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Fractional Quantum Hall state — exotic fluid

Two-dimensional electron gas in magnetic field forms a new
type of quantum fluid

It can be understood as quantum condensation of electrons
coupled to vortices/fluxes

Quasiparticles are gapped, have fractional charge and
statistics

The fluid is ideal — no dissipation!
Density is proportional to vorticity!

Transverse transport: Hall conductivity and Hall viscosity,
thermal Hall effect

Protected chiral dynamics at the boundary



Transverse transport

Signature of FQH states — quantization and robustness of Hall
conductance og

2
. .. e
Jj'=one’Ej, OH =V - Hall conductivity.

Are there other “universal” transverse transport coefficients?
Hall viscosity: transverse momentum transport
Thermal Hall conductivity: transverse energy/heat transport

What are the values of the corresponding kinetic coefficients for
various FQH states?

Are there corresponding “protected” boundary modes?
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Essential points of the talk

» Induced Action encodes linear responses of the system

> Coefficients of geometric terms of the induced action —
universal transverse responses.

» Hall conductivity, Hall viscosity, thermal Hall conductivity.
» These coeflicients are computed for various FQH states.

» Framing anomaly is crucial in obtaining the correct
gravitational Chern-Simons term!



Induced action

Partition function of fermions in external e/m field A4, is:
7z = /D@/}D@/)T eis[¢v¢T§Au] — eisvtnd[Au}
with
T 2 Tl 1 . e 2
Sl A = [ dedt ol |iho, +edo - 5 <_mv _ EA) "
+ interactions

Induced action encodes current-current correlation functions

=54, vl = S A5A,

+ various limits m — 0, €%/lg — oo, ...



Induced action [phenomenological]

Use general principles: gap+symmetries to find the form of S;,,4
» Locality — expansion in gradients of A,
» Gauge invariance — written in terms of E and B

» Other symmetries: rotational, translational, ...

1
Sind = ”/AdA+/d2xdt [EEQ— —B2~|—JBVE+...}
Ar 2 2

Find responses in terms of phenomenological parameters
V, €, 1, T, ..

Compute these parameters from the underlying theory.

For non-interacting particles in B with v = N see AA, Gromov 2014.

Any functional of E and B is gauge invariant, but ...



Chern-Simons action

Spg = — / AdA
A7



Linear responses from the Chern-Simons action

In components

14

v
Scs = 47‘r/AdA:4

= V/dzwdt [Ao(@lAg —82141) + ...
47

/ Az dt " A,0, Ay

™

Varying over A,

_08S¢cs v . 0Ses v

T 54, 2 =54, o 2

We have: oy = & and oy = 90 _ Gtreda formula.
27 0B



Properties of the Chern-Simons term

» Gauge invariant in the absence of the boundary
(allowed in the induced action)

» Not invariant in the presence of the boundary
» Leads to protected gapless edge modes

» First order in derivatives
(more relevant than F,, F*, B or E? at large distances)

> Relativistically invariant
(accidentally !!!)

» Does not depend on metric g,
(topological, does not contribute to the stress-energy
tensor)



Elastic responses: Strain and Metric

» Deformation of solid or fluid r — r + u(r)

» u(r) - displacement vector

> Ui = % (Oku; + Ojuy) - strain tensor

> u;; plays a role of the deformation metric

» deformation metric g, ~ ;1 + 2u;; with ds? = gikda:idxk

» stress tensor Tj; - response to the deformation metric g;;



Stress tensor and induced action

Studying responses

» Microscopic model S = S[]
» Introduce gauge field and metric background S|, A, ¢

» Integrate out matter degrees of freedom and obtain and
Sind [A7 g]

» Obtain E/M, elastic, and mixed responses from
1.
0Sind = /dl‘ dt\/g <]M5Au + 2ledgij>

» Elastic responses = gravitational responses

Important: stress is present even in flat space!



Quantum Hall in Geometric Background (by Gil Cho)

é = electron

= magnetic field



Geometric background

» For 241 dimensions and spatial metric g;; we introduce
“spin connection” w,, so that

1
5\/§R = Oiwe — dowy — gravi-magnetic field,
E = w;— dwg — gravi-electric field,

» For small deviations from flat space g;z = d;1 + 0gir We
have explicitly
1 . . 1 .
wo = §€]k59ij9ik, wi = *iﬁjkaﬂgik

» Close analogy with E/M fields A, < w,,!



Geometric terms of the induced action

Terms of the lowest order in derivatives
v

Sind = / [AdA +25wdA + ' wdw] .
47

Geometric terms:
» AdA — Chern-Simons term (v: Hall conductance, filling
factor)
» wdA — Wen-Zee term (s: orbital spin, Hall viscosity, Shift)

» wdw — “gravitational CS term” (f': Hall viscosity -
curvature, thermal Hall effect, orbital spin variance)

» In the presence of the boundary ' can be divided into
chiral central charge ¢ and s2 (Bradlyn, Read, 2014). The
latter does not correspond to an anomaly.

(Gromov, Jensen, AA, 2015)



The Wen-Zee term

Responses from the Wen-Zee term

Vs

Swz=— [ wdA.
2T

Emergent spin (orbital spin) s

ﬁ(A + sw)d(A + 5w)

Wen-Zee shift for sphere 0N = vS; S = 25
—Aodw — 0p= —dw — 0N = yp /de\fR— vsx = vs(2—2g)
T

Hall viscosity (per particle) ng = 5ne

S .
_ k .
Wo = NeSwy = neiﬁj 89ij ik




Hall viscosity

Gradient correction to the stress tensor
Ti. = nH(€inUnk + €nni)
where

1 1
Vil = 5(31'% + Opv;) = 59% — strain rate

(a) Shear viscosity (b) ng — Hall viscosity

©)]

picture from Lapa, Hughes, 2013
Avron, Seiler, Zograf, 1995



Obtaining the effective field theory for FQH states

» Reduce problem to noninteracting fermions with v - integer
interacting with statistical Abelian and non-Abelian gauge
fields. Can be done, e.g., by flux attachment or parton
construction (Zhang, Hansson, Kivelson, 1989; Wen, 1991;
Cho, You, Fradkin, 2014)

» Integrate out fermions and obtain the effective action
Sla, A, g] using the results for free fermions.
(AA, Gromov, 2014)

» Integrate out statistical gauge fields taking into account the
framing anomaly. (Gromov et al., 2015)

» Obtain the induced action S{79"[A, g] and study the
corresponding responses.



Flux attachment in geometric background

Cho, You, Fradkin, 2014
Flux attachment is based on the identity:

2 1
/DbDa exp —ip/bdb—iadb+i/(a+pw) =1
4dr 2 I

Here L is a link. The last term pw is due to the framing
regularization (Polyakov, 1988).

Integrating over b (wrong!)

/Da exp{i@pl)%r/ada+z’/L(a+pw)} =1

Integrating over b (correct!)

1 1
/Da exp {i(2p)2ﬂ_/ada+i/L(a—|—pw)i48ﬂ_' wdw} =1

Integrating over b (correct!)

[T\N o [: 1 /~J-. .. /‘/_A N N 1 [1] 1




Explicit calculation for free fermions at v = N

Starting point
5 R ..
St bt Ay = [ dt i yaot Dl - g (D) (D,0)]
Straightforward computation at v = N (Gromov, AA, 2014)
eom N 2N2 - ]_
S = / <AdA + N Adw + 6wdw>
7r

or equivalently (as a sum over Landau levels)

N
(geom) _ Loais s ) €
S = nEﬂ/ [471_ (A+ 5pw)d(A+ 5,w) 48ﬂ_wdw}
L 2n —1

Sn 5 > c=1.




Geometric effective action for v =1

o _ [ (401 1y
St = / [477 (A + 2w) d (A + 2w> 487rwdw

Is there an intuitive way to obtain this result?



The Wen-Zee construction for v = 1

Integrate out fermions but leave currents j = —s-da
(Wen, Zee, 1992)

1 1
Sla; A,w] = i [ada—i— 2 <A+ 2w) da] .
7r

(Wen, Zee, 1992) + framing anomaly:
» solve for a: a = — (A + %w)
» substitute back into the action

» take into account framing anomaly (Gromov et.al., 2015)

1 1 1 1
ind = — A+ A+ -w) ——wd
Sind /47r < + Qw) d< + 2w> 487rwdw



Digression: the quantum Chern-Simons theory

The partition function for Chern-Simons theory in the metric

background (Witten, 1989)
c 2
—i—— [ tr(Tdl + 2T?
exp{ 2967T/r< —|-3 >}

/Da exp{—ik/ada}
47
= exp{—z48/wdw} ,

where ¢ = sgn(k) and the last equality is correct for our
background.

We specialized Witten’s results to the Abelian CS theory

>

» The result is obtained from the fluctuation determinant det(d)

> The dependence on metric comes from the gauge fixing [ dV ¢D"a,
>

Action does not depend on metric, path integral does: anomaly
(framing anomaly)



Consistency check (for v = 1)

Basic idea: two routes to effective action.

Route 1:
1 1 1 1
Route 2
Solths A, 9] — Sofths A+ a+w,g] + —ada———wdw
oy; A, 9 () ar+w,g 87Ta a 487rw w
Introducing A = A+ a+w

1 1 1 1 1 1
- —— <.A—w> d <.A 5 ) —i—Kwdw + gada 18n wdw

1 1 1 1 1
I ) p—
— (A + 2w) d <A + 2w) + IS8T wdw— 48T wdw

Consistent only if the framing anomaly is taken into account (twice)!



Obtaining the effective field theory for FQH states

» Reduce problem to noninteracting fermions with v - integer
interacting with statistical Abelian and non-Abelian gauge
fields. Can be done, e.g., by flux attachment or parton
construction (Zhang, Hansson, Kivelson, 1989; Wen, 1991;
Cho, You, Fradkin, 2014)

» Integrate out fermions and obtain the effective action
Sla, A, g] using the results for free fermions.
(Gromov, AA, 2014)

» Integrate out statistical gauge fields taking into account the
framing anomaly. (Gromov et al., 2015)

» Obtain the induced action S{77"[A, g] and study the
corresponding responses.



Example: Laughlin’s states

Flux attachment for Laughlin’s states v = 72m1 )

2 1
Solth, A+ a+mw, g] — / b + —adb

47 2w

Integrating out ¥, a, b

1 1 2m +1 2m +1 1
geom _ - A dl A ——wd
Sind /47r2m+1< T w) ( T2 w> asr

Coefficients

1 o 2m+1
S fr—
’ 2

, c=1.



Other states

Geometric effective actions have been obtained for:
» Free fermions at v = N
» Laughlin’s states
» Jain series
Arbitrary Abelian QH states
Read-Rezayi non-Abelian states
The method can be applied to other FQH states

v

v

v

A. Gromov et.al., PRL 114, 016805 (2015). Framing Anomaly
in the Effective Theory of the Fractional Quantum Hall Effect.



Consequences of the gravitational CS term

c c
Sgcs = ~96n tr (Fdf + 3F3> ~ 18 wdw .

1. From CS and WZ term [shift] (Wen, Zee, 1992)

- B — 5
o +47TR — N =v(Ny+5x)

From WZ and gCS term [Hall viscosity shift]
(Gromov, AA, 2014 cf. Hughes, Leigh, Parrikar, 2013)
5 c R

= 5" i

2. Thermal Hall effect [from the boundary!] (Kane, Fisher,
1996; Read, Green, 2000; Cappelli, Huerta, Zemba, 2002)

Wk%T

Ky =c
H=C"




Some recent closely related works

» Geometric terms from adiabatic transport and adiabatic
deformations of trial FQH wave functions
(Bradlyn, Read, 2015; Klevtsov, Wiegmann, 2015)

» QH wave functions in geometric backgrounds
(Can, Laskin, Wiegmann, 2014; Klevtsov, Ma, Marinescu,
Wiegmann, 2015)

» Newton-Cartan geometric background and Galilean
invariance (Hoyos, Son, 2011; Gromov, AA, 2014; Jensen,
2014)

» Thermal transport in quantum Hall systems
(Geracie, Son, Wu, Wu, 2014; Gromov, AA, 2014; Bradlyn,
Read, 2014)



Main results

Response functions can be encoded in the form of the induced
action for FQHE.

Sind = 41 [(A+§w)d(A+§w)+6wdw
™
c 2
- — Ddl' 4+ I3 + ...
967 tr[d T3 }Jr ’

where v is the filling fraction, § is the average orbital spin, 3 is
the orbital spin variance, and c is the chiral central charge.

The coefficients v, 5, 3, ¢ are computed for various known
Abelian and non-Abelian FQH states.

Framing anomaly is crucial in obtaining the correct
gravitational Chern-Simons term!



Quantum Hall at the Edge (by Gil Cho)
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