Moment polytopes in real symplectic geometry

Paul-Emile Paradan

University of Montpellier, France

Quantization in Geometry University of Cologne, july 28, 2023

< 17 ×

Plan

The talk is devoted to the description of convex polyhedral cones which are associated to some representations of compact Lie groups.

- § Eigenvalues and singular values
- § Description of several geometric cones:
 - The Horn cone
 - A cone of eigenvalues
 - The singular Horn cone
- § Convexity in Hamitonian geometry
- § Convexity in *real* Hamitonian geometry: O'Shea-Sjamaar's Theorem
- § General results for the cones associated to isotropy representations of Riemannian symmetric spaces
- § Key point in the proof : Kirwan-Ness stratification and Ressayre's pairs

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Eigenvalues and singular values

Let $e(X) = (e_1 \ge \cdots \ge e_n) \in \mathbb{R}^n_+$ be the **eigenvalues** of a Hermitian (or real symmetric) $n \times n$ matrix.

Fact : two isomorphisms

$$\textit{Herm}(n)/\textit{U}(n) \stackrel{\mathrm{e}}{\longrightarrow} \mathbb{R}^n_+$$

and
$$Sym(n)/SO(n) \xrightarrow{e} \mathbb{R}^n_+$$

Let $s(X) = (s_1 \ge \cdots \ge s_q \ge 0) \in \mathbb{R}^q_{++}$ be the **singular values** of a complex $p \times q$ matrix.

Fact : an isomorphism

$$M_{p,q}(\mathbb{C})/U(p) imes U(q) \stackrel{\mathrm{s}}{\longrightarrow} \mathbb{R}^q_{++}$$

Basic questions: what are the relations between

•
$$e(X)$$
, $e(Y)$ and $e(X + Y)$ for $X, Y \in Herm(n)$.

2
$$s(X)$$
, $s(Y)$ and $s(X + Y)$ for $X, Y \in M_{p,q}(\mathbb{C})$.

3
$$e(X)$$
 and $e(\mathfrak{R}(X))$ where $\mathfrak{R}(X) \in Sym(n)$ is the real part of $X \in Herm(n)$.

$${}^{\textcircled{0}}$$
 e(X) and s(X₁₂) where X₁₂ is the off-diagonal bloc of X \in Herm(n).

5
$$s(X)$$
, $s(X_{12})$ and $s(X_{21})$ for $X \in M_{n,n}(\mathbb{C})$

5
$$s(X)$$
, $s(X_{11})$ and $s(X_{22})$ for $X \in M_{n,n}(\mathbb{C})$.

7

The aim of this presentation is to explain the methods used to answer these kind of questions. **Keywords :** Hamiltonian action, moment map, anti-symplectic involution.

Classical geometric cone: the Horn cone

The Horn cone

$$Horn(n) := \left\{ (e(X), e(Y), e(X + Y)); X, Y \in Herm(n) \right\}$$

Some notations:

•
$$\mathbb{R}^n_+ = \{x = (x_1 \ge \dots \ge x_n)\}.$$

• $I = \{i_1 < \dots < i_r\} \subset \mathbb{N} - \{0\} \rightsquigarrow \mu(I) = (i_r - r \ge \dots \ge i_1 - 1 \ge 0) \in \mathbb{R}^r_+.$

• If
$$x \in \mathbb{R}^n$$
 and $I \subset \{1, \dots, n\}$, we write $|x| = \sum_{k=1}^n x_k$ and $|x|_I = \sum_{i \in I} x_i$.

Schubert Calculus : cohomology of the Grassmannian $\mathbb{G}(r, n)$

•
$$\mathbb{G}(r, n) := \{E \subset \mathbb{C}^n, \dim E = r\}$$

•
$$H^*(\mathbb{G}(r,n)) = \bigoplus_{I \subset [n], \sharp I = r} \mathbb{Z}\Theta$$

•
$$H^{\max}(\mathbb{G}(r, n)) = \mathbb{Z}\Theta_{[r]}$$

•
$$\Theta_I \cdot \Theta_{I^o} = \Theta_{[r]}$$
 when $I^o = \{n+1-i, i \in I\}$

$$\bullet \ \Theta_{I^{0}} \cdot \Theta_{J^{0}} \cdot \Theta_{L} = \ell \Theta_{[r]}, \ell \neq 0 \Longleftrightarrow \left(V_{\mu(I)} \otimes V_{\mu(J)} \otimes V_{\mu(L)}^{*} \right)^{U(n)} \neq 0$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

크

Classical geometric cone: the Horn cone

The study of the cone Horn(n) started long ago: Weyl (1932), Ky Fan (1949), Lidskii (1950), Thompson-Freede (1971).

Horn conjecture (1962)

An element $(x, y, z) \in (\mathbb{R}^n_+)^3$ belongs to $\operatorname{Horn}(n)$ if and only if

• |x| + |y| = |z| (trace condition)

•
$$|x|_I + |y|_J \ge |z|_L$$
 for any subsets $I, J, L \subset \{1, ..., n\}$ of cardinal $r < n$ satisfying :

 $Condition_{(I,J,L)}$: $(\mu(I), \mu(J), \mu(L)) \in Horn(r)$

Proof of the Horn conjecture

Klyachko (1998): Horn conjecture holds with Condition(1, J, L) replaced by

 $\textit{Condition}_{(I,J,L)}': \qquad \Theta_{I^o} \cdot \Theta_{L^o} + \Theta_L = \ell \Theta_{[r]}, \ell \neq 0, \quad \textit{in} \quad H^*(\mathbb{G}(r,n))$

Saturation Theorem of Knutson-Tao (1999):

 $Condition'_{(I,J,L)} \iff Condition_{(I,J,L)}$

Final improvements by Belkale (2001) and Knutson-Tao-Woodward (2004) : equations for $\ell = 1$ are sufficient and not redundant.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

A cone of eigenvalues

Consider the map \Re : $Herm(n) \rightarrow Sym(n)$ which associates to a Hermitian matrix its real part. We are interested in the following cone:

$$\mathcal{E}(n) := \left\{ \left(e(X), e(\Re(X)) \right); \ X \in \textit{Herm}(n) \right\}$$

First description: an application of the O'Shea-Sjamaar theorem

An element $(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+$ belongs to $\mathcal{E}(n)$ if and only if $(x, x, 2y) \in \text{Horn}(n)$.

A refinement:

Theorem (PEP, 2022)

An element $(x, y) \in \mathbb{R}^n_+ \times \mathbb{R}^n_+$ belongs to $\mathcal{E}(n)$ if and only if

|x| = |y| and $|x|_I \ge |y|_J$

holds for any subsets $I, J \subset [n]$ of cardinal r < n such that $(2\mu(I), \mu(J)) \in \mathcal{E}(r)$.

Example

- $\mathcal{E}(1), \mathcal{E}(2), \mathcal{E}(3)$ and $\mathcal{E}(4)$ are defined by 1, 2, 7 and 16 inequalities.
- Horn(1), Horn(2), Horn(3) and Horn(4) are defined by 1, 7, 19 and 51 inequalities.

The singular Horn cone

If $p \ge q \ge 1$, the singular value map $s: M_{p,q}(\mathbb{C}) \to \mathbb{R}^q_{++}$ is defined by $s(A) = \sqrt{e(A^*A)}$.

Singular Horn cone

$$\operatorname{Singular}(\rho, q) := \left\{ (\operatorname{s}(A), \operatorname{s}(B), \operatorname{s}(A+B)), \ A, B \in M_{\rho,q}(\mathbb{C}) \right\}$$

$$\textbf{Map:} \quad x \in \mathbb{R}^q \quad \longmapsto \quad \widehat{x} = (x_1, \dots, x_q, 0, \dots, 0, -x_q, \dots, -x_1) \in \mathbb{R}^n$$

First description: an application of the O'Shea-Sjamaar theorem

 $(x, y, z) \in (\mathbb{R}^q_{++})^3$ belongs to Singular(p, q) if and only if $(\widehat{x}, \widehat{y}, \widehat{z}) \in \text{Horn}(p+q)$.

Example

We will see that Singular(3,3) is determined by **96 inequalities** whereas Horn(6) needs **536 inequalities.**

Some notations:

- Polarized sets $X_{\bullet} = X_{+} \coprod X_{-}$ of $[q] := \{1, \ldots, q\}$
- Signature function: $\epsilon : X_{\bullet} \to \{\pm\}$
- Signed inequalities:

$$(\star)_{I_{\bullet},J_{\bullet},L_{\bullet}} \qquad \sum_{i\in I_{\bullet}} \epsilon_{i}s_{i}(A) + \sum_{j\in J_{\bullet}} \epsilon_{j}s_{j}(B) + \sum_{\ell\in L_{\bullet}} \epsilon_{\ell}s_{\ell}(A+B) \leq 0$$

The singular Horn cone : inequalities

- To a polarized subset X_• ⊂ [q] we associate two subsets of cardinal #X_•:
 - $X_{\bullet}^{p} = X_{+} \cup \{p + q + 1 \ell, \ell \in X_{-}\} \subset [p + q],$
 - $\widetilde{X}_{\bullet}^{p} \subset [p+q-r]$ (more complicated definition).
- Involution on \mathbb{R}^q : $x = (x_1, \cdots, x_q) \mapsto x^* = (-x_q, \cdots, -x_1).$

Theorem (PEP, 2021)

Singular(p, q) is determined by the inequalities (\star)_{*l*_{\bullet}, *J*_{\bullet}, *L*_{\bullet} where *l*_{\bullet}, *J*_{\bullet}, *L*_{\bullet} satisfy the following conditions: $\sharp I_{\bullet} = \sharp J_{\bullet} = \sharp L_{\bullet} = r < q$ and}

$$(\mu(l^{p}_{\bullet}), \mu(J^{p}_{\bullet}), \mu(L^{p}_{\bullet})^{*} + 2(p+q-r)\mathbf{1}^{r}) \in \operatorname{Horn}(r),$$

$$(\mu(\widetilde{l}^{p}_{\bullet}), \mu(\widetilde{J}^{p}_{\bullet}), \mu(\widetilde{L}^{p}_{\bullet})^{*} + 2(p+q-2r)1^{r}) \in \operatorname{Horm}(r).$$

Why two conditions? In fact they are equivalent to the cohomological condition

$$\Theta_{I_{\underline{n}}^{n}} \odot \Theta_{J_{\underline{n}}^{n}} \odot \Theta_{L_{\underline{n}}^{n}} = \ell[pt], \ \ell \neq 0 \quad in \quad H^{*}(\mathbb{F}(r, n-r, n)),$$

where $\mathbb{F}(r, n - r, n)$ denotes the two-steps flag variety parameterizing nested sequences of linear subspaces $E \subset F \subset \mathbb{C}^n$ where dim E = r and dim F = n - r.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Singular(3,3)

 $(a, b, c) \in (\mathbb{R}^3_{++})^3$ belongs to Singular(3, 3) if and only if, modulo permutation, we have

18 Weyl inequalities

- $a_1 + b_1 \ge c_1$ $a_1 + b_3 \ge c_3$
- $a_1 + b_2 \ge c_2$ $a_2 + b_2 \ge c_3$
- 18 Lidskii inequalities
 - $a_1 + a_2 + b_1 + b_2 \ge c_1 + c_2$ $a_1 + a_2 + b_1 + b_3 \ge c_1 + c_3$
 - $a_1 + a_2 + b_2 + b_3 \ge c_2 + c_3$
 - $a_1 + a_2 + a_3 + b_1 + b_2 + b_3 \ge c_1 + c_2 + c_3$
- 36 signed Lidskii inequalities
 - $a_1 + a_2 + b_1 b_2 \ge c_1 c_2$ $a_1 + a_2 + b_1 b_3 \ge c_1 c_3$
 - $a_1 + a_2 + b_2 b_3 \ge c_2 c_3$
 - $a_1 + a_2 + a_3 + b_1 + b_2 b_3 \ge c_1 + c_2 c_3$
 - $a_1 + a_2 + a_3 + b_1 b_2 + b_3 \ge c_1 c_2 + c_3$
 - $a_1 + a_2 + a_3 b_1 + b_2 + b_3 \ge -c_1 + c_2 + c_3$

4 15 others inequalities

•
$$a_1 + a_3 + b_1 + b_3 \ge c_2 + c_3$$
 • $a_1 + a_3 + b_1 - b_3 \ge c_2 - c_3$

• $(a_1 + a_2 - a_3) + (b_1 - b_2 + b_3) + (-c_1 + c_2 + c_3) \ge 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Convexity in Hamiltonian geometry

Kähler manifold (M, Ω) acted on by a compact Lie group U:

- Holomorphic action of $U_{\mathbb{C}} \circlearrowleft M$.
- The action $U \circ (M, \Omega)$ is Hamiltonian, with **proper** moment map $\Phi_{\mathfrak{u}} : M \to \mathfrak{u}^*$.

Theorem (Kirwan, 1984)

 $\Delta_{\mathfrak{u}}(M) = \Phi_{\mathfrak{u}}(M) \cap \mathfrak{t}_{+}^{*}$ is a closed convex locally polyhedral subset.

Basic question

Determine the inequalities defining the Kirwan polytope $\Delta_{u}(M)$.

Example

- Compact Lie groups $U \hookrightarrow \tilde{U}$ with Lie algebras $\mathfrak{u} \hookrightarrow \tilde{\mathfrak{u}}$ and projection $\pi : \tilde{\mathfrak{u}}^* \to \mathfrak{u}^*$.
- Kähler manifold: $\tilde{U}_{\mathbb{C}} \simeq T \, \tilde{U} \simeq T^* \tilde{U}$
- Hamiltonian action $\tilde{U} \times U \circlearrowleft \tilde{U}_{\mathbb{C}}$: $(\tilde{g}, g) \cdot m = \tilde{g} m g^{-1}$

• Moment map
$$\Phi: \widetilde{U}_{\mathbb{C}} o \widetilde{\mathfrak{u}} imes \mathfrak{u}$$
: $\left[\widetilde{g} e^{i \widetilde{X}} \longmapsto (-\widetilde{g} \widetilde{X}, \pi(\widetilde{X})) \right]$

• Kirwan polytope : $\operatorname{Horn}(\tilde{U}, U) = \left\{ (\tilde{\xi}, \xi) \in \tilde{\mathfrak{t}}_+ \times \mathfrak{t}_+, \ U\xi \subset \pi(\tilde{U}\tilde{\xi}) \right\}$

PEP

Convexity in real Hamiltonian geometry

We suppose that (M, Ω, U, Φ) is equipped with **involutions**:

-) an involution σ on U
- an anti-holomorphic involution au on M such that $au^*(\Omega) = -\Omega$
- **3** compatibility conditions: $\tau(g \cdot x) = \sigma(g) \cdot \tau(x)$ and $\Phi(\tau(x)) = -\sigma(\Phi(x))$

Example (U(n) with the involution $\sigma(g) = \overline{g}$)

• Any adjoint orbit $\mathcal{O}_{\lambda} = U(n) \cdot \operatorname{diag}(i\lambda_1, \ldots, i\lambda_n)$ is stable under $\tau(x) = -\overline{x}$.

•
$$(\mathcal{O}_{\lambda})^{\tau} = i\mathcal{O}_{\lambda}^{\mathbb{R}}$$
 with $\mathcal{O}_{\lambda}^{\mathbb{R}} := \{X \in Sym(n), e(X) = \lambda\}.$

 $\textbf{Map:} \quad a \in \mathbb{R}^q \quad \longmapsto \quad \widehat{a} = (a_1, \dots, a_q, 0, \dots, 0, -a_q, \dots, -a_1) \in \mathbb{R}^n$

Example (U(n) with the involution $\sigma(g) = I_{p,q} g I_{p,q}$

•
$$\mathcal{O}_{\lambda}$$
 is stable under $\tau(x) = -I_{p,q} x I_{p,q}$ if and only if $\exists a \in \mathbb{R}^{q}_{++}, \lambda = \hat{a}$

•
$$(\mathcal{O}_{\widehat{a}})^{ au} \simeq \mathcal{V}_a$$
 where $\mathcal{V}_a = \{X \in M_{p,q}(\mathbb{C}), \mathrm{s}(X) = a\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Real moment polytopes: O'Shea-Sjamaar Theorem

Involution on U

- $K := (U^{\sigma})^0$ acts on $\mathfrak{p} = i\mathfrak{u}^{-\sigma}$
- σ -invariant maximal torus $T \subset U$ and $\mathfrak{t}_+ =$ Weyl chamber for U
- $\mathfrak{a} = i\mathfrak{t}^{-\sigma}$ of maximal dimension $\rightsquigarrow \mathfrak{a}_+ = i(\mathfrak{t}^{-\sigma} \cap \mathfrak{t}_+) \simeq \mathfrak{p}/K$

Anti-holomorphic involution on (M, Ω)

- $Z := M^{\tau}$ is a Lagrangian submanifold (that we suppose non-empty).
- Real moment map $\Phi_{\mathfrak{p}}: Z \to \mathfrak{p}$.
- The set Δ_p(Z) := Φ_p(Z) ∩ a₊ parameterizes the K-orbits in Φ_p(Z).

Theorem (O'S-S, 2000)

$$\Delta_{\mathfrak{p}}(Z) \simeq \Delta_{\mathfrak{u}}(M) \cap \mathfrak{t}^{-\sigma}$$

 $\Delta_{\mathfrak{p}}(Z)$ is called the **real moment polytope**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

The example of isotropic representations of symmetric spaces

Let us consider an involution σ on $U \subset \widetilde{U}$. The involution σ extends to an **antilinear** involution $\sigma_{\mathbb{C}}$ on $U_{\mathbb{C}} \subset \widetilde{U}_{\mathbb{C}}$.

- $G = (U_{\mathbb{C}}^{\sigma_{\mathbb{C}}})^0 \subset \widetilde{G} = (\widetilde{U}_{\mathbb{C}}^{\sigma_{\mathbb{C}}})^0$: real reductive Lie groups
- Maximal compact subgroups $K = (U^{\sigma})^0 \subset \widetilde{K} = (\widetilde{U}^{\sigma})^0$
- Cartan decompositions : $\tilde{\mathfrak{g}} = \tilde{\mathfrak{k}} \oplus \tilde{\mathfrak{p}}$ and $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$

Hamiltonian action of $\widetilde{U} \times U$ on $\widetilde{U}_C \quad \rightsquigarrow \quad \text{Kirwan polytope Horn}(\widetilde{U}, U).$

- \widetilde{G} = Lagrangian submanifold of $\widetilde{U}_{\mathbb{C}}$ is equipped with an action of $\widetilde{K} \times K$
- Restriction of the moment map $\Phi : \widetilde{U}_{\mathbb{C}} \to \widetilde{\mathfrak{u}} \times \mathfrak{u}$ defines $\Phi_{\mathfrak{p}} : \widetilde{G} \to \widetilde{\mathfrak{p}} \times \mathfrak{p}$
- Real moment polytope:

$$\operatorname{Hom}_{\mathfrak{p}}(\widetilde{K},K) = \left\{ (\widetilde{\xi},\xi) \in \tilde{\mathfrak{a}}_{+} \times \mathfrak{a}_{+} \mid K \cdot \xi \subset \pi(\widetilde{K} \cdot \widetilde{\xi}) \right\}$$

Corollary of O'Shea-Sjamaar Theorem

$$\operatorname{Horn}_{\mathfrak{p}}(\widetilde{K}, K) \simeq \operatorname{Horn}(\widetilde{U}, U) \bigcap \widetilde{\mathfrak{t}}^{-\sigma} \times \mathfrak{t}^{-\sigma}$$

・ロン ・回 と ・ ヨ と ・

э

Isotropic representations of symmetric spaces: examples

Initial question : what are the relations between

1
$$e(X)$$
, $e(Y)$ and $e(X + Y)$ for $X, Y \in Herm(n)$.

2
$$s(X)$$
, $s(Y)$ and $s(X + Y)$ for $X, Y \in M_{p,q}(\mathbb{C})$.

- **3** e(X) and $e(\mathfrak{R}(X))$ where $\mathfrak{R}(X) \in Sym(n)$ is the real part of $X \in Herm(n)$.
- e(X) and $s(X_{12})$ where X_{12} is the off-diagonal bloc of $X \in Herm(n)$.

5 s(X), s(X₁₂) and s(X₂₁) for X ∈
$$M_{n,n}(\mathbb{C})$$

$$one s(X), s(X_{11}) and s(X_{22}) for X \in M_{n,n}(\mathbb{C}).$$

Answer : compute the real moment polytope $\operatorname{Horn}_{\mathfrak{p}}(\widetilde{K}, K)$ in the following cases

$$\begin{array}{cccc} \bullet & G = GL_n(\mathbb{C}) & \text{and} & \widetilde{G} = G \times G & \rightsquigarrow & \text{Horn}(n) \\ \hline & & G = U(p,q) & \text{and} & \widetilde{G} = G \times G & \rightsquigarrow & \text{Singular}(p,q) \\ \hline & & G = GL_n(\mathbb{R}) & \text{and} & \widetilde{G} = GL_n(\mathbb{C}) & \rightsquigarrow & \mathcal{E}(n) \\ \hline & & G = U(p,q) & \text{and} & \widetilde{G} = GL_n(\mathbb{C}) \\ \hline & & G = U(p,q) \times U(q,p) & \text{and} & \widetilde{G} = U(n,n) \\ \hline & & G = U(p,p) \times U(q,q) & \text{and} & \widetilde{G} = U(n,n) \\ \end{array}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

Determination of the inequalities of Horn(\widetilde{U}, U)

- Maximal torus $T \subset U$ and $\tilde{T} \subset \tilde{U}$, such that $T \subset \tilde{T}$
- Weyl groups W, \widetilde{W} and longest element $w_o \in W$
- $\mathfrak{R} := \mathfrak{R}(\mathfrak{\tilde{u}}/\mathfrak{u}) \subset \mathfrak{t}^*$ set of roots relatively to the action $T \circlearrowleft \mathfrak{\tilde{u}}/\mathfrak{u} \otimes \mathbb{C}$
- $\gamma \in \mathfrak{t}$ is \mathfrak{R} -admissible if γ is rational and $\operatorname{Vect}(\mathfrak{R} \cap \gamma^{\perp}) = \operatorname{Vect}(\mathfrak{R}) \cap \gamma^{\perp}$
- Schubert classes Θ^γ_w ∈ H^{*}(U/U^γ, ℤ) associated to w ∈ W/W^γ
- Schubert classes $\Theta_{\tilde{w}}^{\gamma} \in H^*(\tilde{U}/\tilde{U}^{\gamma},\mathbb{Z})$ associated to $\tilde{w} \in \widetilde{W}/\widetilde{W}^{\gamma}$
- Morphism $\iota^* : H^*(\widetilde{U}/\widetilde{U}^{\gamma}, \mathbb{Z}) \to H^*(U/U^{\gamma}, \mathbb{Z})$ associated to $\iota : U/U^{\gamma} \hookrightarrow \widetilde{U}/\widetilde{U}^{\gamma}$

Theorem

 $(\tilde{\xi}, \xi) \in \operatorname{Horn}(\widetilde{U}, U)$ if and only if the inequality $\left[(\tilde{\xi}, \tilde{w}\gamma) \ge (\xi, w_o w\gamma) \right]$ holds for any $(\gamma, w, \tilde{w}) \in \mathfrak{t} \times W/W^{\gamma} \times \widetilde{W}/\widetilde{W}^{\gamma}$ satisfying

- γ is antidominant and \Re -admissible,
- Cohomological condition: $\Theta_{W}^{\gamma} \cdot \iota^{*} \left(\Theta_{\tilde{W}}^{\gamma} \right) = [pt]$ in $H^{*}(U/U^{\gamma}, \mathbb{Z})$,
- Numerical condition: $N(\gamma, w, \tilde{w}) = 0.$

Different versions of the theorem due to: Berenstein-Sjamaar (2000), Kapovich-Leeb-Millson (2005), Belkale-Kumar (2006), Ressayre (2010).

◆□ ◆ □ ◆ □ ◆ □ ◆ ● ◆ □ ◆

Determination of the inequalities of $\operatorname{Horn}_{\mathfrak{p}}(\widetilde{K}, K)$

- Maximal abelian subspaces a ⊂ p and ã ⊂ p̃, such that a ⊂ ã.
- Restricted Weyl group : W_a = N_W(a)/Z_W(a) and W_a = N_W(a)/Z_W(a).
- Restricted root system $\Sigma \subset \mathfrak{a}^*$: set of roots relatively to the action $\mathfrak{a} \circlearrowleft \tilde{\mathfrak{p}}/\mathfrak{p}$
- $\gamma \in \mathfrak{a}$ is Σ -admissible if γ is rational and $\operatorname{Vect}(\Sigma \cap \gamma^{\perp}) = \operatorname{Vect}(\Sigma) \cap \gamma^{\perp}$
- Schubert classes Θ^γ_w parameterized by (W/W^γ)^σ ≃ W_a/W^γ_a
- Schubert classes $\Theta_{\widetilde{w}}^{\gamma}$ parameterized by $(\widetilde{W}/\widetilde{W}^{\gamma})^{\sigma} \simeq \widetilde{W}_{\widetilde{a}}/\widetilde{W}_{\widetilde{a}}^{\gamma}$

Theorem (PEP, 2021)

 $(\tilde{x}, x) \in \operatorname{Horn}_{\mathfrak{p}}(\tilde{K}, K)$ if and only if the inequality $(\tilde{x}, \tilde{w}_{\gamma}) \ge (x, w_{o}w_{\gamma})$ holds for any

- $(\gamma, w, \tilde{w}) \in \mathfrak{a} \times W_{\mathfrak{a}} / W_{\mathfrak{a}}^{\gamma} \times \widetilde{W}_{\tilde{\mathfrak{a}}} / \widetilde{W}_{\tilde{\mathfrak{a}}}^{\gamma}$ satisfying
 - γ is antidominant and Σ -admissible,
 - Cohomological condition: $\Theta_{w}^{\gamma} \cdot \iota^{*} \left(\Theta_{\tilde{w}}^{\gamma} \right) = [pt]$ in $H^{*}(U/U^{\gamma}, \mathbb{Z})$,
 - Numerical condition: $N(\gamma, w, \tilde{w}) = 0.$

In 2008, Kapovich-Leeb-Millson obtained a weaker description of Horn_p($K \times K, K$):

- Their "Cohomological condition" holds in $H^*(K/K^{\gamma}, \mathbb{Z}_2)$.
- They don't have a "Numerical condition".

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Determination of the facets of a Kirwan polytope

<u>First case</u>: suppose that $0 \notin \Delta_{\mathfrak{u}}(M)$.

- Let $\gamma =$ orthogonal projection of 0 on $\Delta_{\mathfrak{u}}(M)$.
- Let $C \subset M^{\gamma}$ be the connected component containing $\Phi_{\mathfrak{u}}^{-1}(\gamma)$.
- Białynicki-Birula's submanifold : $C^- = \{m \in M, \lim_{\infty} e^{-it\gamma} m \in C\}.$

Kirwan-Ness stratification 1

• A Zariski open subset of *M* is diffeomorphic to a Zariski open subset of $U_{\mathbb{C}} \times_{P_{\gamma}} C^-$.

•
$$|(\xi, \gamma) \ge (\Phi_{\mathfrak{u}}(\mathcal{C}), \gamma) |$$
 for all $\xi \in \Delta_{\mathfrak{u}}(\mathcal{M})$.

<u>Second case</u>: suppose that $a \in \mathfrak{t}^*_+$ is a regular element not contained in $\Delta_{\mathfrak{u}}(M)$.

- Let $\gamma_a = a' a$ where a' = orthogonal projection of a on $\Delta_u(M)$.
- Let $C_a \subset M^{\gamma_a}$ be the connected component containing $\Phi_u^{-1}(a')$.
- Białynicki-Birula's submanifold : $C_a^- = \{m \in M, \lim_{\infty} e^{-it\gamma_a}m \in C_a\}.$

Kirwan-Ness stratification 2

• A Zariski open subset of *M* is diffeomorphic to a Zariski open subset of $B \times_{B \cap P_{\gamma_a}} C_a^-$.

•
$$|(\xi, \gamma_a) \ge (\Phi_{\mathfrak{u}}(C_a), \gamma_a) | \text{ for all } \xi \in \Delta_{\mathfrak{u}}(M)$$

Ressayre's pairs

u-dimension: If $D \subset M$, we define $\dim_{\mathfrak{u}}(D) = \inf \{\dim(\mathfrak{u}_x), x \in D\}$.

Ressayre's pairs

- (C, γ) is a Ressayre's pair if
 - γ is rational,
 - $C \subset M^{\gamma}$ and $\dim_{\mathfrak{u}}(C) \dim_{\mathfrak{u}}(M) \in \{0, 1\},\$
 - A Zariski open subset of *M* is diffeomorphic to a Zariski open subset of $B \times_{B \cap P_{\gamma}} C^-$.

Rmq: the notion of Ressayre's pair has nothing to do with the symplectic structure.

Theorem: Ressayre, 2010 (algebraic varieties) and PEP, 2020 (Kähler manifolds)

An element $\xi \in \mathfrak{t}^*_+$ belongs to $\Delta_{\mathfrak{u}}(M)$ if and only if $\lfloor (\xi, \gamma) \ge (\Phi_{\mathfrak{u}}(C), \gamma) \rfloor$ for any Ressayre's pair (C, γ) .

This technique can be adapted to describe **real moment polytopes** by considering Ressayre's pair (C, γ) compatible with the involutions:

PEP

•
$$\sigma(\gamma) = -\gamma$$
,

- $\tau(C) = C$ and $C \cap Z \neq \emptyset$,
- dim_p($C \cap Z$) dim_p(Z) $\in \{0, 1\}$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ● ○ ○ ○

Thank you for your attention !

크