Approximate representations of symplectomorphisms via quantization

Leonid Polterovich, Tel Aviv

Cologne, September, 2021

with Laurent Charles

Leonid Polterovich, Tel Aviv University Approximate representations of symplectomorphisms via quantiza

・ 同 ト ・ ヨ ト ・ ヨ ト

The group of Hamiltonian diffeomorphisms $Ham(M, \omega)$, central object in symplectic topology.

Under certain assumptions it admits an approximate projective unitary representation with respect to *p*-Schatten norm (in the sense of De Chiffre, Glebsky, Lubotzky, Thom)

Yields **obstructions to Hamiltonian actions** of finitely generated groups which do not admit such approximate representations (Lubotzky-Oppenheim)

Main tool: **Berezin-Toeplitz quantization** with optimal remainders

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Mathematical model of classical mechanics

 (M^{2n}, ω) -symplectic manifold ω - symplectic form. Locally $\omega = \sum_{i=1}^{n} dp_i \wedge dq_i$. *M*-phase space of mechanical system.

Energy determines evolution: $h: M \times [0,1] \rightarrow \mathbb{R}$ – Hamiltonian function (energy). Hamiltonian system:

$$\left(egin{array}{l} \dot{q} = rac{\partial h}{\partial p} \ \dot{p} = -rac{\partial h}{\partial q} \end{array}
ight.$$

Family of Hamiltonian diffeomorphisms

$$\phi_t: M \to M, \ (p(0), q(0)) \mapsto (p(t), q(t))$$

Key feature: $\phi_t^* \omega = \omega$.

 $Ham(M,\omega)$ -group of Hamiltonian diffeomorphisms

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

$Ham(M,\omega)$ as a group

 $Ham(M, \omega) = \text{Symp}_0(M, \omega)$ (identity component of all symplectic diffeomorphisms) if $H^1(M, \mathbb{R}) = 0$.

Geometry (group of symmetries) meets Dynamics (motions of classical mechanics).

Infinite-dimensional Lie group with Lie algebra $C_0^{\infty}(M)$ -functions with zero mean. Lie bracket - Poisson bracket.

Algebra of Ham:

- simple group (Banyaga, 1978);
- has non-trivial quasi-morphisms Entov-P., Gambaudo-Ghys, Shelukhin;
- Constraints on torsion (P., Atallah-Shelukhin), and on finitely generated subgroups including non-uniform lattices (P., Franks-Handel, Brown-Fisher-Hurtado), symplectic facets of Zimmer program;
- RAAGs (i.e., all relations are commutators between specified generators) do act (M. Kapovich)

Asymptotic projective representations

$$A: H \to H, ||A||_p = \left(\operatorname{tr} \left(\left(\sqrt{A^* A} \right)^p \right) \right)^{1/p} - p - \operatorname{th} \text{ Schatten norm.}$$

 δ_p - corresponding distance on $\mathbb{PU}(H)$.

Group Γ - *p*-norm projectively approximated De Chiffre, Glebsky, Lubotzky, Thom, 2018,

if exist maps $\rho_k : \Gamma \to \mathbb{PU}(H_k), \ k \to \infty$:

• (asymptotic projective rep.)

 $\lim \delta_{\rho}(\rho_k(x)\rho_k(y),\rho_k(xy))=0, \quad \forall x,y\in \Gamma,$

• (faithful) $\liminf \delta_p(\rho_k(x), \mathbb{1}) > 0, \quad \forall x \in \Gamma, x \neq 1.$

[DGLT] considered unitary asymptotic representations; we need projective - tiny adjustment

Theorem:(Lubotzky-Oppenheim, 2019) $\forall p \in (1, +\infty) \exists$ finitely presented **non** *p*-norm projectively approximated groups. **Notation:** $\mathcal{PLO}_{p^{-}}$ class of such groups.

Example: $\Gamma_0 = \mathbb{U}(2n) \cap Sp(2n, \mathbb{Z}[\sqrt{-1}, 1/\ell])$ a cocompact lattice in $Sp(2n, \mathbb{Q}_\ell)$.

Class of symplectic manifolds

 (M, ω) -closed Kähler manifold, dim M = 2n, $[\omega]/(2\pi)$ -integral (quantizable), Assumption (\blacklozenge): First Chern class $c_1(TM)$ is even on Ker($[\omega]$).

Example: $\mathbb{C}P^n$, closed complex curves. Here $H^2(M)$ is 1-dimensional so $c_1(TM) = 0$ on Ker([ω]).

Theorem (Charles -P., 2020)

If p > n, $Ham(M, \omega)$ is p-norm projectively approximated.

Corollary

Non p-norm projectively approximated groups, p > n, do not admit a faithful Hamiltonian action on (M^{2n}, ω) .

Idea of proof: quantization!

Leonid Polterovich, Tel Aviv University

Approximate representations of symplectomorphisms via quantizations via quantizations of symplectomorphisms via quantizations via quantizations via quantizations via quantizations via quantizations via

Quantization

Math. model of fin. volume quantum mechanics

H - finite dimensional Hilbert space over \mathbb{C} $\mathcal{L}(H)$ - Hermitian operators on HS- density operators $\rho \in \mathcal{L}(H)$, $\rho \ge 0$, $Trace(\rho) = 1$. \hbar -Planck constant.

Quantum mechanics contains classical in the limit $\hbar \to 0.$

Table: Quantum-Classical Correspondence

	CLASSICAL	QUANTUM
	Symplectic mfd (M, ω)	\mathbb{C} -Hilbert space H
OBSERVABLES	$f\in C^\infty(M)$	$A\in \mathcal{L}(H)$
STATES	Probability measures on M	Density ops $ ho\in\mathcal{S}$
BRACKET	Poisson bracket $\{f, g\}$	Commutator $\frac{i}{\hbar}[A,B]$

・ 同 ト ・ ヨ ト ・ ヨ ト

Fine quantization

- sequence $\hbar_k > 0$ with $\lim_{k \to \infty} k\hbar_k = 1$;
- finite-dimensional complex Hilbert spaces H_k , $k \in \mathbb{N}$
- \mathbb{R} -linear maps $Q_k: C^{\infty}(M) \to \mathcal{L}(H_k), \ Q_k(1) = \mathbb{1}$:
- (P1) (norm correspondence) $||Q_k(f)||_{op} = ||f|| + O(1/k);$ (P2) (bracket correspondence) $[Q_k(f), Q_k(g)] = \frac{\hbar_k}{i} Q_k(\{f, g\}) + O(1/k^3);$ (P3) (dimension) dim $H_k = \left(\frac{k}{2\pi}\right)^n \operatorname{Vol}(M, \omega) + O(k^{n-1}),$ Remainder (in op. norm) in (P2) is $O(1/k^3)$, as opposed to "usual" $O(1/k^2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

 (M,ω) -closed, dim M=2n,

 $[\omega]/(2\pi)$ -integral (quantizable).

Assumption (\blacklozenge): $c_1(TM)$ is even on Ker([ω]).

Theorem

M admits a fine quantization.

▲御▶ ▲注▶ ▲注▶

 f_t -Hamiltonian generating Hamiltonian flow ϕ_t , $\phi_1 = \phi$ $\phi \in Ham(M, \omega)$ - group of Hamiltonian diffeomorphisms $\widetilde{Ham}(M, \omega)$ - universal cover

Schroedinger equation: $U_k(t) : H_k \to H_k$ - quantum evolution $\dot{U}_k(t) = -\frac{i}{\hbar_k}Q_k(f_t)U_k(t), \quad U_k(0) = \mathbb{1}.$ $U_k = U_k(1)$ - quantization of $\phi \in \widetilde{Ham}$ generated by f_t Family of maps: $\mu_k : \widetilde{Ham}(M, \omega) \to \mathbb{U}(H_k), \quad \phi \mapsto U_k.$

Depends on choice of a Hamiltonian path joining 1 with ϕ in class of paths homotopic with fixed endpoints to be settled

Asymptotic representation

Thm. (Charles-P.) Assume μ_k comes from fine quantization. (i) The unitaries $\mu_k(\widetilde{\phi})$ and $\mu'_{\mu}(\widetilde{\phi})$ defined via two different choices of paths homotopic with fixed endpoints representing $\phi \in Ham(M, \omega)$, satisfy $\|\mu_k(\phi) - \mu'_k(\phi)\|_{op} = \mathcal{O}(1/k)$. (ii) $\forall \phi, \tilde{\psi} \in \widetilde{Ham}(M, \omega) \| \mu_k(\tilde{\phi}) \mu_k(\tilde{\psi}) - \mu_k(\tilde{\phi}\tilde{\psi}) \|_{op} = \mathcal{O}(1/k).$ (iii) $\|\mu_k(\widetilde{\phi}) - 1\|_{op} \ge 1/2 + \mathcal{O}(1/k) \ \forall \phi \neq 1$.

Idea of proof: (i),(ii) - Egorov theorem: quantization intertwines Hamiltonian and Schroedinger evolutions up to small error.

(iii) - displacement: $\phi \neq \mathbb{1} \Rightarrow \phi B \cap B = \emptyset$ for some open $B \subset M$ $\Rightarrow U_k$ "orthogonalizes" a state supported in B.

p-norm approximation: $||A||_{op} \leq ||A||_p \leq d_{\iota}^{1/p} ||A||_{op}$ $d_k := \dim H_k \sim k^n$, dim M = 2n. If p > n, $(k^n)^{1/p} \cdot k^{-1} \to 0$.

Effect of loops

So far found asymptotic representation of \widetilde{Ham} . ϕ_t - loop in Ham, $\phi_0 = \phi_1 = \mathbb{1}$, f_t -Hamiltonian.

Floer theory: all orbits $\gamma = \{\phi_t x\}$ contractible, *D*-spanning disc

Action $\mathcal{A}(\gamma, D) = \int_D \omega - \int_0^1 f_t(\phi_t x) dt$, Maslov $m(\gamma, D)$. Mixed Action-Maslov: (cf. Weinstein 1989, P. 1997) $r(\gamma) := \lambda A(\gamma, D) - \frac{\pi}{2}m(\gamma, D) \pmod{2\pi}$ does not depend on D. Defines homomorphism $\pi_1(Ham) \to \mathbb{R}/(2\pi\mathbb{Z})$. (λ defined below).

Theorem

Assume M-Kähler, $\tilde{\phi} = [\gamma] \in \pi_1(\text{Ham})$, $U_k = \mu_k(\tilde{\phi})$ - quantization. Then $U_k = e^{ikA(\gamma) + ir(\gamma)} \mathbb{1} + \mathcal{O}(k^{-1})$.

Proof: Use Charles-Le Floch, 2020 sharp quantum propagation.

Corollary: μ_k descends to projective asymptotic rep. of Ham.

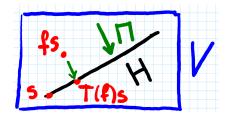
Berezin-Toeplitz quantization-1

 (M, ω, J) - closed Kähler manifold, quantizable: $[\omega]/(2\pi) \in H^2(M, \mathbb{Z})$

L- a holomorphic Hermitian line bundle over *M* Curvature of Chern connection $= i\omega$.

 $\begin{aligned} & H_{\hbar} := H^0(M, L^{\otimes k}) \subset V_{\hbar} := L_2(M, L^{\otimes k}), \ \hbar = 1/k. \\ & \Pi_{\hbar} : V_{\hbar} \to H_{\hbar} - \text{the orthogonal projection.} \end{aligned}$

The Toeplitz operator: $T_{\hbar}(f)(s) := \prod_{\hbar} (fs), f \in C^{\infty}(M), s \in H_{\hbar}$.



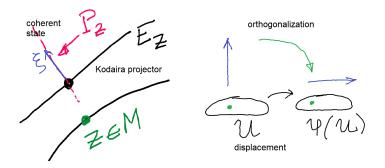
Boutet de Monvel - Guillemin, 1981; Bordemann, Meinrenken and Schlichenmaier, 1994

Leonid Polterovich, Tel Aviv University

Approximate representations of symplectomorphisms via quantiza

Berezin-Toeplitz quantization -2

Hyperplane $E_z \subset H$, $E_z := \{s \in H_\hbar : s(z) = 0\}$. Kodaira embedding $M \to \mathbb{P}(H_\hbar^*)$, $z \mapsto E_z$ $P_{z,\hbar}$ -coherent state projector H_\hbar to E_z^{\perp}



Exists Rawnsley function $R_{\hbar}(2\pi\hbar)^{-m}(1+\mathcal{O}(\hbar)) \in C^{\infty}(M)$:

$$T_{\hbar}(f) = \int_{M} f(z) R_{\hbar}(z) P_{x,\hbar} d\operatorname{Vol}(z)$$

Used in displacement \Rightarrow orthogonalization.

Leonid Polterovich, Tel Aviv University

Approximate representations of symplectomorphisms via quantization

SOA

Existence of fine quantization

 (M, ω) -closed, dim M = 2n, $[\omega]/(2\pi)$ -integral (quantizable). Assumption (\blacklozenge): $c_1(TM)$ is even on Ker($[\omega]$).

Theorem

M admits a fine quantization.

Proof: (based on Charles, 2007) T_k -Berezin-Toeplitz for $L^k \otimes E$ L, E - line bundles, $c_1(L) = [\omega]/(2\pi)$ By (\bigstar) $\exists \lambda \in \mathbb{Q}$: $e := c_1(TM)/2 - \lambda c_1(L) \in H^2(M, \mathbb{Z})$ Choose E: $c_1(E) = e$. $h_k := (k + \lambda)^{-1}$ $Q_k(f) = T_k(f - (1/4k)\Delta f)$

In search of lost geometry

Geometry of *Ham*: Carries a bi-invariant Finsler metric (Hofer's metric) associated to uniform norm on the Lie algebra, a central object in modern symplectic topology. Interesting coarse geometry. Completely elusive in the context of quantization

Rescale the *p*-Schatten distance $\rho_p := k^{-n/p} \delta_p$, so that $PU(H_k)$ becomes bounded. For instance, $\rho_{\infty} = \delta_{\infty}$, the operator norm.

Question: Do we still have approximation?

Evidence in favor of YES based on an analysis of displacement

Utraproduct $G := \prod_{k \to U} (PU(H_k), \rho_p)$ is equipped with natural metric $\rho(\mathbf{1}, \{g_i\}) := \lim \rho_p(\mathbf{1}, g_i)$, the ultrafilter-limit. (Hypothetical) approximation yields monomorphism $Ham \to G$.

Question: What is the pullback metric on Ham? For $p = \infty$ (i.e., operator norm) it is discrete. For $p < \infty$ the answer might be related to Halmos metric dist $(\mathbf{1}, \phi) := \sup_{A \subset M} \operatorname{Vol}(A \bigtriangleup \phi(A)).$

THANK YOU!

Leonid Polterovich, Tel Aviv University Approximate representations of symplectomorphisms via quantiza