Siegel der Universität
Structure of the Course of Study for the Bachelor of Mathematics


In the first semester the lectures analysis I and linear algebra I, in the second semester analysis II
and linear algebra II are obligatory. In the third semester Analysis III ist a required course. In addition to the lectures
on analysis and algebra, there are obligatory and elective courses as well as courses in the minor subject.
The compulsory exercises distributed during the weekly tutorials serve as a basis for deeper understanding of the content of the lectures.
The tutorials offer an opportunity for discussion of the exercises for greater understanding of the lectures.
Active participation in the tutorials is obligatory.

Examination regulations for the Bachelor of Mathematics

Examination regulations for the masters' courses of study (as of Winter Semester 2010/11) are:

Examination regulation for masters degree in mathematics
Examination regulation for masters degree in business mathematics

The following charts offer a model for course possibilities. Other procedures are possible, especially from the third semester.

 

 

I. Bachelor of Mathematics with Minor Subject Informatics

 

B1

Analysis I

9

Linear Algebra I

9

Programming Course

3

Studium Integrale (e.g. Job Internship)

6-9

27-30

B2

Analysis II

9

Linear Algebra II

9

Informatics I

9

 

 

30

Proseminar

3

B3

Analysis III

9

Advanced Module
Pure

9

Informatics II

9

Studium Integrale

3

30

or Applied Math.

B4

Advanced Module
Pure Math.

9

Advanced Module
Applied Math.

9

Programming Internship

6

(Studium Integrale)

(3)

28-31

Seminar

4

B5

Advanced Module
Pure Math.

9

Advanced Module
Applied Math.

9

Advanced Module
Informatics

5

(Studium Integrale)

(3)

27-30

Seminar

4

B6

Bachelor's Thesis

12

Specialisation Module

8

 

 

 

 

32

Colloquium

3

Intensification Module

9




II. Bachelor of Mathematics with Minor Subject Business Administration

 

B1

Analysis I

9

Linear Algebra I

9

Profit and Loss Accounting

8

Programming Course

3

29

B2

Analysis II

9

Linear Algebra II

9

Cost and Activity Accounting

8

Studium Integrale

3

32

Proseminar

3

B3

Analysis III

9

Advanced Module
Pure

9

Elective Business Administration

8

Studium Integrale (e.g. Job Internship)

6

32

or Appl. Math.

B4

Advanced Module
Pure Math.

9

Advanced Module
Appl. Math.

9

Elective Business Administration

8

Studium Integrale

3

29

B5

Advanced Module
Pure Math.

9

Advanced Module
Appl. Math.

9

 

 

 

 

31

Intensification Module

9

Seminar

4

B6

Bachelor's Thesis

12

Specialisation Module

8

 

 

 

 

27

Colloquium

3

Seminar

4

 

 

 

III. Bachelor of Mathematics with Minor Subject Economics

 

B1

Analysis I

9

Linear Algebra I

9

Introduction to Macroeconomicss

8

Programming Course

3

29

B2

Analysis II

9

Linear Algebra II

9

Introduction to Microeconomics

8

Studium Integrale

3

32

Proseminar

3

B3

Analysis III

9

Advanced Module
Pure Math.

9

Elective Economics

8

Studium Integrale (e.g. Job Internship)

6

32

or Appl. Math.

B4

Adv. Module Pure Math.

9

Adv. Module Appl. Math.

9

Elective Economics

8

Studium Integrale

3

29

B5

Adv. Module Pure Math.

9

Adv. Module Appl. Math.

9

 

 

 

 

31

Intensification Module

9

Seminar

4

B6

Bachelor's Thesis

12

Specialisation Module

8

 

 

 

 

27

Colloquium

3

Seminar

4

 

 

 

IV. Bachelor of Mathematics with Minor Subject Physics

 

B1

Analysis I

9

Linear Algebra I

9

Experimental Physics I

8

Studium Integrale

4

30

B2

Analysis II

9

Linear Algebra II

9

Experimental Physics II

8

Studium Integrale

2

31

Proseminar

3

B3

Analysis III

9

Advanced Module Pure

9

Physics Internship

8

Programming Course

3

29

or Appl. Math.

B4

Advanced Module Pure Math.

9

Advanced Module Appl. Math.

9

Classical Theoretical Physics I

8

 

 

30

Seminar

4

B5

Advanced Module Pure Math.

9

Advanced Module
Appl. Math.

9

 

 

Studium Integrale (z.B. Job Internship)

6

28

Seminar

4

B6

Bachelor's Thesis

12

Specialisation Module

8

 

 

 

 

32

Colloquium

3

Intensification Module

9

 

 

 

V. Bachelor of Mathematik with Minor Subject Theoretical Physics

 

B1

Analysis I

9

Linear Algebra I

9

Experimental Physics I

8

Studium Integrale

4

30

B2

Analysis II

9

Linear Algebra II

9

Experimental Physics II

8

Studium Integrale

2

31

Proseminar

3

B3

Analysis III

9

Adv. Module Pure

9

 

 

Studium Integrale (e.g. Job Internship)

6

27

or Appl. Math.

Programming Course

3

B4

Adv. Module Pure Math.

9

Adv. Module Appl. Math.

9

Classical Theoretical Physics I

8

 

 

30

Seminar

4

B5

Adv. Module Pure Math.

9

Adv. Module Appl. Math.

9

Classical Theoretical Physics II

8

 

 

30

Seminar

4

B6

Bachelor's Thesis

12

Specialisation Module

8

 

 

 

 

32

Colloquium

3

Intensification Module

9

 

 

 

 

These schematic charts are not a substitute for a thorough reading of
the study guideline and examination regulations.

 


© Mathematisches Institut der Universität zu Köln