Problems for Hausel's Lecture, Thursday

- 1. Identify the Jacobi triple product identity on slide 18 as the Kac denominator formula for the root system \hat{A}_1 .
- 2. Prove the statements on slide 19.
- What is the number of solutions of x₁y₁ + x₂y₂ + ··· + x_ny_n = 1 in F_q? Let U denote the variety of solutions of this equation. What is the E-polynomial of the variety U(C)? Let C[×] act on U(C) by λ : (x_i, y_i) → (λx_i, λ_i⁻¹y_i). Show that the action is free and assuming that U(C) → U(C)//C[×] is locally trivial in the Zariski topology, calculate the *E*-polynomial of U(C)//C[×]. (U(C)//C[×] ~ Calabi's hyperkähler metric on T*Pⁿ⁻¹)
- 4. $E(GL_n(\mathbb{C}); q) =$? Does it have a pure or mixed weight filtration? Can you find the Betti numbers $P_c(GL_n(\mathbb{C}); t)$ of $GL_n(\mathbb{C})$? Try to prove that it has the cohomology of the product of certain odd dimensional spheres by looking at a natural tower of fibrations with these spheres in the fibers.
- 5. Observe that a variety *X* (defined over \mathbb{Z}) which has polynomial count over finite fields and pure weight filtration has $E(X; q) \in \mathbb{N}[q]$.