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Motivation

» Can we calculate central charge directly from bulk

wavefunctions?

- Way forward - couple microscopic system to

background geometry
» uniform deformations <-> viscosity

- spatially varying deformations <-> central charge



- Non-relativistic: preferred time direction

Geometric Perturbations

* Introduce vielbeins eX - local orthonormal

basis of tangent vectors

a =20
- Spin connection wu - tells us how
vielbeins rotate from point to point

- (degenerate) spacetime metric

a b
huw = Nabe, €,

N

* spacetime volume element | /g = det(e)

. TOI’SIOI’] T/(jéy — aﬂeg _ ayezé + GOaﬁ(wueg _ wyeﬁ)

 Curvature R,, = 0,w, — 0w,




More on Non-relativistic
geometry

» vielbein is covariantly constant

0=V,el =0,e +wueelds — T el

» Given a choice of vielbeins, it is not in general possible to

find a Levi-Civita connection

« C% = el (n°elT%, +nelT),) does not depend on spin
connection

« => independent variables are vielbeins and “reduced

M I - - b O
torsion™ 17, =T}, — 5?7 C ( €,6y — eyefb)



Induced Action for QH
States

Gapped system -> Integrate out matter in bulk to get Induced

action i) = / Dy exp(iS[ih, e, A, T)

Two types of terms

So = /de\//\ge(e,T, R, F) + 4L /de%\‘“’)‘ (AM&/A/\ + 25w, 0, Ax + s_zwua,,w,\)
T

C 3 U\ o 2 o 0
+ 96—7-( d°x e (Fzgayr)\p + §FZUFI/6’FAP>

“Locally covariant”: integrand is a scalar

“Topological”: integrand changes by boundary term under
symmetries

Wen & Zee 1992, Read & Green 2000, Abanov & Gromov 2014, BB & Read 2015



Induced Action and Berry
Curvature

» Consider a general induced action:

5.2[Q) = / dhzdt [6(Q) + Leop(Q)

- gapped phase, external fields evolve along
(contractible) closed path -> adiabatic theorem

Uli, ¢y = i, Q) = € = e">ert<l
» Top. terms contribute to Berry phase

Q=90 +7vB, D= /ddxdt e(Q), VB = /ddﬂ?dt Liop



Induced Action and Berry
Curvature

« From v = [ d%xdt Lop we can extract the Berry
curvature using Stokes's theorem

+ Example - U(1) Chern-Simons term €“** 4,0, A,
Ao =0, A;,=fi(t)/L
— /d2l‘dt /E\MV)\AMayA)\ — /AQdAl — A1dA-

= —Z/dAldAg

This constant Berry curvature is the Hall conductivity



Outline

Berry curvature and central charge



Setup

+ Take time-like vielbein trivial, ey = 05 and reduced
torsion T2, =0

« degenerate metric takes the form

0 0
h“’/_(o gz'j)

« Convenient parametrization for g:; :

ds* = g;;da'dr? = e® |dz + ndz|”

dz = dx' + idz?



2D Complex Geometry

« 1 - Beltrami coefficient, determines the complex
structure via the Beltrami Equation

OF = uoF
ds®> = e® |dF|?
+ Example: Torus, constant p = ==

Z =T+ 1y
ds® oc|dz + pdz|?

F =z + 1y,ds* < |dF|?




Berry Curvature from
Induced Action

1
= |pf?

- We fix dletgleCI):1

+ Spin connection: w, = —idji + O(u*)
wo = Im(pdofi) + O(1”)

» Also want to vary EM field s.t. §(A; + 5w;) =0

» Can plug these into induced action to find Berry curvature

’YB—/dQ /d2 /fﬂud,u Ydu(y

— 12
Foup = —Fuz =1in56(z — 2') - ile 1VQ(7T > ”885(2 — 2"




Prescription

1. Obtain wavefunctions with perturbed metric and magnetic field
« Can be done analytically using “conformal block” trial states

- Numerics on the torus - diagnostic tool for topological order

¢e’ >

2. Calculate the functional Berry connection
0 ;.
¢> Ace =z<¢e

3. Take the curl to get the curvature

0

0pi(z, 2)

At =i <we

r 0AL(z,2)  0A,(2,Z)
o2, 7)) op(2, 7
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Example - conformal block trial states



Analytic Approah:
Conformal Block Trial States

Goal - wavefunctions for particles in the lowest-
Landau-level

These satisfy (0 —iA)y = 0

Such functions can be systematically generated as
chiral correlation functions in 2d CFT

1

8w

S d*x(Vp)? + S(o) a(z;) = 0(2)01, 5 (7i)

a—0
=1 71=1

N N/«
Ye({zi}) = lim <H a(z) || Oa/ﬁ(wj)>

Moore, Read 1991



Trial Wavefunctions in a
Curved background

Non-trivial geometries => need (05 — A7)y =0
Naive guess - perturbed CFT correlator

N N/«
ESRT . o J dauT
o 2 i (T TTO-apsti)e= 507 )
0

i=1 j=1

Problem - |¢|° not a scalar!
Fix - we need to carefully define what we mean by “chiral correlator”
Inspired by the usual case, we expect <Hso(z@-,zz-)> = ({2} )

BUT - this ignores anomalies



The Gravitational Anomaly

+  Problem in the chiral theory: 1 — 10T — 20uT = 1—626%
- Naive non-chiral theory: v, 7% =

» Fix - add a local counterterm to the non-chiral action

)

S—>S——K[,u,u<l>]
|
K = /d2 (1= |ul?) <0u0u—-—u(10 5

(o
1
4/@2@f4M)(2 l“a¢@¢+@R>

» Restores coordinate invariance at the expense of
factorization - holomorphic factorization anomaly

Belavin, Knizhnik 1986, Polyakov 1987



Implications for the
Wavefunction

A general correlator can then be written

<H (2, Zi)> = et K250 N W ({2} )|

g

v, = <H 90(27;)6_% fde“T>
J

O,e

We define wavefunctions

a—(0

we({zz}) = 6%—’{—21' 5P(z:) lim <H CL(ZZ) H O—a/\/ﬂ(wj>€_% fde,u,T>
J

t 0,e

Verlinde, 1990



Properties of the
Wavefunctions

. CFT - T(2)T(0) ~ 2; : ;T(O) + %aT(O) T
T(z)a(0) ~ Z%a(()) + %8@(0) + ...

» Lets us prove:

1 e({Gilzin 20 PIT = ({2 1)1

« 2. (05 +iswg) Ye(21,y ey 2y ooy 2n) = 0

- Last step - singular gauge transformation to make ¥e

. , , 2T

single valued -> (97 +iswp — iAL)p. =0, Vx A® =2 _>
y

B=""_%R

vV

vV



Last Important Fact:
Generalized Screening

Need to normalize our wavefunctions

Recall: Laughlin's trial wavefunction for the 1/Q FQHE:
'QDL — H(Z’L — Zj)Qe_ 2 i|zi\2

1<
) Q. 1
ey (58]
=> Normalization is the partition fn. for a classical OCP

Plasma screens for small Q => short-range correlations,
homogeneous fluid ground state, fractionally charged
excitations, etc.



Last Important Fact:
Generalized Screening

Need to normalize our wavefunctions

Laughlin 1983 - [ ], d*z; 4| is the partition fn for a classical
plasma

Generalization to Moore-Read language: [T], d?z [¢e(p = 0)|°
is the partition function for a perturbed CFT (considered as a

2D stat. mech. model)

< Y|ty >= <€f 4?22 (2)a(z) ,— 52 fd2z¢(z,5)>

€

Screening<-> the theory is driven to a massive phase

We assume we are in a top. phase s.t. screening holds



Consequences of Screening

1. Particle density = background charge density n = p

2. f Hz (\/det gidQZi) Veer = N(g)deer

3. Normalization has a local expansion

N(g) =exp | [ d*z(apy/det g+ a1 R+ ...)]

4. Fixed area + Gauss-Bonnet theorem: first two terms
are constants



Berry Curvature from the

Wavefunction

* [T]. dzi|e|> isindependent of f, i through 2nd
order in derivatives using the screening hypothesis

- LLL wavefunctions in magnetic field B = 27775 — sR

 »depends on i1 only via the local counterterms to this
order

» Using these properties, we can vary u, u with p fixed
to find;

_ e
Fun =2 (5

0, s , " = ,
57(2) >> =1nd(z — 2') + E@@é(z —2')

.+ Conclusion: s2 = 3% for CFT trial states




Conclusion

Central charge computed as a Berry curvature

¢ is robust to breaking translation & rotational
symmetry, but this is not manifest in our approach
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