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Motivation
• Can we calculate central charge directly from bulk 

wavefunctions? 

• Way forward - couple microscopic system to 
background geometry 

• uniform deformations <-> viscosity 

• spatially varying deformations <-> central charge 



• Introduce vielbeins      - local orthonormal 
basis of tangent vectors 

• Non-relativistic: preferred time direction  

• Spin connection       -  tells us how 
vielbeins rotate from point to point 

• (degenerate) spacetime metric 

• spacetime volume element 

• Torsion       

• Curvature 
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More on Non-relativistic 
geometry

• vielbein is covariantly constant 

• Given a choice of vielbeins, it is not in general possible to 
find a Levi-Civita connection 

•                                                          does not depend on spin 
connection 

• => independent variables are vielbeins and “reduced 
torsion” 
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Induced Action for QH 
States

• Gapped system -> Integrate out matter in bulk to get Induced 
action 

• Two types of terms 

• “Locally covariant”: integrand is a scalar 

• “Topological”: integrand changes by boundary term under 
symmetries
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Induced Action and Berry 
Curvature

• Consider a general induced action: 

• gapped phase, external fields evolve along 
(contractible) closed path -> adiabatic theorem 

• Top. terms contribute to Berry phase
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Induced Action and Berry 
Curvature

• From                                        we can extract the Berry 
curvature using Stokes’s theorem 

• Example - U(1) Chern-Simons term 
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Setup
• Take time-like vielbein trivial,                  and reduced 

torsion 

• degenerate metric takes the form 

• Convenient parametrization for       :    
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2D Complex Geometry
•    - Beltrami coefficient, determines the complex 

structure via the Beltrami Equation 

• Example: Torus, constant 
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Berry Curvature from 
Induced Action

• We fix 

• Spin connection: 

• Also want to vary EM field s.t. 

• Can plug these into induced action to find Berry curvature 
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Prescription
1. Obtain wavefunctions with perturbed metric and magnetic field 

• Can be done analytically using “conformal block” trial states 

• Numerics on the torus - diagnostic tool for topological order 

2. Calculate the functional Berry connection 

3. Take the curl to get the curvature 

Aee0

µ = i

⌧
 e

����
�

�µ(z, z̄)

���� e0

�
, Aee0

µ̄ = i

⌧
 e

����
�

�µ̄(z, z̄)

���� e0

�

Fµµ̄ =
�Aµ̄(z, z̄)

�µ(z0, z̄0)
� �Aµ(z, z̄)

�µ̄(z0, z̄0)



Outline

• Geometric deformations 

• Berry curvature and central charge 

• Example - conformal block trial states 

• Conclusions



Analytic Approah: 
Conformal Block Trial States
• Goal - wavefunctions for particles in the lowest-

Landau-level  

• These satisfy 

• Such functions can be systematically generated as 
chiral correlation functions in 2d CFT
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Trial Wavefunctions in a 
Curved background

• Non-trivial geometries => need 

• Naive guess - perturbed CFT correlator 

• Problem -          not a scalar! 

• Fix - we need to carefully define what we mean by “chiral correlator” 

• Inspired by the usual case, we expect 

• BUT  - this ignores anomalies
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The Gravitational Anomaly
• Problem in the chiral theory: 

• Naive non-chiral theory: 

• Fix - add a local counterterm to the non-chiral action  

• Restores coordinate invariance at the expense of 
factorization - holomorphic factorization anomaly
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Implications for the 
Wavefunction

• A general correlator can then be written 

• We define wavefunctions
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Properties of the 
Wavefunctions

• CFT -  

• Lets us prove:  

• 1. 

• 2.                                                                      

• Last step - singular gauge transformation to make       
single valued ->                                                         ->  
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Last Important Fact: 
Generalized Screening

• Need to normalize our wavefunctions 

• Recall: Laughlin’s trial wavefunction for the 1/Q FQHE: 

•   

• => Normalization is the partition fn. for a classical OCP 

• Plasma screens for small Q => short-range correlations, 
homogeneous fluid ground state, fractionally charged 
excitations, etc.
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Last Important Fact: 
Generalized Screening

• Need to normalize our wavefunctions 

• Laughlin 1983 -                         is the partition fn for a classical 
plasma 

• Generalization to Moore-Read language:                                      
is the partition function for a perturbed CFT (considered as a 
2D stat. mech. model) 

• Screening<-> the theory is driven to a massive phase  

• We assume we are in a top. phase s.t. screening holds
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Consequences of Screening
1. Particle density = background charge density 

2.   

3. Normalization has a local expansion 

4. Fixed area + Gauss-Bonnet theorem: first two terms 
are constants
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Berry Curvature from the 
Wavefunction

•                          is independent of             through 2nd 
order in derivatives using the screening hypothesis 

• LLL wavefunctions in magnetic field 

•   depends on       only via the local counterterms to this 
order 

• Using these properties, we can vary           with      fixed 
to find:   

• Conclusion:                   for CFT trial states      
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Conclusion
• Central charge computed as a Berry curvature 

•      is robust to breaking translation & rotational 
symmetry, but this is not manifest in our approach 

• References: BB & N. Read Phys. Rev. B 91 125303 (2015) 
•                        BB & N. Read Phys. Rev. B 91 165306 (2015) 

• c.f. related work by: Klevtsov et. al., Klevtsov & 
Wiegmann, Can Laskin & Wiegmann, Gromov et. al., 
and many others
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