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What is this lecture about?

The group of Hamiltonian diffeomorphisms Ham(M, ω),
central object in symplectic topology.

Under certain assumptions it admits an approximate projective
unitary representation with respect to p-Schatten norm (in the
sense of De Chiffre, Glebsky, Lubotzky, Thom)

Yields obstructions to Hamiltonian actions of finitely generated
groups which do not admit such approximate representations
(Lubotzky-Oppenheim)

Main tool: Berezin-Toeplitz quantization with optimal
remainders
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Mathematical model of classical mechanics

(M2n, ω)–symplectic manifold
ω– symplectic form. Locally ω =

∑n
i=1 dpi ∧ dqi .

M-phase space of mechanical system.

Energy determines evolution: h : M × [0, 1] → R – Hamiltonian
function (energy). Hamiltonian system:{

q̇ = ∂h
∂p

ṗ = −∂h
∂q

Family of Hamiltonian diffeomorphisms

ϕt : M → M, (p(0), q(0)) 7→ (p(t), q(t))

Key feature: ϕ∗tω = ω.

Ham (M, ω)-group of Hamiltonian diffeomorphisms
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Ham (M , ω) as a group

Ham (M, ω) = Symp0(M, ω) (identity component of all symplectic
diffeomorphisms) if H1(M,R) = 0.

Geometry (group of symmetries) meets Dynamics (motions of
classical mechanics).

Infinite-dimensional Lie group with Lie algebra C∞
0 (M)-

functions with zero mean. Lie bracket - Poisson bracket.

Algebra of Ham :

simple group (Banyaga, 1978);

has non-trivial quasi-morphisms Entov-P., Gambaudo-Ghys,
Shelukhin;

Constraints on torsion (P., Atallah-Shelukhin), and on finitely
generated subgroups including non-uniform lattices (P.,
Franks-Handel, Brown-Fisher-Hurtado), symplectic facets of
Zimmer program;

RAAGs (i.e., all relations are commutators between specified
generators) do act (M. Kapovich)
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Asymptotic projective representations

A : H → H, ∥A∥p =
(
tr
((√

A∗A
)p))1/p

- p-th Schatten norm.

δp - corresponding distance on PU(H).

Group Γ - p-norm projectively approximated De Chiffre, Glebsky,
Lubotzky, Thom, 2018,
if exist maps ρk : Γ → PU(Hk), k → ∞:

(asymptotic projective rep.)
lim δp(ρk(x)ρk(y), ρk(xy)) = 0, ∀x , y ∈ Γ,

(faithful) lim inf δp(ρk(x), 1l) > 0, ∀x ∈ Γ, x ̸= 1.

[DGLT] considered unitary asymptotic representations; we need
projective - tiny adjustment
Theorem:(Lubotzky-Oppenheim, 2019) ∀p ∈ (1,+∞) ∃ finitely
presented non p-norm projectively approximated groups.
Notation: PLOp- class of such groups.

Example: Γ0 = U(2n) ∩ Sp(2n,Z[
√
−1, 1/ℓ]) a cocompact

lattice in Sp(2n,Qℓ).
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Class of symplectic manifolds

(M, ω)-closed Kähler manifold, dimM = 2n,

[ω]/(2π)-integral (quantizable) ,

Assumption (♠): First Chern class c1(TM) is even on Ker([ω]).

Example: CPn, closed complex curves.
Here H2(M) is 1-dimensional so c1(TM) = 0 on Ker([ω]).
.

Theorem (Charles -P., 2020)

If p > n, Ham (M, ω) is p-norm projectively approximated.

.

Corollary

Non p-norm projectively approximated groups, p > n, do not
admit a faithful Hamiltonian action on (M2n, ω).

Idea of proof: quantization!
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Quantization

Math. model of fin. volume quantum mechanics
H - finite dimensional Hilbert space over C
L(H) - Hermitian operators on H
S- density operators ρ ∈ L(H), ρ ≥ 0, Trace(ρ) = 1.
ℏ-Planck constant.
Quantum mechanics contains classical in the limit ℏ → 0.

Table: Quantum-Classical Correspondence

CLASSICAL QUANTUM

Symplectic mfd (M, ω) C-Hilbert space H
OBSERVABLES f ∈ C∞(M) A ∈ L(H)

STATES Probability measures on M Density ops ρ ∈ S
BRACKET Poisson bracket {f , g} Commutator i

ℏ [A,B]
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Fine quantization

sequence ℏk > 0 with limk→∞ kℏk = 1;

finite-dimensional complex Hilbert spaces Hk , k ∈ N
R-linear maps Qk : C∞(M) → L(Hk), Qk(1) = 1l:

(P1) (norm correspondence) ∥Qk(f )∥op = ∥f ∥+O(1/k);

(P2) (bracket correspondence)
[Qk(f ),Qk(g)] =

ℏk
i Qk({f , g}) +O(1/k3);

(P3) (dimension) dimHk =
(

k
2π

)n
Vol(M, ω) +O(kn−1) ,

Remainder (in op. norm) in (P2) is O(1/k3) , as opposed to

“usual” O(1/k2).
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Existence

(M, ω)-closed, dimM = 2n,

[ω]/(2π)-integral (quantizable) .

Assumption (♠): c1(TM) is even on Ker([ω]).

.

Theorem

M admits a fine quantization.
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Quantization of symplectomorphisms

ft-Hamiltonian generating Hamiltonian flow ϕt , ϕ1 = ϕ
ϕ ∈ Ham (M, ω)- group of Hamiltonian diffeomorphisms

H̃am (M, ω) - universal cover

Schroedinger equation: Uk(t) : Hk → Hk - quantum evolution
U̇k(t) = − i

ℏk Qk(ft)Uk(t), Uk(0) = 1l .

Uk = Uk(1) - quantization of ϕ̃ ∈ H̃am generated by ft

Family of maps: µk : H̃am (M, ω) → U(Hk), ϕ̃ 7→ Uk .

Depends on choice of a Hamiltonian path joining 1l with ϕ
in class of paths homotopic with fixed endpoints to be settled
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Asymptotic representation

Thm. (Charles-P.) Assume µk comes from fine quantization.

(i) The unitaries µk(ϕ̃) and µ
′
k(ϕ̃) defined via two different

choices of paths homotopic with fixed endpoints representing

ϕ ∈ H̃am (M, ω), satisfy ∥µk(ϕ̃)− µ′k(ϕ̃)∥op = O(1/k).

(ii) ∀ϕ̃, ψ̃ ∈ H̃am (M, ω) ∥µk(ϕ̃)µk(ψ̃)− µk(ϕ̃ψ̃)∥op = O(1/k).

(iii) ∥µk(ϕ̃)− 1l∥op ≥ 1/2 +O(1/k) ∀ϕ ̸= 1l.

Idea of proof: (i),(ii) - Egorov theorem: quantization intertwines
Hamiltonian and Schroedinger evolutions up to small error.

(iii) - displacement: ϕ ̸= 1l ⇒ ϕB ∩ B = ∅ for some open B ⊂ M
⇒ Uk “orthogonalizes” a state supported in B.

p-norm approximation: ∥A∥op ≤ ∥A∥p ≤ d
1/p
k ∥A∥op

dk := dimHk ∼ kn, dimM = 2n.
If p > n, (kn)1/p · k−1 → 0.
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Effect of loops

So far found asymptotic representation of H̃am .
ϕt - loop in Ham , ϕ0 = ϕ1 = 1l, ft-Hamiltonian.
Floer theory: all orbits γ = {ϕtx} contractible, D-spanning disc

Action A(γ,D) =
∫
D ω −

∫ 1
0 ft(ϕtx)dt, Maslov m(γ,D).

Mixed Action-Maslov: (cf. Weinstein 1989, P. 1997)
r(γ) := λA(γ,D)− π

2m(γ,D) (mod 2π) does not depend on D.
Defines homomorphism π1(Ham ) → R/(2πZ). (λ defined below).
.

Theorem

Assume M-Kähler, ϕ̃ = [γ] ∈ π1(Ham ), Uk = µk(ϕ̃)- quantization.
Then Uk = e ikA(γ)+ir(γ)1l+O(k−1).

Proof: Use Charles-Le Floch, 2020 sharp quantum propagation.

Corollary: µk descends to projective asymptotic rep. of Ham .
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Berezin-Toeplitz quantization-1

(M, ω, J)- closed Kähler manifold, quantizable:
[ω]/(2π) ∈ H2(M,Z)
L- a holomorphic Hermitian line bundle over M
Curvature of Chern connection = iω.

Hℏ := H0(M, L⊗k) ⊂ Vℏ := L2(M, L⊗k), ℏ = 1/k .
Πℏ : Vℏ → Hℏ – the orthogonal projection.
The Toeplitz operator: Tℏ(f )(s) := Πℏ(fs), f ∈ C∞(M), s ∈ Hℏ.

Boutet de Monvel - Guillemin, 1981; Bordemann, Meinrenken and
Schlichenmaier, 1994
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Berezin-Toeplitz quantization -2

Hyperplane Ez ⊂ H, Ez := {s ∈ Hℏ : s(z) = 0}.
Kodaira embedding M → P(H∗

ℏ ), z 7→ Ez

Pz,ℏ– coherent state projector Hℏ to E⊥
z

Exists Rawnsley function Rℏ(2πℏ)−m(1 +O(ℏ)) ∈ C∞(M):

Tℏ(f ) =
∫
M f (z)Rℏ(z)Px ,ℏdVol(z)

Used in displacement ⇒ orthogonalization
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Existence of fine quantization

(M, ω)-closed, dimM = 2n,

[ω]/(2π)-integral (quantizable) .

Assumption (♠): c1(TM) is even on Ker([ω]).

.

Theorem

M admits a fine quantization.

Proof: (based on Charles, 2007) Tk -Berezin-Toeplitz for Lk ⊗ E
L,E - line bundles, c1(L) = [ω]/(2π)

By (♠) ∃λ ∈ Q: e := c1(TM)/2− λc1(L) ∈ H2(M,Z)

Choose E : c1(E ) = e.

hk := (k + λ)−1

Qk(f ) = Tk(f − (1/4k)∆f )
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In search of lost geometry

Geometry of Ham : Carries a bi-invariant Finsler metric (Hofer’s
metric) associated to uniform norm on the Lie algebra, a central
object in modern symplectic topology. Interesting coarse geometry.
Completely elusive in the context of quantization

Rescale the p-Schatten distance ρp := k−n/pδp, so that PU(Hk)

becomes bounded. For instance, ρ∞ = δ∞, the operator norm.

Question: Do we still have approximation?

Evidence in favor of YES based on an analysis of displacement

Utraproduct G :=
∏

k→U (PU(Hk), ρp) is equipped with natural
metric ρ(1, {gi}) := lim ρp(1, gi ), the ultrafilter-limit.
(Hypothetical) approximation yields monomorphism Ham → G .

Question: What is the pullback metric on Ham ?
For p = ∞ (i.e., operator norm) it is discrete .

For p <∞ the answer might be related to Halmos metric
dist(1, ϕ) := supA⊂M Vol(A △ ϕ(A)).
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The End
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