12. Blatt zur Analysis 2

Freiwillige Abgabe: bis zum 08.07.2020 um 23:59 Uhr bei ILIAS Es gibt damit die Möglichkeit, Punkte für die Zulassung zu holen.

1. Aufgabe (4 Punkte)

Sei $f: \mathbb{R}^3 \to \mathbb{R}$ definiert durch $f(x, y, z) := z^3 + 2xy - 4xz + 2y - 1$.

- (a) Zeige, dass die Gleichung f(x,y,z)=0 in der Nähe von $(x_0,y_0,z_0)=(1,1,1)$ in der Form z=g(x,y) mit einer stetig differenzierbaren Funktion g auflösbar ist.
- (b) Berechne $J_q(1,1)$.

2. Aufgabe (4 Punkte)

Bestimme die Maxima und Minima von

$$f: \mathbb{R}^3 \ni (x, y, z) \mapsto xy - z^4 - 2(x^2 + y^2 - z^2) \in \mathbb{R}$$

auf dem Vollellipsoid

$$X := \{(x, y, z) \mid x^2 + y^2 + 2z^2 \le 8\}.$$

Tipp: Diskutiere Inneres und Rand getrennt und benutze für den Rand die Methode der Lagrange-Multiplikatoren.

3. Aufgabe (4 Punkte)

Seien $\alpha_1, \alpha_2, \ldots, \alpha_n > 0$, und sei $f: (\mathbb{R}_+)^n \to \mathbb{R}$ definiert durch $f(x) := x_1^{\alpha_1} x_2^{\alpha_2} \ldots x_n^{\alpha_n}$. Bestimme die Extremwerte von f unter der Nebenbedingung $x_1 + x_2 + \ldots + x_n = 1$. Benutze das Ergebnis, um auf eine neue Art die bekannte Ungleichung

$$u_1^{\alpha_1} u_2^{\alpha_2} \dots u_n^{\alpha_n} \leqslant \left(\frac{\alpha_1 u_1 + \alpha_2 u_2 + \dots + \alpha_n u_n}{\alpha_1 + \alpha_2 + \dots + \alpha_n}\right)^{\alpha_1 + \alpha_2 + \dots + \alpha_n}$$

für $u_1, u_2, \dots, u_n > 0$ zu beweisen. Wann gilt die Gleichheit?

4. Aufgabe (4 Punkte)

Sei $V:=M_{n\times n}(\mathbb{R})\cong\mathbb{R}^{n^2}$. Es besitze $A_0\in V$ einen reellen Eigenwert λ_0 mit algebraischer Vielfachheit 1 (d.h. λ_0 sei eine einfache reelle Nullstelle des charakteristischen Polynoms von A). Zeige: Es gibt eine Umgebung U von A_0 , ein offenes Intervall I mit $\lambda_0\in I$ und eine C^1 -Funktion $\Lambda:U\to I$, so dass für alle $A\in U,\ \lambda\in I$ gilt: λ ist Eigenwert von A genau dann, wenn $\lambda=\Lambda(A)$ ist. (Das Ergebnis besagt, dass Eigenwerte von algebraischer Vielfachheit 1 stetig von der Matrix abhängen.)