Analysis III

Blatt 0

keine Abgabe Besprechung: 22.10.21 in den Übungen

Aufgabe 1

Sei $f: \mathbb{R}^2 \to \mathbb{R}$ gegeben durch $f(x,y) = xye^{-x-y}$.

- (a) In der Umgebung welcher Punkte $(x_0, y_0) \in \mathbb{R}^2$ läßt sich die Bedingung $f(x, y) = f(x_0, y_0)$ gemäß dem Satz über implizite Funktionen durch eine C^1 -Funktion $g: x \mapsto y(x)$ bzw. $\tilde{g}: y \mapsto x(y)$ auflösen?
- (b) Berechnen Sie jeweils $dg(x_0)$ bzw. $d\tilde{g}(y_0)$.

Zeichnen sie eine qualitative Skizze der Höhenlinien von f. Die Ergebnisse von a) und b) sind dabei hilfreich!

Aufgabe 2

Sei $\tilde{f}: \mathbb{R}^2 \to \mathbb{R}^2$ definiert durch $f(x,y) := (2e^x - x^2, e^y + (x^2 + 1)y)$. Zeigen Sie:

- (a) f ist bijektiv.
- (b) f ist ein C^{∞} -Diffeomorphismus. Was ist $d(f^{-1})(2,1)$?

Aufgabe 3

Sei $f: (\frac{\pi}{2}, \frac{5\pi}{2}) \to \mathbb{R}^2$, $f(t) = (\cos t, \sin 2t)$. Zeigen Sie:

- (a) f ist eine injektive Immersion.
- (b) f ist keine Einbettung.
- (c) $\operatorname{Im}(f) = \{(x, y) \in \mathbb{R}^2 : y^2 4x^2 + 4x^4 = 0\}.$
- (d) $\operatorname{Im}(f)$ ist keine Untermannigfaltigkeit des \mathbb{R}^2 , aber $\operatorname{Im}(f) \setminus \{(0,0)\}$ ist eine Untermannigfaltigkeit des \mathbb{R}^2 .

Aufgabe 4

Sei

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = (x^2 + y^2)^2 - 2x^2 + 2y^2.$$

Bestimmen Sie die regulären und kritischen Werte von f. Skizziere die Niveaumengen $f^{-1}(c)$ für $c \in \mathbb{R}$. Welche topologische Eigenschaft von $f^{-1}(c)$ ändert sich, wenn c einen kritischen Wert durchläuft?