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Plan

The talk is devoted to the description of convex polyhedral cones which are associated
to some representations of compact Lie groups.

§ Eigenvalues and singular values

§ Description of several geometric cones:

The Horn cone
A cone of eigenvalues
The singular Horn cone

§ Convexity in Hamitonian geometry

§ Convexity in real Hamitonian geometry: O’Shea-Sjamaar’s Theorem

§ General results for the cones associated to isotropy representations of
Riemannian symmetric spaces

§ Key point in the proof : Kirwan-Ness stratification and Ressayre’s pairs
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Eigenvalues and singular values
Let e(X) = (e1 ≥ · · · ≥ en) ∈ Rn

+ be the eigenvalues of a Hermitian (or real
symmetric) n × n matrix.

Fact : two isomorphisms Herm(n)/U(n)
e−→ Rn

+ and Sym(n)/SO(n)
e−→ Rn

+

Let s(X) = (s1 ≥ · · · ≥ sq ≥ 0) ∈ Rq
++ be the singular values of a complex p × q

matrix.

Fact : an isomorphism Mp,q(C)/U(p)× U(q)
s−→ Rq

++

Basic questions: what are the relations between

1 e(X), e(Y ) and e(X + Y ) for X ,Y ∈ Herm(n).
2 s(X), s(Y ) and s(X + Y ) for X ,Y ∈ Mp,q(C).
3 e(X) and e(R(X)) where R(X) ∈ Sym(n) is the real part of X ∈ Herm(n).
4 e(X) and s(X12) where X12 is the off-diagonal bloc of X ∈ Herm(n).
5 s(X), s(X12) and s(X21) for X ∈ Mn,n(C).
6 s(X), s(X11) and s(X22) for X ∈ Mn,n(C).
7 · · ·

The aim of this presentation is to explain the methods used to answer these kind of

questions. Keywords : Hamiltonian action, moment map, anti-symplectic involution.
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Classical geometric cone: the Horn cone

The Horn cone

Horn(n) :=
{

(e(X), e(Y ), e(X + Y )); X ,Y ∈ Herm(n)
}

Some notations:

Rn
+ = {x = (x1 ≥ · · · ≥ xn)}.

I = {i1 < · · · < ir} ⊂ N− {0}  µ(I) = (ir − r ≥ · · · ≥ i1 − 1 ≥ 0) ∈ Rr
+.

If x ∈ Rn and I ⊂ {1, . . . , n}, we write |x | =
∑n

k=1 xk and |x |I =
∑

i∈I xi .

Schubert Calculus : cohomology of the Grassmannian G(r , n)

G(r , n) := {E ⊂ Cn, dim E = r}
H∗(G(r , n)) =

⊕
I⊂[n],]I=r ZΘI

Hmax(G(r , n)) = ZΘ[r ]

ΘI ·ΘIo = Θ[r ] when Io = {n + 1− i, i ∈ I}

ΘIo ·ΘJo ·ΘL = `Θ[r ], ` 6= 0⇐⇒
(

Vµ(I) ⊗ Vµ(J) ⊗ V∗
µ(L)

)U(n)
6= 0
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Classical geometric cone: the Horn cone

The study of the cone Horn(n) started long ago: Weyl (1932), Ky Fan (1949), Lidskii
(1950), Thompson-Freede (1971).

Horn conjecture (1962)

An element (x , y , z) ∈ (Rn
+)3 belongs to Horn(n) if and only if

|x |+ |y | = |z| (trace condition)

|x |I + |y |J ≥ |z|L for any subsets I, J, L ⊂ {1, . . . , n} of cardinal r < n satisfying :

Condition(I,J,L) : (µ(I), µ(J), µ(L)) ∈ Horn(r)

Proof of the Horn conjecture

Klyachko (1998): Horn conjecture holds with Condition(I,J,L) replaced by

Condition′
(I,J,L)

: ΘIo ·ΘJo ·ΘL = `Θ[r ], ` 6= 0, in H∗(G(r , n))

Saturation Theorem of Knutson-Tao (1999):
Condition′

(I,J,L)
⇐⇒ Condition(I,J,L)

Final improvements by Belkale (2001) and Knutson-Tao-Woodward (2004) : equations
for ` = 1 are sufficient and not redundant.

PEP Moment polytopes in real symplectic geometry



A cone of eigenvalues
Consider the map < : Herm(n)→ Sym(n) which associates to a Hermitian matrix its
real part. We are interested in the following cone:

E(n) :=
{

(e(X), e(<(X))) ; X ∈ Herm(n)
}

First description: an application of the O’Shea-Sjamaar theorem

An element (x , y) ∈ Rn
+ × Rn

+ belongs to E(n) if and only if (x , x , 2y) ∈ Horn(n).

A refinement:

Theorem (PEP, 2022)

An element (x , y) ∈ Rn
+ × Rn

+ belongs to E(n) if and only if

|x | = |y | and |x |I ≥ |y |J

holds for any subsets I, J ⊂ [n] of cardinal r < n such that (2µ(I), µ(J)) ∈ E(r).

Example

E(1), E(2), E(3) and E(4) are defined by 1, 2, 7 and 16 inequalities.

Horn(1), Horn(2), Horn(3) and Horn(4) are defined by 1, 7, 19 and 51
inequalities.
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The singular Horn cone
If p≥q≥ 1, the singular value map s : Mp,q(C)→ Rq

++ is defined by s(A) =
√

e(A∗A).

Singular Horn cone

Singular(p, q) :=
{

(s(A), s(B), s(A + B)), A,B ∈ Mp,q(C)
}

Map: x ∈ Rq 7−→ x̂ = (x1, . . . , xq , 0, . . . , 0,−xq , . . . ,−x1) ∈ Rn

First description: an application of the O’Shea-Sjamaar theorem

(x , y , z) ∈ (Rq
++)3 belongs to Singular(p, q) if and only if (x̂ , ŷ , ẑ) ∈ Horn(p + q).

Example

We will see that Singular(3, 3) is determined by 96 inequalities whereas Horn(6)
needs 536 inequalities.

Some notations:
Polarized sets X• = X+

∐
X− of [q] := {1, . . . , q}

Signature function: ε : X• → {±}
Signed inequalities:

(?)I•,J•,L•

∑
i∈I•

εi si (A) +
∑
j∈J•

εj sj (B) +
∑
`∈L•

ε`s`(A + B) ≤ 0
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The singular Horn cone : inequalities

To a polarized subset X• ⊂ [q] we associate two subsets of cardinal ]X•:

X p
• = X+ ∪ {p + q + 1− `, ` ∈ X−} ⊂ [p + q],

X̃ p
• ⊂ [p + q − r ] (more complicated definition).

Involution on Rq : x = (x1, · · · , xq) 7→ x∗ = (−xq , · · · ,−x1).

Theorem (PEP, 2021)

Singular(p, q) is determined by the inequalities (?)I•,J•,L• where I•, J•, L• satisfy the
following conditions: ]I• = ]J• = ]L• = r < q and

1 (µ(Ip
•), µ(Jp

•), µ(Lp
•)
∗ + 2(p + q − r)1r ) ∈ Horn(r),

2 (µ(̃Ip
•), µ(J̃p

•), µ(L̃p
•)
∗ + 2(p + q − 2r)1r ) ∈ Horn(r).

Why two conditions? In fact they are equivalent to the cohomological condition

ΘIn• �ΘJn
•
�ΘLn

•
= `[pt], ` 6= 0 in H∗(F(r , n − r , n)),

where F(r , n − r , n) denotes the two-steps flag variety parameterizing nested
sequences of linear subspaces E ⊂ F ⊂ Cn where dim E = r and dim F = n − r .

PEP Moment polytopes in real symplectic geometry



Singular(3,3)

(a, b, c) ∈ (R3
++)3 belongs to Singular(3, 3) if and only if, modulo permutation, we have

1 18 Weyl inequalities
• a1 + b1 ≥ c1 • a1 + b3 ≥ c3

• a1 + b2 ≥ c2 • a2 + b2 ≥ c3

2 18 Lidskii inequalities
• a1 + a2 + b1 + b2 ≥ c1 + c2 • a1 + a2 + b1 + b3 ≥ c1 + c3
• a1 + a2 + b2 + b3 ≥ c2 + c3

• a1 + a2 + a3 + b1 + b2 + b3 ≥ c1 + c2 + c3

3 36 signed Lidskii inequalities
• a1 + a2 + b1 − b2 ≥ c1 − c2 • a1 + a2 + b1 − b3 ≥ c1 − c3
• a1 + a2 + b2 − b3 ≥ c2 − c3
• a1 + a2 + a3 + b1 + b2 − b3 ≥ c1 + c2 − c3
• a1 + a2 + a3 + b1 − b2 + b3 ≥ c1 − c2 + c3

• a1 + a2 + a3 − b1 + b2 + b3 ≥ −c1 + c2 + c3

4 15 others inequalities
• a1 + a3 + b1 + b3 ≥ c2 + c3 • a1 + a3 + b1 − b3 ≥ c2 − c3

• (a1 + a2 − a3) + (b1 − b2 + b3) + (−c1 + c2 + c3) ≥ 0
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Convexity in Hamiltonian geometry
Kähler manifold (M,Ω) acted on by a compact Lie group U:

Holomorphic action of UC 	 M.
The action U 	 (M,Ω) is Hamiltonian, with proper moment map Φu : M → u∗.

Theorem (Kirwan, 1984)

∆u(M) = Φu(M) ∩ t∗+ is a closed convex locally polyhedral subset.

Basic question

Determine the inequalities defining the Kirwan polytope ∆u(M).

Example

Compact Lie groups U ↪→ Ũ with Lie algebras u ↪→ ũ and projection π : ũ∗ → u∗.

Kähler manifold: ŨC ' T Ũ ' T∗Ũ

Hamiltonian action Ũ × U 	 ŨC: (g̃, g) ·m = g̃ m g−1

Moment map Φ : ŨC → ũ× u: g̃ei X̃ 7−→ (−g̃X̃ , π(X̃))

Kirwan polytope : Horn(Ũ,U) =
{

(ξ̃, ξ) ∈ t̃+ × t+, Uξ ⊂ π(Ũ ξ̃)
}
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Convexity in real Hamiltonian geometry
We suppose that (M,Ω,U,Φ) is equipped with involutions:

1 an involution σ on U
2 an anti-holomorphic involution τ on M such that τ∗(Ω) = −Ω

3 compatibility conditions: τ(g · x) = σ(g) · τ(x) and Φ(τ(x)) = − σ(Φ(x))

Example (U(n) with the involution σ(g) = g)

Any adjoint orbit Oλ = U(n) · diag(iλ1, . . . , iλn) is stable under τ(x) = −x .

(Oλ)τ = iOR
λ with OR

λ := {X ∈ Sym(n), e(X) = λ}.

Oν ⊂ Oλ +Oµ ⇐⇒OR
ν ⊂ OR

λ +OR
µ

Map: a ∈ Rq 7−→ â = (a1, . . . , aq , 0, . . . , 0,−aq , . . . ,−a1) ∈ Rn

Example (U(n) with the involution σ(g) = Ip,q g Ip,q)

Oλ is stable under τ(x) = −Ip,q x Ip,q if and only if ∃a ∈ Rq
++, λ = â

(Oâ)τ ' Va where Va = {X ∈ Mp,q(C), s(X) = a}

Oĉ ⊂ Oâ +Ob̂ ⇐⇒ Vc ⊂ Va + Vb
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Real moment polytopes: O’Shea-Sjamaar Theorem

Involution on U

K := (Uσ)0 acts on p = iu−σ

σ-invariant maximal torus T ⊂ U and t+ = Weyl chamber for U

a = it−σ of maximal dimension  a+ = i(t−σ ∩ t+) ' p/K

Anti-holomorphic involution on (M,Ω)

Z := Mτ is a Lagrangian submanifold (that we suppose non-empty).

Real moment map Φp : Z → p.

The set ∆p(Z ) := Φp(Z ) ∩ a+ parameterizes the K -orbits in Φp(Z ).

Theorem (O’S-S, 2000)

∆p(Z ) ' ∆u(M) ∩ t−σ

∆p(Z ) is called the real moment polytope.
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The example of isotropic representations of symmetric
spaces

Let us consider an involution σ on U ⊂ Ũ.
The involution σ extends to an antilinear involution σC on UC ⊂ ŨC.

G = (UσCC )0 ⊂ G̃ = (ŨσCC )0 : real reductive Lie groups

Maximal compact subgroups K = (Uσ)0 ⊂ K̃ = (Ũσ)0

Cartan decompositions : g̃ = k̃⊕ p̃ and g = k⊕ p

Hamiltonian action of Ũ × U on ŨC  Kirwan polytope Horn(Ũ,U).

G̃ = Lagrangian submanifold of ŨC is equipped with an action of K̃ × K

Restriction of the moment map Φ : ŨC → ũ× u defines Φp : G̃→ p̃× p

Real moment polytope:

Hornp(K̃ ,K ) =
{

(ξ̃, ξ) ∈ ã+ × a+ | K · ξ ⊂ π(K̃ · ξ̃)
}

Corollary of O’Shea-Sjamaar Theorem

Hornp(K̃ ,K ) ' Horn(Ũ,U)
⋂

t̃−σ × t−σ
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Isotropic representations of symmetric spaces:
examples

Initial question : what are the relations between

1 e(X), e(Y ) and e(X + Y ) for X ,Y ∈ Herm(n).
2 s(X), s(Y ) and s(X + Y ) for X ,Y ∈ Mp,q(C).
3 e(X) and e(R(X)) where R(X) ∈ Sym(n) is the real part of X ∈ Herm(n).
4 e(X) and s(X12) where X12 is the off-diagonal bloc of X ∈ Herm(n).
5 s(X), s(X12) and s(X21) for X ∈ Mn,n(C).
6 s(X), s(X11) and s(X22) for X ∈ Mn,n(C).

Answer : compute the real moment polytope Hornp(K̃ ,K ) in the following cases

1 G = GLn(C) and G̃ = G × G  Horn(n)

2 G = U(p, q) and G̃ = G × G  Singular(p, q)

3 G = GLn(R) and G̃ = GLn(C)  E(n)

4 G = U(p, q) and G̃ = GLn(C)

5 G = U(p, q)× U(q, p) and G̃ = U(n, n)

6 G = U(p, p)× U(q, q) and G̃ = U(n, n)
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Determination of the inequalities of Horn(Ũ,U)

Maximal torus T ⊂ U and T̃ ⊂ Ũ, such that T ⊂ T̃

Weyl groups W , W̃ and longest element wo ∈ W

R := R(ũ/u) ⊂ t∗ set of roots relatively to the action T 	 ũ/u⊗ C
γ ∈ t is R-admissible if γ is rational and Vect(R ∩ γ⊥) = Vect(R) ∩ γ⊥

Schubert classes Θγw ∈ H∗(U/Uγ ,Z) associated to w ∈ W/Wγ

Schubert classes Θγw̃ ∈ H∗(Ũ/Ũγ ,Z) associated to w̃ ∈ W̃/W̃γ

Morphism ι∗ : H∗(Ũ/Ũγ ,Z)→ H∗(U/Uγ ,Z) associated to ι : U/Uγ ↪→ Ũ/Ũγ

Theorem

(ξ̃, ξ) ∈ Horn(Ũ,U) if and only if the inequality (ξ̃, w̃γ) ≥ (ξ,wowγ) holds for any

(γ,w , w̃) ∈ t×W/Wγ × W̃/W̃γ satisfying

γ is antidominant and R-admissible,

Cohomological condition: Θγw · ι∗
(
Θγw̃
)

= [pt] in H∗(U/Uγ ,Z),

Numerical condition: N(γ,w , w̃) = 0.

Different versions of the theorem due to: Berenstein-Sjamaar (2000),
Kapovich-Leeb-Millson (2005), Belkale-Kumar (2006), Ressayre (2010).
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Determination of the inequalities of Hornp(K̃ ,K )

Maximal abelian subspaces a ⊂ p and ã ⊂ p̃, such that a ⊂ ã.

Restricted Weyl group : Wa = NW (a)/ZW (a) and Wã = NW̃ (ã)/ZW̃ (ã).

Restricted root system Σ ⊂ a∗ : set of roots relatively to the action a 	 p̃/p

γ ∈ a is Σ-admissible if γ is rational and Vect(Σ ∩ γ⊥) = Vect(Σ) ∩ γ⊥

Schubert classes Θγw parameterized by (W/Wγ)σ ' Wa/Wγ
a

Schubert classes Θγw̃ parameterized by (W̃/W̃γ)σ ' W̃ã/W̃γ
ã

Theorem (PEP, 2021)

(x̃ , x) ∈ Hornp(K̃ ,K ) if and only if the inequality (x̃ , w̃γ) ≥ (x ,wowγ) holds for any

(γ,w , w̃) ∈ a×Wa/Wγ
a × W̃ã/W̃γ

ã satisfying

γ is antidominant and Σ-admissible,

Cohomological condition: Θγw · ι∗
(
Θγw̃
)

= [pt] in H∗(U/Uγ ,Z),

Numerical condition: N(γ,w , w̃) = 0.

In 2008, Kapovich-Leeb-Millson obtained a weaker description of Hornp(K × K ,K ):

Their "Cohomological condition" holds in H∗(K/Kγ ,Z2).

They don’t have a "Numerical condition".
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Determination of the facets of a Kirwan polytope
First case: suppose that 0 /∈ ∆u(M).

Let γ = orthogonal projection of 0 on ∆u(M).

Let C ⊂ Mγ be the connected component containing Φ−1
u (γ).

Białynicki-Birula’s submanifold : C− = {m ∈ M, lim∞ e−itγm ∈ C}.

Kirwan-Ness stratification 1

• A Zariski open subset of M is diffeomorphic to a Zariski open subset of UC ×Pγ
C−.

• (ξ, γ) ≥ (Φu(C), γ) for all ξ ∈ ∆u(M).

Second case: suppose that a ∈ t∗+ is a regular element not contained in ∆u(M).

Let γa = a′ − a where a′ = orthogonal projection of a on ∆u(M).

Let Ca ⊂ Mγa be the connected component containing Φ−1
u (a′).

Białynicki-Birula’s submanifold : C−a = {m ∈ M, lim∞ e−itγa m ∈ Ca}.

Kirwan-Ness stratification 2

• A Zariski open subset of M is diffeomorphic to a Zariski open subset of B×B∩Pγa
C−a .

• (ξ, γa) ≥ (Φu(Ca), γa) for all ξ ∈ ∆u(M).
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Ressayre’s pairs
u-dimension: If D ⊂ M, we define dimu(D) = inf{dim(ux ), x ∈ D}.

Ressayre’s pairs

(C, γ) is a Ressayre’s pair if

γ is rational,

C ⊂ Mγ and dimu(C)− dimu(M) ∈ {0, 1},
A Zariski open subset of M is diffeomorphic to a Zariski open subset of
B ×B∩Pγ

C−.

Rmq: the notion of Ressayre’s pair has nothing to do with the symplectic structure.

Theorem: Ressayre, 2010 (algebraic varieties) and PEP, 2020 (Kähler manifolds)

An element ξ ∈ t∗+ belongs to ∆u(M) if and only if (ξ, γ) ≥ (Φu(C), γ) for any

Ressayre’s pair (C, γ).

This technique can be adapted to describe real moment polytopes by considering
Ressayre’s pair (C, γ) compatible with the involutions:

σ(γ) = −γ,

τ(C) = C and C ∩ Z 6= ∅,
dimp(C ∩ Z )− dimp(Z ) ∈ {0, 1}.
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The End

Thank you for your attention !
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