Großübungen am 10. und 14.07.2020

1. Aufgabe

Man bestimme alle Lösungen der Differentialgleichungen

a)
$$y' = 3|y|^{\frac{2}{3}}, y \in \mathbb{R},$$

b)
$$y' = 3(\text{sgn}y)|y|^{\frac{2}{3}}, y \in \mathbb{R},$$

c)
$$y' = e^y \cos x$$
,

d)
$$y' = \sqrt{1 - y^2}$$
, $|y| < 1$,

e)
$$y' = \frac{1}{y}\sqrt{1 - y^2}$$
, $0 < y < 1$,

f)
$$y' = (a^2 + x^2)(b^2 + y^2), a, b > 0,$$

g)
$$(1-x^2)y'-xy+1=0$$
, $|x|<1$.

2. Aufgabe

Sei $f: \mathbb{R}^2 \to \mathbb{R}^2$ definiert durch $f(x,y) := (e^x, \sin(x+y))$

- a) In der Nähe welcher Punkte ist f invertierbar und hat eine stetig differenzierbare Umkehrabbildung?
- b) Berechne die Jacobi-Matrix der Umkehrabbildung in den in a) genannten Punkten.

3. Aufgabe

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) = xye^{-x-y}$.

- a) In der Nähe welcher Punkte $(x_0,y_0)\in\mathbb{R}^2$ lässt sich die Bedingung $f(x,y)=f(x_0,y_0)$ gemäß dem Satz über implizite Funktionen in der Form y=g(x) bzw. $x=\tilde{g}(y)$ auflösen?
- b) Berechne jeweils $J_q(x_0)$ bzw. $J_{\tilde{q}}(y_0)$.

4. Aufgabe

Bestimme die globalen Extrema von $f(x,y) := x^3 - 18x + 12y^2 - 144y + 24xy$ auf dem Bereich $B := \{(x,y) \in \mathbb{R}^2 \mid x \ge 0, \ y \ge 0, \ x+y \le 10\}.$

5. Aufgabe

Bestimme die globalen Extrema von $f(x,y) := 4x^2 - 3xy$ auf dem Bereich $K := \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$