Problems for Hausel's Lecture, Monday

- Let ρ be a representation of a quiver over K. Prove that up to isomorphism there is a unique way to write it as a direct sum of indecomposables. (Krull-Schmidt - see last sheet for an elementary proof.)
- 2. Recall the notation $X^{\alpha} = X_1^{k_1} \dots X_n^{k_n}$ for $\alpha = \sum k_i \alpha_i \in \mathbb{N}^{\mathcal{V}}$. Prove that a formal power series of the form $1 + \sum_{\alpha \in \mathbb{N}^{\mathcal{V}} \setminus \{0\}} a_{\alpha} X^{\alpha}$ with $a_{\alpha} \in \mathbb{Z}$ can be uniquely written as an infinity product of the form $\prod_{\alpha \in \mathbb{N}^{\mathcal{V}} \setminus \{0\}} (1 X^{\alpha})^{b_{\alpha}}$, where $b_{\alpha} \in \mathbb{Z}$.
- By induction on the length of w ∈ W (that is the minimal number of fundamental reflections needed to generate w) prove that for every w ∈ W ρ−w(ρ) is the sum of distinct positive real roots. Deduce that ρ − w(ρ) ∈ N^I. (One can prove the stronger statement that ρ − w(ρ) is the sum of positive real roots α for which −w⁻¹α ∈ Δ₊.)
- 4. Check the Weyl denominator formula for the A_2 quiver. What are the roots for an A_n quiver? What is the Weyl denominator formula?
- 5. By applying the Weyl group to the fundamental roots find the 24 roots in the D_4 root system.
- 6. Consider the dimension vector α ∈ (2, 1, ..., 1) on the quiver V_k where 2 is on the central vertex and 1 everywhere else. Show that it is a root when k ≥ 3. What can we say about the Weyl orbit of Wα ⊂ N^I for k = 3, 4, 5? (Start to apply the fundamental reflections to α and see what happens.)
- 7. What are the real and imaginary roots for the \hat{A}_0 quiver? What are the indecomposables over \mathbb{C} ? Classify all representations of \hat{A}_0 over \mathbb{C} . What are the indecomposable representations of \hat{A}_0 over \mathbb{F}_q ? What are the absolutely indecomposable ones? Classify all representations of \hat{A}_0 over \mathbb{F}_q . Kac denominator formula?
- 8. Same question with \hat{A}_1 instead of \hat{A}_0 .
- 9. Describe the Jordan normal form of a complex *nxn* matrix. Prove that the set of possible Jordan normal forms for an *nxn* matrix over F_q can be parametrized by maps from ν : Φ' → P, such that ∑_{f∈Φ'} deg(f)|ν(f)| = n. Here Φ' is the set of all monic irreducible polynomials over F_q, and P is the set of all partitions (of all positive integers *n*). (See slide 19 for a hint.)