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(Modified) Plan for four lectures

Lecture 1: Representations of quivers; Kac’s conjectures
Lecture 2: Arithmetic and cohomology of varieties
Lecture 3: Affine GIT and symplectic quotients

Lecture 4: Betti numbers of Nakajima'’s quiver varieties;
proof of Kac Conjecture 1

(Lecture 5: Cohomology of character varieties;

attack on Kac Conjecture 2)

(Lecture 6: Topology of Hitchin map and arithmetic of
character variety; another attack on Kac Conjecture 2)
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Quivers and their representations

@ a quiverT is an oriented and connected graph with vertices
I=(1,...,n) and arrows or oriented edges
E c Ix I, (possibly multiple edges and edge-loops)

@ denote a = (t(a), h(a)) € E the tail and head of the arrow a
o Kfield; (either C or Fg)

@ a representation p of I is a collection of finite dimensional
K-vector spaces {Vj}ic; and homomorphisms
pa € Hom(Vy(a), Vi(a)) forevery a € E

@ dimp = (dim V4,...,dim V,) € N' is the dimension of p
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Examples of quivers

finite quivers of type An,Dn,Es, E7, Eg
affine or quivers of type An,Dn,Es, E, Eg
finite and affine quivers are called tame

polygon quiver Vy, (usually with dimension vector (2,1,...,1))
loop quiver Sy

°
°

°

@ all other quivers are called wild

°

]

o star-shaped and more generally comet-shaped quivers
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Examples of quivers: Finite quivers

An (n > 1 vertices) OO s —0—0

Dn (n > 4 vertices) o0 -

Es O_O_I_O o
E; O_O_I_O_O_O
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Examples of quivers: Affine quivers
A

A, (n+1 = 3 vertices)

D, (n+1 =5 vertices)

5 2 2 3
1 1
A 12 3 2 1
Ee
2
1
A 1 2 3 4 3 2 1
E;
21
R 2 4 6 5 4 3 2 1
Eg
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Examples of quivers: Comet-shaped quivers

(1.1] (1.2] [1,51]
. e . 0

[2, 52]
. e . 0

[k, 1] (k. 2] [k, s]

@ star-shaped if number of loops on central vertex g =0

@ Vxiswheng=0ands;=1

@ Syiswhenk =0; S; = Ao is the only tame quiver

o the tame comet-shaped quivers are all the finite quivers and Ag, Dy, Es, E7, Eg
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Classifying quiver representations

@ two representations p1 on {\/,.1 }ier and p2 ON {\/,.2},6, can be
added p1 ® p2 on {V!' x V3}i; in the obvious way

@ a non-trivial quiver representation is indecomposable if it
cannot be written as a direct sum of non-trivial quiver
representations

@ every representation of a quiver is the direct sum of
indecomposables;
this decomposition is unique ~»
indecomposable representations are building blocks for all
representations

@ Problem: classify indecomposables!

@ Call the dimension of an indecomposable representation in N/
a positive root. Denote A, c N/ set of positive roots

o Determine A, c NI
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Weyl group

o let ai(j) = ¢ simple root,
(ai; ) = 6j — 3(bj + bj)) symmetric bilinear form on
bjj is number of arrows from i to j
() (i,i) ¢Es (a;,a,-) =1
then «; fundamental root;
M c N’ set of fundamental roots
@ For a fundamental root «; define
lo, 1 Z — Z'by 1, (1) = 1 - 2(4, @)
ri = Id reflection
o Let W := (ry)oen < Aut(Z') be the Weyl group of I
@ Extend action of W to Z' ® Zp by r,,(0) = p — a; and define
s(w) = p - w(p) e N'\ {0}
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Kac denominator formula

o Assume I loopless. For a = 3 kij € N! write

X=X Xk expand to get
> det(w)xs™ = [ ](1-x*)™
weW aeN!

Kac denominator formula; m, € Z multiplicity of a

o (Kac 1974) proves for the weight decomposition of the
Kac-Moody algebra g(I') = &,va(lM), that
dim(g(lN)e) = me =0

Theorem (Kac 1974)

Let L(w) be an irreducible representation of o(I") of highest weight
N e P. Let L(A) = @,auL (A)a-o denote its weight space
decomposition. Then the Weyl-Kac character formula holds:

S det(w)XMo-whio)

. a  weW
Z dim (L(A)/\—a') X = HaeN’(1 _ Xar)ma
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Example: A, root system

o Let I be As quiver

@ Up to isomorphism there are three indecomposable
representations of dimension vectors (1,0), (0,1) and (1,1)

o (,) is positive definite on Z?

10 11
or1:(1 1)andr2:(0 _1);(f1f2)3=1

o Weyl group
Sz ={r.nlrf =3 =(rnr)* =1} ={1,n,n,Mnr, M, nen
is finite
@ Weyl (= finite Kac) denominator formula gives
1-X; —X2+X1X§+X2X12—X12X22 = (1 —X1)(1 —X2)(1 —X1X2)
@ thus all three positive roots appear with multiplicity one
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Example:D,4 root system

There are 24 roots in N* in the Dy root system.
They form the regular 24-cell.
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Theorem (Kac 1982)

AssumeK =C
o A, is independent of the orientation of I
oacA,weW=w(a)or —w(a)e Ay
® WhenT isloopless o € Ay & m, > 0.

@ m, > 0 is independent of the orientation on '
@ fundamental roots have m,, = 1
0 |Ai| <o |W|<we (,)is pos. def., & I s finite
(Gabriel, 1972)
@ Kac’s proof proceeds by
@ constructing a complex algebraic variety Z(I', @) parametrizing
indecomposable representations of I to C of dimension «
modulo isomorphism.
@ showing that Z(I', @) can be defined over Z
© counting the points of Z(I', @) over a finite field Fq
@ finding that the count is independent of the orientation
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Examples of quiver representations over K = F,

@ Let Sy be the quiver on one vertex and g loops. Classifying
representations of Sy of dimension (d) is classifying the
isomorphism classes of g tuples of d x d matrices.

@ Reps of Sy classified by Jordan normal form. Representations
of §4 for g > 1 are wild

X ey X+ ey 0 . o

o(y x) ( 0 X—y+e , with x € Fq, y € Fg,

IFS = (e)and e € Fee \Fq (q ﬁdd) is indecomposable over Fq
but not indecomposable over Fq

@ an absolutely indecomposable representation of Sy of

dimension (2) is ~ with x € K. Up to isomorphism

X
0
there are g absolutely indecomposable representations of Sy
of dimension (d) over Fg.
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The A-polynomial

o K = Fq; a representation of a quiver over K is absolutely
indecomposable if it is indecomposable over K
@ a € N a dimension vector;
{Vilier such that dim V; = a(i);
Vo 1= €D 4eg Hom(Via), Vi(a)) ;
G, := GL(Vq) x --- x GL(Vy); clearly G, acts on V,,
0 Ar(a,q) := [{p € V,|p is abs. indec.}/G,|

Theorem (Kac, 1982)
o Ar(e,q) € Z[q] is either 0 or monic of degree=1 — (a, @)

o Ar(a, q) is independent of the orientation of I

0 Ar(a,q) 20 ae Ay

o Ar(a,q) = Ar(w(a),q), when w € W and a, w(a) € N/

~— ~— ~— ~—

0 Ar(e,q) =1 a = w(a;) forsomew € W and «; € I

Positive roots with Ar(a, q) = 1 are called real roots
the rest, when deg(Ar(«, q)) > 0 are imaginary roots
Ay = A'f U A’_T 15/41



Kac’s conjectures

Conijecture (Kac, 1982)

@ WhenT is loopless, the constant term Ar(a,0) = m,
Q Ar(a,q) € N[q], i.e. the coefficients of Ar(,q) are > 0.

Both conjectures were known to Kac for finite and affine
quivers and for the "polygon”-quiver V,, with dimension vector
(2,1,...,1).

Theorem (Crawley-Boevey,Van den Bergh 2004)

Both conjectures hold true for any quiver with « indivisible; i.e.
ged(a(i)) = 1

Every quiver supports infinitely many divisible dimension
vectors ~» both conjectures remained open for any wild quiver

We prove Conjecture 1 in these lectures.
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Hua'’s formula

Theorem (Hua, 2000)
Fix quiver T. Let Ar(e, q) = X tq', then:

1_[ l_ll_l(.' l+an)t _

a€eN" j=0 i=0

8

i
Z X [(ijjes g
veN/ AeP(V) HIGI (q</I Al H Hmk(/l )(1 - q_j)) s
where P(v) is the set of n-tuples of partitions (A',...,2"), with
|'| = vj, and for two partitions (v, uy = 3.; min(v;, ;).

Thus Conjecture 1 would follow by showing that the combinatorial
RHS when q = 0 reduces to the combinatorial LHS of

> det(w)xs = [ ] (1-x=)™

weW a@eN"
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Remarks on problem session

@ Read about the 2\1 root system at
http://sbseminar.wordpress.com/2008/11/02/

ﬁ (1 _ Xi—1 YI) (1 _ Xiyi—1)(1 _ Xiyi) — i(_-l )iXi(i_1)/2Yi(i+1)/2,
m=1 i€Z

@ (Macdonald 1972) found the infinite product formulas for affine
root systems, (Kac 1974) reproved it and explained the
appearance of imaginary roots in terms of the Kac
denominator formula for the affine Kac-Moody algebras ~»
sometimes affine Kac denominator formula is referred to as
Macdonald-Kac formula

Let T be a quiver of tame type, a € N' \ {0} then
@ is decomposable & («, ) > 1
aeAf‘::)(a,a):1
ae Al & (a,a) <0
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Jordan normal form over F,

o let &' denote all monic irreducible polynomials over Fq
o letfed intheformf=1t9+ay 1t +..-+ a9
d x d companion matrix J(f) and dm x dm matrix Jn(f) are

given by
01 0 ... 0 Jf) 1 0 ... 0
0 0 1 ... 0 0 JIH) 1 ... 0
Jf)=: : Im(f) == Do
0O 0 0 ... 1 0 0o 0 ...
a a a ... ad- 0 0 0 ... J)

@ Up to isomorphism, indecomposable representations of Sy
over Fq are of the form Jp(f) for f € " and m > 0

@ thus representations of Sy of dimension n are classified by
v:® — P such that Y e deg(f)lv(f)l =n

@ GL,(Fq)/GL(Fq4) are parametrized by v : & — % such that
Yieer deg(f)Iv(f)l = n, where & = @&’ \ {t}
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Ingredients into Hua’s formula

@ Burnside orbit counting formula:
finite group G acts on set X
IX/Gl = & Zgec Xl = Eigiea/a 1o Where
Xg = {x € X|gx = x}
@ Count orbits of G, on V,, i.e. find Mr(e, q) := [V, /Gl
o LuePthend=(A4,...,4) and u = (u1,...,1um) then
(A = Ty min(i, 1)
@ the cardinality of the centralizer of J,(f) = @J,,(f) € GLqy(Fq)
1Cuuin)) = q%+ Tk H,mku)ﬁ -q7)
o let Ji(f) € GLy(Fq) and J,(g) € GLs(Fq) then

g9 it f = g

o Krull-Schmidt = Y, Mr(a, )Xo = [Taan(1 — X@)'r(@a),
where Ir(@, q) := (V4 /G, )" |

@ inclusion-exclusion + Mébius =
Ar(re,q) = Lar 3 Sk #(k)Ir(£a. g¢) where @ indivisible
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Etale cohomology

@ X variety defined over Z
@ (Grothendieck 1958) constructs étale cohomology
HE(X(Fq); Q)

@ Frobg : Fq — Fq by x — x9 Frobenius automorphism ~»
Frobg : X(Fg) — X(Fq) ~ B
Frobg : HE(X(Fq); Qr) — HE(X(Fq): Qr)

o as (Fq)f™bs = FF, Grothendieck-Lefschetz fixed point theorem
~>

2n
IX(Fg)l = IX(Fq) ™ = > (=1)'tr(Frobg : Hy(X,Qr) - HL(X,Qr))
i=0

@ as Frobg = (Frobg)* ~
IX(Fg)l = A + 25 + - + 2K, where 4; € Q, eigenvalues of
Frobq

o (Deligne 1974) proved Weil’'s Riemann hypothesis:
eigenvalues of Frobq have absolute value g'/2 for i € N
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Weight filtration

e Jordan decomposition of Frob, on HX = weight filtration
W, c HX containing all Jordan blocks of eigenvalue with
modulus g2 i < |

o comparison theorem: H;(X(C); C) = H:(X(Fq),Qr) ® C

o (Deligne 1974) constructs weight filtration on
Woc---cWc---c Wk = HX(X(C); Q) which is functorial

@ when Wi_1 N HX(X;Q) =0
the weight filtration is pure;
e.g. when X is smooth projective;
or when X c X , with X smooth projective and injects on H;
e.g. when X is a symplectic quiver variety; a Nakajima quiver
variety, Mpr moduli space of flat connections and Mp, the
moduli space of Higgs bundles on a Riemann surface

@ weight filtration is not pure or mixed e.g. for X = GL,, or for
Mg the character variety of representations of the
fundamental group of a Riemann surface to GL,
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o Take X = C* = C\ {0} = {(x,y) € C?|xy = 1}
H2(X;C) =C, Hl(X,C)=C
o X(Fq) =F,
Froby :F, — F,
X +— x4

o X(Fq)f°Pa = X(Fq) = Fq \ {0}, thus |X(Fq)"°Ps| = q - 1
o Grothendieck-Lefschetz=
IX(Fq) %8| = 22 (=1)'w(Frobg : H{(X, Qr) — Hy(X,Qe))
e thus 1 = Frobg : HY(X; Q) = HL(X,Qc)) and
q--= Frobg : H3(X; Q) — H2(X,Qy))
e = 0 = W;(H3(X(C),Q)) and
Wo(HS(X(C); Q) = HL(X(C), Q)
@ weight filtration is mixed on H'(X(C), Q)
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Arithmetic and topological content of the E-polynomial

@ For a complex variety X(C) define E-polynomial
E(X;q) = ¥ dim(Wi/Wi_1(H(X)))(-1)kq2
@ basic properties:
additive - if X; c X locally closed s. t. UX; = X then
E(X:q) = X E(Xi: q)
multiplicative - F — E — B locally trivial in the Zariski
topology E(E; q) = E(B; q)E(F; q)
@ when weight filtration is pure
E(X; q) = X dim(HE(X))(-q'/?)k is the Poincaré polynomial
o if all eigenvalues A; of Froby on H;(X(Fy); Q¢) are integer
powers of g, then | X(Fqn)| = X A7 is a polynomial in q" and
= E(X;q)

Theorem (Katz 2006)

If X is a variety defined over Z and #{X(Fq)} = E(q) is a
polynomial in q, then E(M; q) = E(q).

e.g. if E(q) € Q|[q] ngE(q)e Z|q] proves Kac’s result that
Ar(a,q) = #Z(T, a)(Fq)} € Z[q] 24/41



Remarks on questions

o Let X = C?\ {0} smooth, 7 := X —» P' by n(x,y) — [x : y]is a
geometric quotient by the group action of C* by x > Ax ~»
principal bundle locally trivial in the Zariski topology
E(X;q) = E(P';q)E(C%q) =(g+1)(g—1) = ¢° — 1 but
Ps(P';t) =1+ 12, Po(C*;t) = t + t2 and Pe(X; t) = t + t* but
A+2)(t+) =+ + 3+ tY) #t+14
cohomology is not multiplicative (and not additive either)

@ hint for question 2 on Problem list 1:
define an ordering < on N’ such that if vi < B for all i then
Y <P
find the smallest non-trivial termin F :=1 + ZaeN:\{o} an, X«
say X” with y € N’ \ {0}
then show that F(1 — X?)® has no non-trivial terms X” for
B <.

Proceed with F(1 — X?)?.
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® E(C%q)=q-1,E(C*;q) = E(C;q) + E({0};q) = q

o Let U be the variety xqy1 + Xoy» = 1in C? x C2.

@ the number of solutions of the equation x;y; + x2y2 = 1in Fq
is2(29-1)(g-1)+(g-2)(q-1)*=(q-1)(¢° + q)
because

o (2g-1)(g—1)when x;y; =0
o (g—1)(29—1) when x1y; =1
e (g-1)2inthe other g — 2 cases.

o = the number of points on U(F,) is (g - 1)(¢? + q),

L EU.q) = (g-1)(@ + )
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Affine GIT quotients

@ Let M be a complex affine variety i.e. M = Spec(C[M]), where
C[M)] is a finitely generated C-algebra without nilpotents

@ G is a complex reductive group & G = Kc is a
complexification of its maximal compact subgroup K ¢ G
(i.,e.3=t®C)

@ G acts on M, then the invariants C[M]® form a finitely
generated C-algebra without nilpotents

o define M//G := Spec(C[M]%) the quotient map 7 : M — M//G
arises via the embedding C[M]¢ c C[M]

o M//G parametrizes closed orbits of G (good quotient)

@ when G acts freely M//G is identified with the orbit space
(geometric quotient)

@ when G acts freely and M is additionally non-singular = M//G
is non-singular and M — M//G is a principal bundle
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Example of an affine GIT quotients

o Let M = C" then C[M] = Cl[z4,..., z4]

@ the circle group G = GL{ = C* is reductive as it is the
complexification U(1) c GL1

o Let G = GL{ = C* act on C" by multiplication x — Ax
o then 1 € GL; acts on C[zy,...,25] as zj — Az

@ thus C[M]¢ = C ~» C"//C* = {0} is a point

o there is only one closed orbit of 0 € C"
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Affine symplectic quotients

@ M non-singular affine variety

@ w e H(M; N2(T*M)) is symplectic < it is nowhere
degenerate and dw = 0

@ X € HO(M; TM) vector field is Hamiltonian < there exists
algebraic function f : M — C such that for every
Y € HY(M; TM) w(X, Y) = df(Y)

@ in particular df(X) = 0 & X is tangent to the level sets of f
(conservation of energy)

@ an action of an algebraic group G on (M, w) is Hamiltonian &
if the vector fields X, € H°(M; TM) induced by any one
parameter subgroup G, for v € g are simultaneously
Hamiltonian < there isa map u : M — g* such that
(Tu(Y),v) = (X, )

@ u is called a moment map; it is G-equivariant with respect to
the coadjoint action of G on g*

@ assume complex reductive group G acts on a symplectic
affine variety M with moment map u then the complex
symplectic quotient at level £ € (5*)C is M////:G = u~ ' (&)//G 2041



(*]

(*]

(*]

(*]

Let M := T*C2 = C*; C[M] = C[x1, X2, y1, y2);

symplectic form w = dxy A dyy + dx2 A dyo

A € C* acts symplectically on M by

(X1, X2, Y1, Y2) > (X1, X2, A7 yq, A7 )

the vector field X; = & + (,672 - % - a% is the Hamiltonian
vector field of f : M — C given by f(x1, X2, y1, ¥2) = X1y1 + X2)2
because df = y1dx1 + x1dy1 + y2dxa + xody> = w(X1,.)

The momentmap u: M — g isjustu =f

the level set u='(1) is U = {x1y1 + Xa2y2 = 1} non-singular
acted upon freely by C* ~» X := M////1G = u~'(1)//C* is a
non-singular symplectic affine surface

the map X — P' induced by (x1, Xa, y1, y2) + (X1, X2) makes it
a fibration with fibers = A’

= weight filtration on H;(X) is pure

U — X is GL-principal bundle, and so

Katz
IX(Fg)l = iy = P +a = E(X;q) = +q

= by purity Po(X; t) = 2 + t*
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Linear symplectic quotients

@ G complex reductive group; V finite dimensional complex
vector space

@ assume G acts on V linearly via the representation
p : G — GL(V), with derivative the Lie algebra
homomorphism ¢ : g — gl(V)

@ symplectic structure on M := V x V* given by
w((v1, w1), (v2, wz)) = wi(v2) — wa(v4)

@ G acts on V x V*symplectically via the representation p @ p*
where p* : G — GL(V") is the dual representation

@ this action is Hamiltonian with moment map
w1 VxV* — g*defined by u(v, w)(X) = (o(X)v, w)

o for & € (g*)% we have the linear symplectic quotient

M//J/¢G = ™ (€)//G
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Symplectic Quiver varieties

@ For a quiver I and dimension vector «a let {Vi}ic; be a collection
of finite dimensional vector spaces of dimension «

© Vo = Daeg Hom(Vi(a). Vi(a))

o G, = XieIGL( Vi)/GL1, where
GL1 = (4,..., Aaecry < Xier Z(GL(V))) < Xies GL(V)

o its Lie algebra g, = {Xj € gl(V})| X; tr(Xi) = 0} € X;al(V))

action p : G, — GL(V,) from left and right

o for a generic ¢ € (g3)C% define the quiver variety by

Mo = Vo XV //l]¢Ga

o if @ € N' is indivisible (gcd(a) = 1) then M, is non-singular,
while if « is divisible (gcd(a) > 1) M, has singular points
(when non-empty).

@ when non-empty dim M, = 2 — 2(e, @)

o (Crawley-Boevey, Van den Bergh 2004) when « indivisible
IMo(Fg)l = q' @ Ar (e, q) & H:(M,; Q) is pure ~»

q'" "I Ar (e, q) = Pe(Ma, q'?) € N[q]
~» Kac’s Conjecture 2 when « indivisible

(]

32/41



Example: Affine ALE spaces

o [ affine quiver
@ ¢ minimal positive imaginary root
@ Then ¢ is indivisible and 2 — 2(6,6) = 2

o ~ for generic & € (g;)%
M¢(8) is non-singular surface affine ALE space
(Kronheimer 1990)

@ while Mo(8) = C?//H, where H < SL, is a finite subgroup
corresponding to I via the McKay correspondence

@ previous example corresponded to Ay quiver
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Nakajima quiver varieties

o v,w e N and dim(V;) = v; and dim(W;) = w; then
Gy = Xe/GL( Vi) naturally acts on

Vow = D jyee Hom(V;, V) & P, Hom(W, Vi)
the corresponding holomorphic symplectic quotient

MV, W) = 11y (1v)//Gy

is the affine Nakajima quiver variety

always non-singular of dimension

20y w = 2 (Z(i,j)eE Vivj + e Vi(Wi — Vi))

Crawley-Boevey’s trick: to a quiver I' with two dimension
vectors v,w € N' ~» I, which has 2n vertices I = {1,..., n, «}
with the same oriented arrows on | c I and w; arrows from =

to i. Then one can identify M(v,w) = M(r“;"n, (v, 1) is clearly

indivisible so Ps(Myw; 9'/?) = q%Ar, ((v.1).q)
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Fourier transform on a finite vector space

@ V finite dimensional vector space over Fq

@ V:Fy — C* non-trivial additive character
o f:V — Cits Fourier transform f : V* —» C

(Y) = D> HOW(EX, V)).

XeV

@ Fourier inversion formula: f(x) = |V|f(—x)

o first application (Kraft-Riedtmann 1985)

finite group G acts on V then

¥ :C¥ - Cv given by 7 (f) = f is a linear map, an
isomorphism by Fourier Inversion and G equivariant by
definition

= |V/G| = dim((CY)€) = dim((CV")%) = [V*/G|

= [VL(Fq)/Gal = IV} /Gal,

where " is obtained from I" by reversing one arrow =
Mr (e, q) is independent of the orientiationon ' =
Ar(a, q) is independent of the orientation of the arrows
(without Kac-Stanley-Hua combinatorics) S



Fourier transform on g*

@ Recall G acts on V, with derivative o : g — gI(V), inducing
action on M := V x V*, Hamiltonian with moment map
1M — g%, given by u(v, w)(X) = (o(X)v, w)

@ For £ € g*(Fq) the count function of the moment map
p 2 V(Fq) x V*(Fq) — ¢"(Fq)
#u(&) 1= (v, w) € V(Fq) X V' (Fq)lu(v, w) = &} =
Z(v,w)eM 5,u(v,w) (‘f)

o #p(X) = Z(v,W)eM 6p(v,w)(x) = Z(v,w)eM \U(<:u(v’ W)’X>) =
Z(v,w)eM V({o(x)v, W) = Yvev Zwev: V({o(X)v, w)) =
V] Zvev do(p(x)Vv) = [Viay(x),
where a,(x) = | kero(x)|

Proposition (Hausel, 2006)

Fourier
inversion |V| .

#,,(x)=|V|ag(x) = #u Hag



o Q:gI(1)—>QI(C2)bY(a)H(g 2)

a, : Fqg — Cis a,(a) = 1 unless @ = 0 when a,(0) = ¢°
a,=1+(g?-1)dp and so

4, = qoo + (¢° — 1).

Now w : C2 x C2 — gI(1)* is given by xqy1 + Xa¥a.
Recall 7 = u~'(1). Indeed

#U(Fq) = #4(1) = £8,(1) = q(¢? - 1) = (q - 1)(¢® + q)

37/41



Fourier transform for Nakajima quiver varieties

@ we start counting points on M(v, w)(Fg) by Fourier transform.
@ Recall ovw : ov = 8l(Vyw) ap,,, = Iker(ovw)l

V(v.w) = pry(1V)

(W) = Tyery IM(V, W) (Fg)l e XY =

Svert T L XY = Sy zxegv Z OV v —

TIGE Iva(I N Gy ()l
v try (x
ZVEN’ Z[X]EQV/GV 2 chxl _XV
Pif(W) := Yvent Z[x]e(av/Ge) g‘['ch)Xv and

dg, o (X)W (try(x))
¢'reg = ZveN‘ Z[x]e(gv/Gv)’eg MTX .

we notice ¢((V;I) = Orog®pif(W) but $(0) = 1 = Preg = m
b pi(w

¢'(W) = ¢ni,/(0)

we find combinatorially ,;(w) it is a rational function in g =

so is IM(v,w)(Fq)| = it is a polynomial & itis E(M(v,w); q)
we show that the weight filtration on M(v, w)(C) is pure by
finding a compactification M(v, w) which is an orbifold and
surjects on cohomology =

E(M(v,w); q) = Ps(M(w,w); q'/?)
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Betti numbers of Nakajima quiver varieties

Theorem (Hausel 2006)

For any quiver T, and w € N the Betti numbers Nakajima quiver
varieties are:

ST dim(H2I(M(v, w)))g =AW XY

veN! i

XV (H(i,i)eE q<‘i"j>)(Hie/ q“iv(‘w")))
2. e o 11 175 (1-071)
veN!  aep(v) ! lield ks q

T 7 -
veN!  AeP(v) H"E’(qw,/ll> Ik Hl'rlk1(/l ' _q_l))

where 2d(V, W) = 23 yeg ViV + 23 ¢ Vi(W; — Vi) is the
dimension of M(v,w), X¥ = 1) T" and (A, ) = 3;; min(A;, 117

’

Note that the denominator is the LHS of Hua’s formula!
Need to relate it to the Kac denominator formula.
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Weyl-Kac character formula for Nakajima quiver varieties

Theorem (Kac 1974)

Let L(w) be an irreducible representation of g(I') of highest weight
N e P. Let L(A) = @, L(A)a—o denote its weight space
decomposition. Then

S det(w)Xo-whio)

dim (L(A)p_g) XO = ¥V

Theorem (Nakajima 1998)

Fix w € N then there is an irreducible representation of the
Kac-Moody algebra g(I") of highest weight Ay, on

H2%w M(v,w)), in particular
@VEN’ c ( ( )) p det(W)XAw+p—W(/\w+p)

dim (H2%w (A(v, w)) XV = YW
2, (HE(M(v.w) Moan(1 = Xy
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Proof of Kac’s Conjecture 1

Weyl-Kac-Nakajima formula + our maln formula~
vy ,,)EEqm)(n-,qwf»)

/IEP(V) Hlel(qul Ay H H (1 _q_j))

S det(w)XPwto- ()

weW . veN/
[Taern (1 = X*)me ZXV [(ijjee G4V
i i i i
veN!  2eP(v) H‘c'(qpl v l_ll'rik1(/l )(1—q"))

q=0

In the special case when w = m1,i.e. Ay = mpand m — oo

- (A1)
l_[(1 _ Xa)ma — ZXV Z H(’I)EEq /l
weN! veN! /leP Hlel (q(/l' Al l—l Hmk( ( q_f)) oo
([ Qoo | = [
a@eN" j=0 i=0 q=0 a€eNn

Theorem (Hausel 2006)
Ar(a/, 0) =m,
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