right)$$

- $\mathcal{D} = \Omega^{\bullet,\bullet}(X, \Omega^{0,\bullet}(TX) \otimes D).$
- $g^D, g^{TX} \leadsto L^2$ -metric on $\Omega^{0,\bullet}(TX) \otimes D \leadsto$ non degenerate Hermitian form by twisting $r: (x,Y) \to (x,-Y)$.
- $\omega^X \rightsquigarrow \text{non degenerate Hermitian form } \left(\frac{i}{2\pi}\right)^{\dim X} \int_X \widetilde{\alpha} \wedge \overline{e^{-i\omega^X}\beta}$
- ullet We get non degenerate Hermitian form on ${\mathcal D}$
- $A_Y = A_Y'' + A_Y'$, A_Y^2 is hypoelliptic

$$\mathcal{A}_Y^2 = \frac{1}{2}(-\Delta^V + |Y|^2 + \dots) + \nabla_{Y^H} + i\partial \overline{\partial}\omega^X + \dots$$

$$\left(\underbrace{\Omega^{0,\bullet}(\mathcal{X},\underline{\pi}^*\left(\Lambda(T^*X)\widehat{\otimes}D\right)}_{\mathcal{D}},\mathcal{A}_Y''\right)$$

- $\mathcal{D} = \Omega^{\bullet,\bullet}(X, \Omega^{0,\bullet}(TX) \otimes D).$
- $g^D, g^{TX} \leadsto L^2$ -metric on $\Omega^{0, \bullet}(TX) \otimes D \leadsto$ non degenerate Hermitian form by twisting $r: (x, Y) \to (x, -Y)$.
- $\omega^X \rightsquigarrow \text{non degenerate Hermitian form } \left(\frac{i}{2\pi}\right)^{\dim X} \int_X \widetilde{\alpha} \wedge \overline{e^{-i\omega^X}\beta}$
- ullet We get non degenerate Hermitian form on ${\mathcal D}$
- $A_Y = A_Y'' + A_Y'$, A_Y^2 is hypoelliptic,

$$\mathcal{A}_Y^2 = \frac{1}{2}(-\Delta^V + |Y|^2 + \ldots) + \nabla_{Y^H} + i\partial\overline{\partial}\omega^X + \ldots$$

$$\left(\underbrace{\Omega^{0,\bullet}(\mathcal{X},\underline{\pi}^*\left(\Lambda(T^*X)\widehat{\otimes}D\right)}_{\mathcal{D}},\mathcal{A}_Y''\right)$$

- $\mathcal{D} = \Omega^{\bullet,\bullet}(X, \Omega^{0,\bullet}(TX) \otimes D).$
- $g^D, g^{TX} \leadsto L^2$ -metric on $\Omega^{0, \bullet}(TX) \otimes D \leadsto$ non degenerate Hermitian form by twisting $r: (x, Y) \to (x, -Y)$.
- $\omega^X \leadsto$ non degenerate Hermitian form $\left(\frac{i}{2\pi}\right)^{\dim X} \int_X \widetilde{\alpha} \wedge \overline{e^{-i\omega^X}\beta}$
- We get non degenerate Hermitian form on \mathcal{D}
- $A_Y = A_Y'' + A_Y'$, A_Y^2 is hypoelliptic

$$\mathcal{A}_Y^2 = \frac{1}{2}(-\Delta^V + |Y|^2 + \ldots) + \nabla_{Y^H} + i\partial\overline{\partial}\omega^X + \ldots$$

$$\left(\underbrace{\Omega^{0,\bullet}(\mathcal{X},\underline{\pi}^*\left(\Lambda(T^*X)\widehat{\otimes}D\right)}_{\mathcal{D}},\mathcal{A}_Y''\right)$$

- $\mathcal{D} = \Omega^{\bullet,\bullet}(X, \Omega^{0,\bullet}(TX) \otimes D).$
- $g^D, g^{TX} \leadsto L^2$ -metric on $\Omega^{0, \bullet}(TX) \otimes D \leadsto$ non degenerate Hermitian form by twisting $r: (x, Y) \to (x, -Y)$.
- $\omega^X \leadsto$ non degenerate Hermitian form $\left(\frac{i}{2\pi}\right)^{\dim X} \int_X \widetilde{\alpha} \wedge \overline{e^{-i\omega^X}\beta}$
- We get non degenerate Hermitian form on \mathcal{D} .
- $A_Y = A_Y'' + A_Y'$, A_Y^2 is hypoelliptic.

$$\mathcal{A}_Y^2 = \frac{1}{2}(-\Delta^V + |Y|^2 + \ldots) + \nabla_{Y^H} + i\partial\overline{\partial}\omega^X + \ldots$$

$$\left(\underbrace{\Omega^{0,\bullet}(\mathcal{X},\underline{\pi}^*\left(\Lambda(T^*X)\widehat{\otimes}D\right)}_{\mathcal{D}},\mathcal{A}_Y''\right)$$

- $\mathcal{D} = \Omega^{\bullet,\bullet}(X, \Omega^{0,\bullet}(TX) \otimes D).$
- $g^D, g^{TX} \leadsto L^2$ -metric on $\Omega^{0, \bullet}(TX) \otimes D \leadsto$ non degenerate Hermitian form by twisting $r: (x, Y) \to (x, -Y)$.
- $\omega^X \leadsto$ non degenerate Hermitian form $\left(\frac{i}{2\pi}\right)^{\dim X} \int_X \widetilde{\alpha} \wedge \overline{e^{-i\omega^X}\beta}$
- We get non degenerate Hermitian form on \mathcal{D} .
- $A_Y = A_Y'' + A_Y'$, A_Y^2 is hypoelliptic,

$$\mathcal{A}_Y^2 = \frac{1}{2}(-\Delta^V + |Y|^2 + \ldots) + \nabla_{Y^H} + i\partial\overline{\partial}\omega^X + \ldots$$

• We can define $\operatorname{ch}(\mathcal{A}''_Y, g^D, g^{TX}, \omega^X)$ as before.

${ m Theorem}$

 $\begin{array}{l} \bigoplus (\operatorname{G}(\mathcal{A}_{Y}^{N}, g^{-1}, g^{-1}) \in \mathcal{B}_{p}^{TX} \circ (S, \mathbf{R}) \text{ in the } a\text{-cooses} \\ \bigoplus \left[\operatorname{ch}(\mathcal{A}_{Y}^{n}, g^{D}, g^{TX}, \omega^{X})\right] \in H_{\mathrm{BC}}(S, \mathbf{R}) \text{ is independent of } g^{D}, g^{TX}, \omega^{X} \\ \bigoplus \left[\operatorname{ch}(\mathcal{A}_{Y}^{n}, g^{D}, g^{TX}, \omega^{X})\right] = \operatorname{ch}_{\mathrm{BC}}(\pi_{t}\mathscr{F}) \in H_{\mathrm{BC}}(S, \mathbf{R}). \end{array}$

Proo

$$\operatorname{ch}(\mathcal{A}_{Y}^{"}, g^{D}, b^{4}g^{TX}, \omega^{X}) \to \operatorname{ch}(\mathcal{A}^{"}, g^{D}, g^{TX}) \text{ in } \Omega(S, \mathbf{R}).$$

• We can define $\operatorname{ch}(\mathcal{A}_Y'',g^D,g^{TX},\omega^X)$ as before.

Theorem

- \bullet ch $(\mathcal{A}''_Y, g^D, g^{TX}, \omega^X) \in \oplus_p \Omega^{p,p}(S, \mathbf{R})$ and d-closed
- $\left[\mathrm{ch}(\mathcal{A}''_Y, g^D, g^{TX}, \omega^X) \right] \in H_{\mathrm{BC}}(S, \mathbf{R}) \text{ is independent of } g^D, g^{TX}, \omega^X.$
- $\left[\operatorname{ch}(\mathcal{A}_Y'', g^D, g^{TX}, \omega^X) \right] = \operatorname{ch}_{\operatorname{BC}}(\pi_! \mathscr{F}) \in H_{\operatorname{BC}}(S, \mathbf{R}).$

Proof

$$\operatorname{ch}(\mathcal{A}_{Y}^{"}, g^{D}, b^{4}g^{TX}, \omega^{X}) \to \operatorname{ch}(\mathcal{A}^{"}, g^{D}, g^{TX}) \text{ in } \Omega(S, \mathbf{R}).$$

• We can define $\operatorname{ch}(\mathcal{A}_Y'',g^D,g^{TX},\omega^X)$ as before.

Theorem

- $\operatorname{ch}(\mathcal{A}''_Y, g^D, g^{TX}, \omega^X) \in \bigoplus_p \Omega^{p,p}(S, \mathbf{R})$ and d-closed
- $\left[\operatorname{ch}(\mathcal{A}''_{Y}, g^{D}, g^{TX}, \omega^{X}) \right] \in H_{\operatorname{BC}}(S, \mathbf{R}) \text{ is independent of } g^{D}, g^{TX}, \omega^{X}.$

Proof

$$\operatorname{ch}(\mathcal{A}_{Y}'', g^{D}, b^{4}g^{TX}, \omega^{X}) \to \operatorname{ch}(\mathcal{A}'', g^{D}, g^{TX}) \text{ in } \Omega(S, \mathbf{R}).$$

• We can define $\operatorname{ch}(\mathcal{A}_Y'',g^D,g^{TX},\omega^X)$ as before.

Theorem

- $\operatorname{ch}(\mathcal{A}''_Y, g^D, g^{TX}, \omega^X) \in \bigoplus_p \Omega^{p,p}(S, \mathbf{R})$ and d-closed
- $\left[\operatorname{ch}(\mathcal{A}''_{Y}, g^{D}, g^{TX}, \omega^{X}) \right] \in H_{\operatorname{BC}}(S, \mathbf{R}) \text{ is independent of } g^{D}, g^{TX}, \omega^{X}.$

Proof.

$$\operatorname{ch}(\mathcal{A}''_Y, g^D, b^4 g^{TX}, \omega^X) \to \operatorname{ch}(\mathcal{A}'', g^D, g^{TX}) \text{ in } \Omega(S, \mathbf{R}).$$

- If $\overline{\partial}^X \partial^X \omega^X = 0$, as $t \to 0$,
 - $(3.1) \qquad \operatorname{ch}\left(A_Y'',g^D,g^{TX}/t^3,\omega^X/t\right) \to \int_X \operatorname{Td}(TX,g^{TX})\operatorname{ch}(D,A'',g^D)$
- If we replace ω^X by $|Y|^2\omega^X$ in the construction, as $t\to 0$.

$$(3.2) \quad \operatorname{ch}\left(\mathcal{A}_{Y}^{\prime\prime}, g^{D}, g^{TX}/t^{3}, |Y|^{2}\omega^{X}\right) \to \int_{X} \operatorname{Td}(TX, g^{TX}) \operatorname{ch}(D, A^{\prime\prime}, g^{D}),$$

without any assumption

• The associated hypoelliptic Laplacians are

- If $\overline{\partial}^X \partial^X \omega^X = 0$, as $t \to 0$,
 - (3.1) $\operatorname{ch}\left(A_Y'', g^D, g^{TX}/t^3, \omega^X/t\right) \to \int_X \operatorname{Td}(TX, g^{TX}) \operatorname{ch}(D, A'', g^D).$
- If we replace ω^X by $|Y|^2\omega^X$ in the construction, as $t\to 0$

$$(3.2) \qquad \operatorname{ch}\left(\mathcal{A}_Y'',g^D,g^{TX}/t^3,|Y|^2\omega^X\right) \to \int_X \operatorname{Td}(TX,g^{TX})\operatorname{ch}(D,A'',g^D),$$

without any assumption

- The associated hypoelliptic Laplacians are
 - © case (3.1): $-\frac{1}{2}\Delta^{+} + |\Omega^{+}|^{2} + t^{2/2}\nabla_{\Omega^{+}} + i\partial \theta \omega^{+}/t + ...$

- If $\overline{\partial}^X \partial^X \omega^X = 0$, as $t \to 0$,
 - (3.1) $\operatorname{ch}\left(A_Y'', g^D, g^{TX}/t^3, \omega^X/t\right) \to \int_X \operatorname{Td}(TX, g^{TX}) \operatorname{ch}(D, A'', g^D).$
- If we replace ω^X by $|Y|^2\omega^X$ in the construction, as $t\to 0$,

$$(3.2) \qquad \operatorname{ch}\left(\mathcal{A}_Y^{\prime\prime},g^D,g^{TX}/t^3,|Y|^2\omega^X\right) \to \int_X \operatorname{Td}(TX,g^{TX})\operatorname{ch}(D,A^{\prime\prime},g^D),$$

without any assumption!

• The associated hypoelliptic Laplacians are

• case (3.1): $-\frac{1}{2}\Delta^{V} + |tY|^{2} + t^{1/2}\nabla_{tYB} + i\partial\overline{\partial}\omega^{X}/t + \dots$ • case (3.2): $-\frac{1}{2}\Delta^{V} + |t^{3/4}Y|^{2} + t^{3/4}\nabla_{(3/4)(B)} + i\partial\overline{\partial}|Y|^{2}\omega^{3/4}$

- If $\overline{\partial}^X \partial^X \omega^X = 0$, as $t \to 0$,
 - (3.1) $\operatorname{ch}\left(A_Y'', g^D, g^{TX}/t^3, \omega^X/t\right) \to \int_X \operatorname{Td}(TX, g^{TX}) \operatorname{ch}(D, A'', g^D).$
- If we replace ω^X by $|Y|^2\omega^X$ in the construction, as $t\to 0$,

$$(3.2) \quad \operatorname{ch}\left(\mathcal{A}_Y'',g^D,g^{TX}/t^3,|Y|^2\omega^X\right) \to \int_X \operatorname{Td}(TX,g^{TX})\operatorname{ch}(D,A'',g^D),$$

without any assumption!

- The associated hypoelliptic Laplacians are
 - **1** case (3.1): $-\frac{1}{2}\Delta^V + |tY|^2 + t^{1/2}\nabla_{tYH} + i\partial\overline{\partial}\omega^X/t + \dots$

② case (3.2):
$$-\frac{1}{2}\Delta^V + |t^{3/4}Y|^2 + t^{3/4}\nabla_{t^{3/4}Y^H} + i\partial\overline{\partial}|Y|^2\omega^X + \dots$$

- If $\overline{\partial}^X \partial^X \omega^X = 0$, as $t \to 0$,
 - (3.1) $\operatorname{ch}\left(A_Y'', g^D, g^{TX}/t^3, \omega^X/t\right) \to \int_X \operatorname{Td}(TX, g^{TX}) \operatorname{ch}(D, A'', g^D).$
- If we replace ω^X by $|Y|^2\omega^X$ in the construction, as $t\to 0$,

$$(3.2) \qquad \operatorname{ch}\left(\mathcal{A}_Y^{\prime\prime},g^D,g^{TX}/t^3,|Y|^2\omega^X\right) \to \int_X \operatorname{Td}(TX,g^{TX})\operatorname{ch}(D,A^{\prime\prime},g^D),$$

without any assumption!

- The associated hypoelliptic Laplacians are
 - **1** case (3.1): $-\frac{1}{2}\Delta^V + |tY|^2 + t^{1/2}\nabla_{tY^H} + i\partial \overline{\partial}\omega^X/t + \dots$

References

J.-M. Bismut, S. Shen, and Z. Wei. Coherent sheaves, superconnections, and RRG. arXiv:2102.08129, to appear Progress in Mathematics 347.

J.-M. Bismut. Hypoelliptic Laplacian and Bott-Chern cohomology, Progress in Mathematics 305. Birkhäuser, 2013.

J. Block. Duality and equivalence of module categories in noncommutative geometry. In *A celebration of the mathematical legacy of Raoul Bott*, volume 50 of *CRM Proc. Lecture Notes*, pages 311–339. Amer. Math. Soc., Providence, RI, 2010.

Thank you for your attention!