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OUTLINE

e “Zero” and “nonzero” spin excitons are lowest energy excitations in a spin
polarized integer quantum Hall system

e (Goldstone mode excitation -- experiment
® (Goldstone mode -- theory

e (Goldstone mode stochastisation — theory and experiment



Magneto-exciton (Gor’kov, Dzyaloshinskii, 1967)

A —>
b _ electron-hole interaction
,,,v//
electron
/ q omentum:
Ohole q — <Te—h> X Z/ZB

® The Landau-level degeneration is lifted due to electron-hole
interaction. ‘Natural’ quantum number ¢ appears due to the
translation invariance of the system.

® Due to translation invariance a special P operator appears
playing the same role as momentum operator in the absence
of magnetic field: [P, Hiyt] = O

® The magneto-exciton energy: FEyxy = 5((])



Simplest excitation in a completely polarized QHF

Spin exciton (spin First-order approximation results:

wave): _ _ (Yu. A Bychkov et al, 1981;
on =0, 05 =—1 C. Kallin, B.I. Halperin 1984)

2 Bou(q) = ez + Esn(q)

«qj

Spin exciton and other exciton-type states are suitable to study by

using the excitonic basis set: _ |
g abq“0> ’ ‘O> — |vac)
Q —1/2 Z —ipga i
abq = Vo > p+ay/29P— Qy/Q’
a and }H are binarindexes: @ = (na, O'a,) — the LL index
t spinindex: o =71 / |

Important: Exciton states are eigen states of the Gor’kov-
Dzyaloshinski P-momentum operator of the magnetoexciton:

o



Zero spin exciton if = (O: | Nonzero spin exciton

Q(T) = Sz — 15y [Hint QTq]|O> = 5sw(q)Qi1|0>

¥ is eigen state for the QH
QU | O> is eigen state for any | ferromagnet to the leading
QH system corresponding to | order approximation in Hj.+ .
the change of spin numbers | Change of the spin numbers is

Important: in spite of QE = limg—0 QTq
these are different states:
Q}[0) # limg—,0Q%0)



Let L be linear dimension of the system.

27 /L is spacing for g numbers

q=0 . means that ¢ << 27/L
whereas

q— 0  -meansthat 27/L << ¢ << 1/lp



Spin Goldstone mode

Ground state:
0,0) =111 ... T) (W, is the degeneration num-
ber of the completely occupied Landau level).

The eigenstate
|IN,0)= (QE;)N|O, 0), where QT =S_/y\/Ng (S_=S-iS,)
is the Goldstone condensate: S =N¢/2 and S, :N¢/2 — N

cosf = S,/S .
Another case of deviation is
ensemble of nonzero spin excitons:
E *S’O S_" B’ * SO
AS=0 AS,#+0 1 TS

G_iENt|N, O>EN: ez N

quantum precession AS=AS,



Relaxation of spin excitations
Spin stochastization or spin relaxation?

Total number of spin excitons determines the S, spin
component: z=Ny/2—N

Stochastization

47

Spin stochastization of the GM is a fast
process without change of the S spin
component , i.e. at fixed number of spin
excitons /N and at fixed Zeeman energy.

Spin exciton relaxation is change of the S,
component --- occurs much slower because
related to annihilation processes of spin excitons
and release of the energy --- studied experimetally
and theoretically (Zhuravlev,SD, Kulik, Kukushkin,
PRB 2014). The time > 100 ns.
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The GM decay if spin relaxation and stochastization occur simultaneously.

If a single mechanism for relaxation and stochastization -> SO coupling +

smooth random potential (SD PRL 2004)
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An elementary stochastisation process:
N,0) = [N, @) = (2))N71Q}0,0),

~1/2 . 4
where QazN(b / >ope qupb;Jr%ap_%yr a=1 and b=J.

Both |N,0) and |N,q) are eigenstates. orthog-
onal due to the translation invariance.

The |N,0)—|N,q) transition occurs without a
change in the S;=N;/2—N component.

At ¢ — O, the energies of both states (Ey) are
the same. However, the states |NV,0) and | N, q)
remain different even at ¢ — O and have differ-
chis o P aid s e e ekl



Experiment: the time-resolved Kerr technique is used

Probe The transverse component
[001] perpendicular to magnetic field

(Sz(t) + Sy (%))
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A. Larionov, L. Kulik, SD, | Kukushkin. PRB 2015



How is the Goldstone mode is excited
experimetally (elementary transition process)
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The present experimental situation

—sin@

. . 1 cosg
If a single electron, then instead of T= (O) we have /‘ —
2

If one photon is absorbed in the state |0, 0) =| 1™ ... T), then
initially we have a combination of vectors

LAt 1 I T ) and [T,

On the base of the indistinguishability principle one finds the initial state
iy =L3(0)|0,0), where Lz(0)=cos27—sinSQ]

The appearance of a zero-exciton operator is stipulated by the strict
“verticality' of the transition process

Lkphoton” <1

where L is alinear characteristic of 2D density spatial fluctuations



Why only one ‘tilted’ electron?

The initial state is not an eigenstate. It does not correspond to definite S,
but still corresponds to definite S =N¢/2.

Under the experimental conditions, [N < N¢, the elementary
dephasing process is a single exciton process.

Consider a domain of area A smallerthan Asp/N: A < Asp/N
( Asp is the area of the laser spot).

No more than a single photon is absorbed within the A domain,



Kerr oscilations

Our task is to study the temporal evolution of the initial state
Iy :cosg|o, 0) —sing|1, 0)

In the absence of any violation of the translation invariance, the Schroedinger
equation results in state

|t>:fjﬂ(t)|o,o> at moment t, where

L(t)= cosgf— singe_’ieztgT

The calculation of expectation (t|,§’$ zSy|t smﬁ IN —%Zt

explains the Kerr signal oscillations with frequency eZ/TL

but does not explain the Kerr signal decay.



The stochastization process (slow compared to the precession)

This is a conversion of component e~ *2%|1,0)  ofstate  |t)
to component e 2 1,q) at ¢—0

When calculating the (t, qIS;c—I-iSqu, t> gquantum average, at any state
t,q) =cos5|0,0) —e et sinZ|1, q)
we come to a zero result: (q, t|5’$—|—7§5’y|t, q)=0.

8q —€y q2/21\4x is the spin exciton energy at small dimensionless q.)

Thus the time of the Kerr signal decay is equal to the transition time of zero
exciton conversion into nonzero one with the same energy:

|17 O> :> |17q>q—>0'



What kind of interaction is responsible for the stochastization?

The perturbation responsible forthe  [1,0) = |1, q),—0.
conversion must be:

(i) a spin non-conserving coupling changing the S, but not changing
the Sz quantum numbers; and

(i) violating the translation invariance.

The most likely candidate is a term corresponding to the spatial fluctuations
of the g-factor in 2D electron gas, i.e., the Zeeman energy is actually

ez+91(r)upB,

and the perturbation Hamiltinian is

V __'u BZ(Ql(rz) 0 )

—g1(r;)



In terms of the “excitonic representation’ (secondary quantization) the

Hamiltonian isA 1
Vg = __Nqb Z?lq npB(Aq — Bq)
where g1(r) = Zglqe and
Al = —Ze—@%pa pt &% % Bq=Aq(a—b).

The “key point’ is calculation of the matrix element
_ o 1OT
Mq = (0|Qq| Vg [250),
then usual procedure

1 27T
- = 72 IMq|?8(ez — Eq)
q



Let us assume that the g-disorder is Gaussian and governed by correlator

K(r)=[g1(ro)g1(ro+r)drg/A
parameterized by fluctuation amplitude Ag and correlation

length A\, , so 2 /A2
o K(r)=nA2e"1N
Sy, BAN\,)2/2Rl1%
The result is ;—7" X(MB g g) / B-
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Some "hidden’ details
Really argument of the §—functionin 3" | Mq|?6(ez — Eq)
q

IS

2 = .
Eq — €z = o — d|Vellpsing

where q=(q,0) : q O< o< m!l
43¢

Vi

ﬁgp is smooth random electrostatic field

> [Mql?5(Eq — €z)

1 Ny foo (7 2 o 2 = -

= — qdq/ dp| Mg 5(61 /2 My — qIVsollB)Slﬂcb
2w JO 0

N¢ o0 s 5 5 _
= ¢ dq/ de| Mq|?2Mxb (q — 2Mx|Vpll)sing
27 JO 0 v

The result does not depend on ﬁgo but factor /2 appears due to 0 < ¢ < .



