6. Blatt zur Analysis 2

Abgabe: bis zum 20.05.2020 um 23:59 Uhr bei ILIAS Aufgaben 1 und 2 sollen abgegeben werden. Es gibt die Möglichkeit, die Aufagbe 3 abzugeben und zusätzliche Punkte zu holen.

1. Aufgabe (6 Punkte)

Finden Sie die Stetigkeitsstellen folgender Funktionen:

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$
$$g: \mathbb{R}^2 \to \mathbb{R}, \quad g(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

2. Aufgabe (6 Punkte)

- (a) Zeige, dass $U(n) = \{A \in M_{n \times n}(\mathbb{C}) \mid AA^* = E_n\}$ eine kompakte Teilmenge von $M_{n \times n}(\mathbb{C})$ ist; dabei sei E_n die Einheitsmatrix und $A^* = \overline{A}^{\top} = (\overline{a}_{ji})$ für $A = (a_{ij})$.
- (c) Seien X, Y metrische Räume und $f: X \to Y$ bijektiv und stetig. Zeige: Ist X kompakt, so ist f ein Homöomorphismus.

3. Aufgabe (4 Punkte)

Sei $C^0([a,b])$ der Raum der auf dem Intervall [a,b] stetigen reellwertigen Funktionen versehen mit der Supremumsnorm $\|\cdot\|_{[a,b]}$, in der $C^0([a,b])$ vollständig ist. Sei $k:[a,b]\times[a,b]\to\mathbb{R}$ eine stetige Funktion und $A:C^0([a,b])\to C^0([a,b])$ gegeben durch

$$(Af)(s) := \int_{a}^{b} k(s,t)f(t)dt.$$

(1) Zeige: A ist stetig und hat die Operatornorm

$$||A|| = ||A \cdot 1||_{[a,b]} = \left\| \int_a^b |k(\cdot,t)| dt \right\|_{[a,b]},$$

wobei 1 die konstante Funktion mit Wert 1 ist.

(2) Zeige: Für ||A|| < 1 hat die Gleichung f - Af = g für jedes $g \in C^0([a, b])$ genau eine Lösung. Stelle diese mit Hilfe der geometrischen Reihe für $(Id - A)^{-1}$ dar.

Die zu lösende Gleichung in (2) heißt Fredholm-Gleichung nach Erik Ivar Fredholm (1866-1927). Die geometrische Reihe wird in diesem Fall auch Neumannsche Reihe genannt nach Carl Gottlieb Neumann (1832-1925).

(bitte wenden)

4. Aufgabe

Sei X ein metrischer Raum und $K \subset X$ kompakt. Sei $(U_i)_{i \in I}$ eine Familie offener Mengen in X mit $K \subset \bigcup_{i \in I} U_i$. Zeige:

- (a) Es existiert r > 0, so dass es zu jedem $x \in K$ ein $i \in I$ mit $B_r(x) \subset U_i$ gibt. Bemerkung: Eine solche Zahl r heisst Lebesguezahl der Überdeckung $(U_i)_{i \in I}$ von K.
- (b) Zu jedem r > 0 gibt es endlich viele x_1, \ldots, x_k in K mit

$$K \subset B_r(x_1) \cup \ldots \cup B_r(x_k).$$

Bemerkung: Dies zeigt, dass (folgen)kompakte Teilmengen metrischer Räume die Heine-Borel Überdeckungseigenschaft haben.