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Fractional Quantum Hall state – exotic fluid

I Two-dimensional electron gas in magnetic field forms a new
type of quantum fluid

I It can be understood as quantum condensation of electrons
coupled to vortices/fluxes

I Quasiparticles are gapped, have fractional charge and
statistics

I The fluid is ideal – no dissipation!

I Density is proportional to vorticity!

I Transverse transport: Hall conductivity and Hall viscosity,
thermal Hall effect

I Protected chiral dynamics at the boundary



Transverse transport

Signature of FQH states – quantization and robustness of Hall
conductance σH

ji = σHε
ijEj , σH = ν

e2

h
- Hall conductivity.

Are there other “universal” transverse transport coefficients?

Hall viscosity: transverse momentum transport

Thermal Hall conductivity: transverse energy/heat transport

What are the values of the corresponding kinetic coefficients for
various FQH states?

Are there corresponding “protected” boundary modes?
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Essential points of the talk

I Induced Action encodes linear responses of the system

I Coefficients of geometric terms of the induced action –
universal transverse responses.

I Hall conductivity, Hall viscosity, thermal Hall conductivity.

I These coefficients are computed for various FQH states.

I Framing anomaly is crucial in obtaining the correct
gravitational Chern-Simons term!



Induced action

Partition function of fermions in external e/m field Aµ is:

Z =

∫
DψDψ† eiS[ψ,ψ†;Aµ] = eiSind[Aµ]

with

S[ψ,ψ†;Aµ] =

∫
d2x dt ψ†

[
i~∂t + eA0 −

1

2m

(
−i~∇− e

c
A
)2
]
ψ

+ interactions

Induced action encodes current-current correlation functions

〈jµ〉 =
δSind
δAµ

, 〈jµjν〉 =
δ2Sind
δAµδAν

, . . .

+ various limits m→ 0, e2/lB →∞, ...



Induced action [phenomenological]

Use general principles: gap+symmetries to find the form of Sind
I Locality → expansion in gradients of Aµ

I Gauge invariance → written in terms of E and B

I Other symmetries: rotational, translational, . . .

Sind =
ν

4π

∫
AdA+

∫
d2x dt

[ ε
2
E2 − 1

2µ
B2 + σB∇E + . . .

]

Find responses in terms of phenomenological parameters
ν, ε, µ, σ,. . .

Compute these parameters from the underlying theory.
For non-interacting particles in B with ν = N see AA, Gromov 2014.

Any functional of E and B is gauge invariant, but . . .



Chern-Simons action

SCS =
ν

4π

∫
AdA



Linear responses from the Chern-Simons action

In components

SCS =
ν

4π

∫
AdA ≡ ν

4π

∫
d2x dt εµνλAµ∂νAλ

=
ν

4π

∫
d2x dt

[
A0(∂1A2 − ∂2A1) + . . .

]
Varying over Aµ

ρ =
δSCS
δA0

=
ν

2π
B , j1 =

δSCS
δA1

= − ν

2π
E2 ,

We have: σH = ν
2π and σH = ∂ρ

∂B – Streda formula.



Properties of the Chern-Simons term

I Gauge invariant in the absence of the boundary
(allowed in the induced action)

I Not invariant in the presence of the boundary

I Leads to protected gapless edge modes

I First order in derivatives
(more relevant than FµνF

µν , B2 or E2 at large distances)

I Relativistically invariant
(accidentally !!!)

I Does not depend on metric gµν
(topological, does not contribute to the stress-energy
tensor)



Elastic responses: Strain and Metric

I Deformation of solid or fluid r → r + u(r)

I u(r) - displacement vector

I uik = 1
2 (∂kui + ∂iuk) - strain tensor

I uik plays a role of the deformation metric

I deformation metric gik ≈ δik + 2uik with ds2 = gikdx
idxk

I stress tensor Tij - response to the deformation metric gij



Stress tensor and induced action

Studying responses

I Microscopic model S = S[ψ]

I Introduce gauge field and metric background S[ψ,A, g]

I Integrate out matter degrees of freedom and obtain and
Sind[A, g]

I Obtain E/M, elastic, and mixed responses from

δSind =

∫
dx dt

√
g

(
jµδAµ +

1

2
T ijδgij

)
I Elastic responses = gravitational responses

Important: stress is present even in flat space!



Quantum Hall in Geometric Background (by Gil Cho)

e 

e 

e 

e = electron 

= magnetic field 



Geometric background

I For 2+1 dimensions and spatial metric gij we introduce
“spin connection” ωµ so that

1

2

√
gR = ∂1ω2 − ∂2ω1 – gravi-magnetic field,

Ei = ω̇i − ∂iω0 – gravi-electric field,

I For small deviations from flat space gik = δik + δgik we
have explicitly

ω0 =
1

2
εjkδgij ġik , ωi = −1

2
εjk∂jδgik

I Close analogy with E/M fields Aµ ↔ ωµ!



Geometric terms of the induced action

Terms of the lowest order in derivatives

Sind =
ν

4π

∫ [
AdA+ 2s̄ ωdA+ β′ ωdω

]
.

Geometric terms:

I AdA – Chern-Simons term (ν: Hall conductance, filling
factor)

I ωdA – Wen-Zee term (s̄: orbital spin, Hall viscosity, Shift)

I ωdω – “gravitational CS term” (β′: Hall viscosity -
curvature, thermal Hall effect, orbital spin variance)

I In the presence of the boundary β′ can be divided into
chiral central charge c and s2 (Bradlyn, Read, 2014). The
latter does not correspond to an anomaly.
(Gromov, Jensen, AA, 2015)



The Wen-Zee term

Responses from the Wen-Zee term

SWZ =
νs̄

2π

∫
ωdA .

Emergent spin (orbital spin) s̄

ν

4π
(A+ s̄ω)d(A+ s̄ω)

Wen-Zee shift for sphere δN = νS; S = 2s̄

νs̄

2π
A0dω → δρ =

νs̄

2π
dω → δN =

νs̄

4π

∫
d2x
√
gR = νs̄χ = νs̄(2−2g)

Hall viscosity (per particle) ηH = s̄
2ne:

νs̄

2π
ωdA→ Bνs̄

2π
ω0 = nes̄ω0 = ne

s̄

2
εjkδgij ġik



Hall viscosity

Gradient correction to the stress tensor

Tik = ηH(εinvnk + εknvni) ,

where

vik =
1

2
(∂ivk + ∂kvi) =

1

2
ġik – strain rate

(a) Shear viscosity (b) ηH – Hall viscosity

picture from Lapa, Hughes, 2013

Avron, Seiler, Zograf, 1995



Obtaining the effective field theory for FQH states

I Reduce problem to noninteracting fermions with ν - integer
interacting with statistical Abelian and non-Abelian gauge
fields. Can be done, e.g., by flux attachment or parton
construction (Zhang, Hansson, Kivelson, 1989; Wen, 1991;
Cho, You, Fradkin, 2014)

I Integrate out fermions and obtain the effective action
S[a,A, g] using the results for free fermions.
(AA, Gromov, 2014)

I Integrate out statistical gauge fields taking into account the
framing anomaly. (Gromov et al., 2015)

I Obtain the induced action Sgeomind [A, g] and study the
corresponding responses.



Flux attachment in geometric background

Cho, You, Fradkin, 2014
Flux attachment is based on the identity:∫

DbDa exp

{
−i 2p

4π

∫
bdb− i 1

2π
adb+ i

∫
L

(a+ pω)

}
= 1

Here L is a link. The last term pω is due to the framing
regularization (Polyakov, 1988).

Integrating over b (wrong!)∫
Da exp

{
i

1

(2p)2π

∫
ada+ i

∫
L

(a+ pω)

}
= 1

Integrating over b (correct!)∫
Da exp

{
i

1

(2p)2π

∫
ada+ i

∫
L

(a+ pω)−i 1

48π

∫
ωdω

}
= 1

Integrating over b (correct!)∫
Da exp

{
i

1

(2p)2π

∫
ada+ i

∫
L

(a+ pω)−i 1

48π

∫
ωdω

}
= 1

Prescription:

S[ψ,A, g] ∼ S[ψ,A+ a+ pω] +
1

(2p)4π

∫
ada− 1

48π

∫
ωdω



Explicit calculation for free fermions at ν = N

Starting point

S[ψ,ψ†;Aµ, gij ] =

∫
dt d2x

√
g ψ†

[
i~
←→
Dt −

~2

2m
gij(Diψ)†(Djψ)

]
.

Straightforward computation at ν = N (Gromov, AA, 2014)

S
(geom)
eff =

N

4π

∫ (
AdA+N Adω +

2N2 − 1

6
ωdω

)
or equivalently (as a sum over Landau levels)

S
(geom)
eff =

N∑
n=1

∫ [
1

4π
(A+ s̄nω)d(A+ s̄nω)− c

48π
ωdω

]

s̄n =
2n− 1

2
, c = 1 .



Geometric effective action for ν = 1

S
(geom)
eff =

∫ [
1

4π

(
A+

1

2
ω

)
d

(
A+

1

2
ω

)
− 1

48π
ωdω

]

Is there an intuitive way to obtain this result?



The Wen-Zee construction for ν = 1

Integrate out fermions but leave currents j = − 1
2πda

(Wen, Zee, 1992)

S[a;A,ω] = − 1

4π

∫ [
ada+ 2

(
A+

1

2
ω

)
da

]
.

(Wen, Zee, 1992) + framing anomaly:

I solve for a: a = −
(
A+ 1

2ω
)

I substitute back into the action

I take into account framing anomaly (Gromov et.al., 2015)

Sind =

∫
1

4π

(
A+

1

2
ω

)
d

(
A+

1

2
ω

)
− 1

48π
ωdω



Digression: the quantum Chern-Simons theory

The partition function for Chern-Simons theory in the metric
background (Witten, 1989)∫
Da exp

{
−i k

4π

∫
ada

}
= exp

{
−i c

96π

∫
tr

(
ΓdΓ +

2

3
Γ3

)}
= exp

{
−i c

48π

∫
ωdω

}
,

where c = sgn(k) and the last equality is correct for our
background.

I We specialized Witten’s results to the Abelian CS theory

I The result is obtained from the fluctuation determinant det(d)

I The dependence on metric comes from the gauge fixing
∫
dV φDµaµ

I Action does not depend on metric, path integral does: anomaly
(framing anomaly)



Consistency check (for ν = 1)

Basic idea: two routes to effective action.

Route 1:

S0[ψ;A, g]→ 1

4π

(
A+

1

2
ω

)
d

(
A+

1

2
ω

)
− 1

48π
ωdω

Route 2:

S0[ψ;A, g]→ S0[ψ;A+ a+ ω, g] +
1

8π
ada− 1

48π
ωdω

Introducing A = A+ a+ ω

→ − 1

4π

(
A−1

2
ω

)
d

(
A−1

2
ω

)
+

1

48π
ωdω +

1

8π
ada− 1

48π
ωdω

→ 1

4π

(
A+

1

2
ω

)
d

(
A+

1

2
ω

)
+

1

48π
ωdω−2

1

48π
ωdω

Consistent only if the framing anomaly is taken into account (twice)!



Obtaining the effective field theory for FQH states

I Reduce problem to noninteracting fermions with ν - integer
interacting with statistical Abelian and non-Abelian gauge
fields. Can be done, e.g., by flux attachment or parton
construction (Zhang, Hansson, Kivelson, 1989; Wen, 1991;
Cho, You, Fradkin, 2014)

I Integrate out fermions and obtain the effective action
S[a,A, g] using the results for free fermions.
(Gromov, AA, 2014)

I Integrate out statistical gauge fields taking into account the
framing anomaly. (Gromov et al., 2015)

I Obtain the induced action Sgeomind [A, g] and study the
corresponding responses.



Example: Laughlin’s states

Flux attachment for Laughlin’s states ν = 1
2m+1

S0[ψ,A+ a+mω, g]−
∫ [

2m

4π
bdb+

1

2π
adb

]
Integrating out ψ, a, b

Sgeomind =

∫
1

4π

1

2m+ 1

(
A+

2m+ 1

2
ω

)
d

(
A+

2m+ 1

2
ω

)
− 1

48π
ωdω

Coefficients

ν =
1

2m+ 1
, s̄ =

2m+ 1

2
, c = 1 .



Other states

Geometric effective actions have been obtained for:

I Free fermions at ν = N

I Laughlin’s states

I Jain series

I Arbitrary Abelian QH states

I Read-Rezayi non-Abelian states

I The method can be applied to other FQH states

A. Gromov et.al., PRL 114, 016805 (2015). Framing Anomaly
in the Effective Theory of the Fractional Quantum Hall Effect.



Consequences of the gravitational CS term

SgCS = − c

96π

∫
tr

(
ΓdΓ +

2

3
Γ3

)
= − c

48π

∫
ωdω .

1. From CS and WZ term [shift] (Wen, Zee, 1992)

n =
ν

2π
B +

νs̄

4π
R → N = ν(Nφ + s̄χ)

From WZ and gCS term [Hall viscosity shift]
(Gromov, AA, 2014 cf. Hughes, Leigh, Parrikar, 2013)

ηH =
s̄

2
n− c

24

R

4π

2. Thermal Hall effect [from the boundary!] (Kane, Fisher,
1996; Read, Green, 2000; Cappelli, Huerta, Zemba, 2002)

KH = c
πk2

BT

6
.



Some recent closely related works

I Geometric terms from adiabatic transport and adiabatic
deformations of trial FQH wave functions
(Bradlyn, Read, 2015; Klevtsov, Wiegmann, 2015)

I QH wave functions in geometric backgrounds
(Can, Laskin, Wiegmann, 2014; Klevtsov, Ma, Marinescu,
Wiegmann, 2015)

I Newton-Cartan geometric background and Galilean
invariance (Hoyos, Son, 2011; Gromov, AA, 2014; Jensen,
2014)

I Thermal transport in quantum Hall systems
(Geracie, Son, Wu, Wu, 2014; Gromov, AA, 2014; Bradlyn,
Read, 2014)



Main results

Response functions can be encoded in the form of the induced
action for FQHE.

Sind =
ν

4π

∫ [
(A+ s̄ω)d(A+ s̄ω) + βωdω

]
− c

96π

∫
tr

[
ΓdΓ +

2

3
Γ3

]
+ . . . ,

where ν is the filling fraction, s̄ is the average orbital spin, β is
the orbital spin variance, and c is the chiral central charge.

The coefficients ν, s̄, β, c are computed for various known
Abelian and non-Abelian FQH states.

Framing anomaly is crucial in obtaining the correct
gravitational Chern-Simons term!



Quantum Hall at the Edge (by Gil Cho)
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