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QHE in the canonical Holography



QHE and Holography

Motivation

Quantum ←→ Geometry



Black Holes

Black holes in AdS-space
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– Bekenstein-Hawking entropy

• Black holes are thermodynamical systems

• TD quantities are typically defined for an infinitely remote observer



Black holes

Charge density
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Charge density/Chemical potential←→ bulk gauge field
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Magnetic Field

Magnetic field [Hartnoll,Kovtun’07]

Dyonic AdS black hole

ds2

L2 =
α2

z2

(
−f (z)dt2 + dx2 + dy2)+

dz2

z2f (z)

At = µ− ρ

χα
z, Ax = −By

Regularity at the horizon At = 0 relates µ = µ(ρ)

T = α
3− Q2

4π
, Q2 =

ρ2 + χ2B2

χ2α4 S =
L2

4G
πα2 ∆x∆y

• Extremal (T = 0) black hole: (ρ2 + B2)z4
h = 3 has S 6= 0

• Quantity χ = L2

4G can be related to the central charge c of the dual CFT



Transport

Green’s functions [Hartnoll,Kovtun’07]

Find the response of the system to a small perturbation of electric field and
temperature gradient. The holographic prescription for calculation of
correlators gives the following for the retarded Green’s functions:

• for 2 currents 〈[Ji(t),Jj(0)]〉R

GR
ij(ω) = −iωεij

ρ

B
By Kubo formula

σij = − lim
ω→0

Im GR
ij(ω)

ω
= εijσH , σH =

ρ

B
σij is antisymmetric, but not quantized. ρ and B so far independent

• for 〈[Ji(t), Ttj(0)]〉R and 〈[Tti(t), Ttj(0)]〉R

GR
iπj

(ω) = −iωεij
3ε
2B

, GR
πiπj

(ω) =
χs2T2 iωδij

ρ2 + χ2B2 −
9ρε2 iωεij

4B (ρ2 + χ2B2)



Transport

Thermal conductivities [Hartnoll et al’07][DM,Orazi,Sodano’12]

Low temperature expansions of the conductivities yield

αxx = αyy = 0 , αxy = −αyx =
s
B

=
π√
3
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H + O(T)
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3
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Wiedemann-Franz law
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Edges

If the system has an edge [Takayanagi’11]

S =
1

2κ

∫
N

dd+1x
√
−g (R− 2Λ) +

1
κ

∫
∂N

ddx
√
−hK + S∂N [matter]

hab-induced metric on ∂N, K-extrinsic curvature, Kab = hµa hνb∇µnν

δS =
1

2κ

∫
∂N

ddx
√
−h (Kab − Khab + Σhab − Tab) δhab

Neumann boundary conditions [Compere,Marolf’08]

Kab − (K − Σ)hab = Tab



Edges

Same for the gauge fields [Fujita,Kaminski,Karch’12][DM,Orazi,Sodano’12]

c1

∫
N

d4x
√
−gF2

µν + c2

∫
N

F ∧ F + k
∫

Q
A ∧ F − k

∫
P

d2x AxAt

Neumann boundary conditions imply

c1F + (c2 + k) ∗ F|Q = 0

• Density and magnetic field are
locked together ρ ∼ B

Q

z

AB

AdS



Top-down AdS/CFT

Models of QHE

• Keski-Vakkuri, Kraus’08; Davis, Kraus, Shah’08 Construction of an
effective Chern-Simons theory. D-brane theory of plateau transitions

• Fujita, Ryu, Takayanagi’09 D-brane engineering of an effective
Chern-Simons theory in low dimensions. Model massless edge modes
and stripes of states with different ν. Proposal hierarchical FQHEs,
using IIA string on C2/Zn

• Bergman, Jokela, Lifschytz, Lippert’10 D-brane engineering. Model
a gapped system with massless edge modes. Quantization of
conductivity as a result of quantization of a flux through a compact
manifold. Irrational filling fractions



Low Dimensional AdS/CFT



AdS3 and Chern-Simons

3d Gravity

S =
1

8πG

∫
d3x
√
−g(R− Λ) Λ = − 2

`2

Vacuum solution – anti de Sitter space (e.g. in global coordinates)

ds2

`2 = dρ2 − sinh2ρ dt2 + cosh2ρ dφ2

The (2+1)d gravity is said to be topological: any two metrics are related by
a diffeomorphism, but some of those are non-trivial (large gauge transforms)
and lead to new physical solutions:

t→ 2
√

Mt , φ→ 2
√

Mφ , ρ→ ρ− 1
2

log M

ds2
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dφ2



AdS3 and Chern-Simons

CFT connection

Restrict to diffeomorphisms preserving the boundary condition

ds2

`2 = dρ2 +
1
4

e2ρ (−dt2 + dφ2)+ O(ρ0)

Large gauge transformations change the subleading asymptotic modifying
physical charges (mass H and angular momentum J). The charge compo-
nents generate 2 copies of the Virasoro algebra

{Qm,Qn} = (n− m)Qn+m +
c

12
n(n2 − 1)δn+m,0 c =

3`
2G

[Brown,Henneaux’86]



AdS3 and Chern-Simons

3d Gravity as Chern-Simons [Witten’88]

A = ω +
1
`

e Ā = ω − 1
`

e

S = SCS[A]− SCS[Ā]

where A, Ā are SL(2,R)-valued flat connections

for SL(N,R)× SL(N,R) one also obtains higher spin fields s ≤ N

gµν = Tr (eµeν) φµνρ = Tr
(
e(µeνeρ)

)
Flat connections are mapped to solutions of Einstein eqs. Gauge transforms
become diffeos



AdS3 and Chern-Simons

Black holes from flat connections

Gauge transformation (w = t + iφ) L0,L±1 ∈ sl(2)

A = b−1ab + b−1 db b = exp(−L0ρ) a = awdw + aw̄dw̄

If one chooses

aw = L1 + ML−1 , āw̄ = L−1 + ML1

one gets

ds2

`2 = dρ2 −
(
eρ −Me−ρ

)2
dt2 +

(
eρ + Me−ρ

)2
dφ2



AdS3 and Chern-Simons

CFT connection revisited [Gaberdiel,Gopakumar’10]

• SL(2,R)× SL(2,R) Chern-Simons corresponds to a Virasoro CFT
[Verlinde’89][Witten’91]

• SL(N,R)× SL(N,R) Chern-Simons (higher spin s ≤ N theory)
coupled to a set of matter fields corresponds to a WN CFT

• for a generic non-integer N – higher spin (Vasiliev) theory

AdS/CFT can test this conjecture in the c→∞ limit



AdS3/CFT2

Matching with CFT spectrum [Castro et al’11][Perlmutter,Prochazka,Raeymaekers’12]

• In the ’t Hooft limit, N →∞ (c→∞) and λ = N/(k + N) fixed the
spectrum of the CFT side is not well understood

• Alternative is the semiclassical limit, c→∞, but N = −λ fixed
(non-unitary)

In the non-unitary regime one can match the spectra. There is a descrete set
of gauge connections of SL(N,C) with trivial holonomies around the
contractible cycle.

• spectrum of M matches the (0,Λ−) irreps of minimal model CFT’s
(heavy states)

• fluctuations around those connections produce the spectrum of
(Λ+,Λ−)



AdS3/CFT2

Entaglement entropy [Ryu,Takayanagi’06]

Holographic formula for computing entanglement entropy

SEE(A) =
Area(γ(A))

4G
, γ(A) − minimal area surface

In AdS3 it reproduces the known CFT2 result [Calabrese,Cardy’04]

SEE =
c
6

log

√
ε2 + x2/4 + x/2√
ε2 + x2/4− x/2

→ c
3

log
x
ε

• The relation opens up a rich source of speculations on the meaning of
quantum geometry



AdS3/CFT2

Entanglement entropy from Chern-Simons [Ammon,Castro,Iqbal’13]

Natural observables in Chern-Simons theory are (vevs of) Wilson loops

WR(C) = TrR P exp
∮

C
A

– gauge invariants, topological invariants.

Less obvious – Wilson lines: looking at the data defining WR one can guess

WR(xi, xf ) ∼ exp
(
−
√

2c2(R)L(xi, xf )
)

Wilson line computes the proper geodesic distance for a particle of mass
m2 = 2c2



AdS3/CFT2

Example

W(C) = Tr P exp
(
−
∫

C̄
A
)

P exp
(
−
∫

C
Ā
)

Wilson line between points (u,−x/2, 0) and (u, x/2, 0)

Ax =

(
0 1/u
0 0

)
, P exp

∫ x/2

−x/2
Axdx = exp Ax · x =

(
1 x/u
0 1

)

P exp
∫ x/2

−x/2
Axdx P exp

∫ −x/2

x/2
Āxdx =

(
1 + x2/u2 x/u

x/u 1

)

p
⇢

p
⇢

(0, 0)

(0, ⇡) (T, ⇡)

(T, 2⇡)

1

Image credit Nair’15



AdS3/CFT2

General behavior [Hegde,Kraus,Perlmutter’15]

SL(N), any representation w = t + iφ

WR(C) −−−→
ε→0

〈 hwR |W| hwR 〉

= e−4hR〈 hwR |e−aww−aw̄w̄| − hwR 〉〈−hwR |eāww+āw̄w̄|hwR 〉

• Entanglement entropy case corresponds to hwR = ρ

• For general R the Wilson line computes a semiclassical (c→∞)
conformal block



AdS3/CFT2

(AdS/)CFT interpretation

Wilson lines compute the coupling of a probe particle of mass m =
√

2c2(R)
to the classical background provided by the connection A, Ā. From the
AdS/CFT point of view this is

〈O(∞)O(0)O(w)O(1) 〉 = 〈OH |OL(0)OL(w) |OH 〉

For OL corresponding to the ρ-primary one gets the von Neumann entropy
(cf. talk by V.P. Nair)



AdS3/CFT2

From matrix elements to tau-functions [DM,Mironov,Morozov]

Calculation of Wilson lines reduces to determination of matrix elements

〈−hwR |eaww+aw̄w̄|hwR 〉 , aw = L−1 +

N∑
s=2

QsL
(s)
s−1

It turns out that physically interesting matrix elements are described by
special τ -functions

τ (k)(s, s̄|G) = 〈 hwk|eH G eH̄| hwk〉 , eH = exp
s∑

i=1

ssRk(Ls
−(s−1))

Toda recursion relation

τ (k)∂1∂̄1τ
(k) − ∂1τ

(k)∂̄1τ
(k) = τ (k+1)τ (k)



AdS3/CFT2

Skew tau-function [DM,Mironov,Morozov]

τ
(k)
− (s,G) = 〈 hwk | eH G | − hwk 〉 =

(
∂

∂s̄1

)k(N−k)

τ (k)(s, s̄,G)

Recursion relation

τ
(k)
−

∂2τ
(k)
−

∂t2 −

(
∂τ

(k)
−
∂t

)2

= τ
(k+1)
− τ

(k−1)
−

Other τ -functions? Integrable structures? (work in progress)



Conclusions

• Holography provides an interesting connection between quantum
physics and geometry

• In low dimensions it connects to something quite well understood (e.g.
connection between CS and CFT), relevant QHE

• Low-dimensional examples expand the AdS/CS/CFT connection. In
particular gravity and thermofield dynamics (see talk of V.P Nair)

• Virasoro CFT’s make accidental appearances in the QHE theory (see
other talks, e.g. by Cappelli, Klevtsov). AdS3/CFT2 calls for a further
look into this story


