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(Modified) Plan for four lectures

Lecture 1: Representations of quivers; Kac’s conjectures

Lecture 2: Arithmetic and cohomology of varieties

Lecture 3: Affine GIT and symplectic quotients

Lecture 4: Betti numbers of Nakajima’s quiver varieties;
proof of Kac Conjecture 1

(Lecture 5: Cohomology of character varieties;
attack on Kac Conjecture 2)

(Lecture 6: Topology of Hitchin map and arithmetic of
character variety; another attack on Kac Conjecture 2)

2 / 41



Quivers and their representations

a quiver Γ is an oriented and connected graph with vertices
I = (1, . . . , n) and arrows or oriented edges
E ⊂ I × I, (possibly multiple edges and edge-loops)

denote a = (t(a), h(a)) ∈ E the tail and head of the arrow a

K field; (either C or Fq)

a representation ρ of Γ is a collection of finite dimensional
K-vector spaces {Vi}i∈I and homomorphisms
ρa ∈ Hom(Vt(a),Vh(a)) for every a ∈ E

dim ρ = (dim V1, . . . , dim Vn) ∈ NI is the dimension of ρ
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Examples of quivers

finite quivers of type An,Dn,E6,E7,E8

affine or quivers of type Ân,D̂n,Ê6, Ê7, Ê8

finite and affine quivers are called tame

all other quivers are called wild

polygon quiver Vm (usually with dimension vector (2,1,. . . ,1))

loop quiver Sg

star-shaped and more generally comet-shaped quivers
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Examples of quivers: Finite quivers

An (n ≥ 1 vertices) ��	�
�� ��	�
�� . . . ��	�
�� ��	�
��

Dn (n ≥ 4 vertices) ��	�
�� ��	�
�� . . . ��	�
�� ��	�
��
��	�
���������	�
��
��	�
��??

??
?

E6 ��	�
�� ��	�
�� ��	�
��
��	�
��
��	�
�� ��	�
�� ��	�
��

E7 ��	�
�� ��	�
�� ��	�
��
��	�
��
��	�
�� ��	�
�� ��	�
�� ��	�
��

E8 ��	�
�� ��	�
�� ��	�
��
��	�
��
��	�
�� ��	�
�� ��	�
�� ��	�
�� ��	�
��
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Examples of quivers: Affine quivers
Â1 ��	�
��

1
��	�
��
1

Ân (n + 1 ≥ 3 vertices) ��	�
��
1

��	�
��
1

. . . ��	�
��
1

��	�
��
1

��	�
��
1
OOOOOOOOO��	�
��ooooooooo

D̂n (n + 1 ≥ 5 vertices)

��	�
��
1 ��	�
��

2

??
??

?

��	�
��
1
��

��
���	�
�� ��	�
��

2
. . . ��	�
��

2
��	�
��
2

��	�
��
1�������	�
��
��	�
��
1

??
??

?

Ê6 ��	�
��1 ��	�
��2 ��	�
��3
��	�
��2

��	�
��1

��	�
�� ��	�
��2 ��	�
��1

Ê7 ��	�
��1 ��	�
��2 ��	�
��3 ��	�
��4
��	�
��2

��	�
�� ��	�
��3 ��	�
��2 ��	�
��1

Ê8 ��	�
��2 ��	�
��4 ��	�
��6
��	�
��3

��	�
�� ��	�
��5 ��	�
��4 ��	�
��3 ��	�
��2 ��	�
��1
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Examples of quivers: Comet-shaped quivers

[1, 1] [1, 2] [1, s1]

[2, 1] [2, 2] [2, s2]

[k , 1] [k , 2] [k , sk ]

0

star-shaped if number of loops on central vertex g = 0
Vk is when g = 0 and si = 1
Sg is when k = 0; S1 = Â0 is the only tame quiver
the tame comet-shaped quivers are all the finite quivers and Â0, D̂4, Ê6, Ê7, Ê8
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Classifying quiver representations

two representations ρ1 on {V1
i }i∈I and ρ2 on {V2

i }i∈I can be
added ρ1 ⊕ ρ2 on {V1

i × V2
i }i∈I in the obvious way

a non-trivial quiver representation is indecomposable if it
cannot be written as a direct sum of non-trivial quiver
representations

every representation of a quiver is the direct sum of
indecomposables;
this decomposition is unique {
indecomposable representations are building blocks for all
representations

Problem: classify indecomposables!

Call the dimension of an indecomposable representation in NI

a positive root. Denote ∆+ ⊂ N
I set of positive roots

Determine ∆+ ⊂ N
I!
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Weyl group

let αi(j) = δij simple root;
(αi;αj) = δij −

1
2 (bij + bji) symmetric bilinear form on ZI

bij is number of arrows from i to j

(i, i) < E ⇔ (αi , αi) = 1
then αi fundamental root;
Π ⊂ NI set of fundamental roots

For a fundamental root αi define
rαi : ZI → ZI by rαi (λ) = λ − 2(λ, αi)αi

r2
αi

= Id reflection

Let W := 〈rα〉α∈Π ≤ Aut(ZI) be the Weyl group of Γ

Extend action of W to ZI ⊕ Zρ by rαi (ρ) = ρ − αi and define
s(w) = ρ − w(ρ) ∈ NI \ {0}
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Kac denominator formula

Assume Γ loopless. For α =
∑

kiαi ∈ N
I write

Xα := Xk1
1 · · · · · X

kn
n , expand to get∑

w∈W

det(w)Xs(w) =
∏
α∈NI

(1 − Xα)mα

Kac denominator formula; mα ∈ Z multiplicity of α
(Kac 1974) proves for the weight decomposition of the
Kac-Moody algebra g(Γ) = ⊕α∈NIg(Γ)α that
dim(g(Γ)α) = mα ≥ 0

Theorem (Kac 1974)

Let L(w) be an irreducible representation of g(Γ) of highest weight
Λ ∈ P. Let L(Λ) = ⊕α∈NI L(Λ)Λ−α denote its weight space
decomposition. Then the Weyl-Kac character formula holds:

∑
α∈NI

dim (L(Λ)Λ−α) Xα =

∑
w∈W

det(w)XΛ+ρ−w(Λ+ρ)

∏
α∈NI (1 − Xα)mα
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Example: A2 root system

Let Γ be A2 quiver

Up to isomorphism there are three indecomposable
representations of dimension vectors (1, 0), (0, 1) and (1, 1)

(, ) is positive definite on Z2

r1 =

(
−1 0
1 1

)
and r2 =

(
1 1
0 −1

)
; (r1r2)3 = 1

Weyl group
S3 = {r1, r2|r2

1 = r2
2 = (r1r2)3 = 1} = {1, r1, r2, r1r2, r2r1, r1r2r1}

is finite

Weyl (= finite Kac) denominator formula gives
1−X1−X2 +X1X2

2 +X2X2
1 −X2

1 X2
2 = (1−X1)(1−X2)(1−X1X2)

thus all three positive roots appear with multiplicity one
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Example:D4 root system

There are 24 roots in N4 in the D4 root system.
They form the regular 24-cell.
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Kac’s theorem

Theorem (Kac 1982)

Assume K = C

∆+ is independent of the orientation of Γ

α ∈ ∆+, w ∈ W ⇒ w(α) or − w(α) ∈ ∆+

When Γ is loopless α ∈ ∆+ ⇔ mα > 0.

mα > 0 is independent of the orientation on Γ

fundamental roots have mαi = 1
|∆+| < ∞⇔ |W | < ∞⇔ (, ) is pos. def.,⇔ Γ is finite
(Gabriel, 1972)
Kac’s proof proceeds by

1 constructing a complex algebraic variety Z(Γ, α) parametrizing
indecomposable representations of Γ to C of dimension α
modulo isomorphism.

2 showing that Z(Γ, α) can be defined over Z
3 counting the points of Z(Γ, α) over a finite field Fq
4 finding that the count is independent of the orientation
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Examples of quiver representations over K = Fq

Let Sg be the quiver on one vertex and g loops. Classifying
representations of Sg of dimension (d) is classifying the
isomorphism classes of g tuples of d × d matrices.

Reps of S1 classified by Jordan normal form. Representations
of Sg for g > 1 are wild(

x εy
y x

)
∼

(
x +

√
εy 0

0 x − y
√
ε

)
, with x ∈ Fq, y ∈ F×q ,

F×q = 〈ε〉 and
√
ε ∈ Fq2 \ Fq (q odd) is indecomposable over Fq

but not indecomposable over Fq

an absolutely indecomposable representation of S1 of

dimension (2) is ∼
(

x 1
0 x

)
with x ∈ K. Up to isomorphism

there are q absolutely indecomposable representations of S1

of dimension (d) over Fq.

14 / 41



The A -polynomial
K = Fq; a representation of a quiver over K is absolutely
indecomposable if it is indecomposable over K
α ∈ NI a dimension vector;
{Vi}i∈I such that dim Vi = α(i);
Vα :=

⊕
a∈E Hom(Vt(a),Vh(a)) ;

Gα := GL(V1) × · · · × GL(Vn); clearly Gα acts on Vα
AΓ(α, q) := |{ρ ∈ Vα|ρ is abs. indec.}/Gα|

Theorem (Kac, 1982)

AΓ(α, q) ∈ Z[q] is either 0 or monic of degree=1 − (α, α)

AΓ(α, q) is independent of the orientation of Γ

AΓ(α, q) , 0⇔ α ∈ ∆+

AΓ(α, q) = AΓ(w(α), q), when w ∈ W and α,w(α) ∈ NI

AΓ(α, q) = 1⇔ α = w(αi) for some w ∈ W and αi ∈ Π

Positive roots with AΓ(α, q) = 1 are called real roots
the rest, when deg(AΓ(α, q)) > 0 are imaginary roots
∆+ = ∆re

+ ∪∆im
+ 15 / 41



Kac’s conjectures

Conjecture (Kac, 1982)

1 When Γ is loopless, the constant term AΓ(α, 0) = mα

2 AΓ(α, q) ∈ N[q] , i.e. the coefficients of AΓ(α, q) are ≥ 0.

Both conjectures were known to Kac for finite and affine
quivers and for the ”polygon”-quiver Vm with dimension vector
(2, 1, . . . , 1).

Theorem (Crawley-Boevey,Van den Bergh 2004)

Both conjectures hold true for any quiver with α indivisible; i.e.
gcd(α(i)) = 1

Every quiver supports infinitely many divisible dimension
vectors { both conjectures remained open for any wild quiver

We prove Conjecture 1 in these lectures.
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Hua’s formula

Theorem (Hua, 2000)

Fix quiver Γ. Let AΓ(α, q) =
∑

tαi qi , then:

∏
α∈Nn

∞∏
j=0

∞∏
i=0

(1 − qi+jXα)tαi =

∑
v∈NI

Xv
∑

λ∈P(v)

∏
(i,j)∈E q〈λ

i ,λj〉∏
i∈I

(
q〈λi ,λi〉

∏
k
∏mk (λi)

j=1 (1 − q−j)
)
,

where P(v) is the set of n-tuples of partitions (λ1, . . . , λn), with
|λi | = vi , and for two partitions 〈ν, µ〉 =

∑
ij min(νi , µj).

Thus Conjecture 1 would follow by showing that the combinatorial
RHS when q = 0 reduces to the combinatorial LHS of∑

w∈W

det(w)Xs(w) =
∏
α∈Nn

(1 − Xα)mα .
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Remarks on problem session

Read about the Â1 root system at
http://sbseminar.wordpress.com/2008/11/02/
∞∏

m=1

(
1 − X i−1Y i

) (
1 − X iY i−1

) (
1 − X iY i

)
=
∞∑

i∈Z

(−1)iX i(i−1)/2Y i(i+1)/2.

(Macdonald 1972) found the infinite product formulas for affine
root systems, (Kac 1974) reproved it and explained the
appearance of imaginary roots in terms of the Kac
denominator formula for the affine Kac-Moody algebras {
sometimes affine Kac denominator formula is referred to as
Macdonald-Kac formula

Theorem

Let Γ be a quiver of tame type, α ∈ NI \ {0} then
α is decomposable⇔ (α, α) > 1
α ∈ ∆re

+ ⇔ (α, α) = 1
α ∈ ∆im

+ ⇔ (α, α) ≤ 0
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Jordan normal form over Fq

let Φ
′

denote all monic irreducible polynomials over Fq

let f ∈ Φ
′

in the form f = td + ad−1td−1 + · · ·+ a0

d × d companion matrix J(f) and dm × dm matrix Jm(f) are
given by

J(f) :=



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
a0 a1 a2 . . . ad−1


Jm(f) :=



J(f) 1 0 . . . 0
0 J(f) 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
0 0 0 . . . J(f)


.

Up to isomorphism, indecomposable representations of S1

over Fq are of the form Jm(f) for f ∈ Φ′ and m > 0
thus representations of S1 of dimension n are classified by
ν : Φ′ → P such that

∑
f∈Φ′ deg(f)|ν(f)| = n

GLn(Fq)/GLn(Fq) are parametrized by ν : Φ→ P such that∑
f∈Φ′ deg(f)|ν(f)| = n, where Φ = Φ′ \ {t}
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Ingredients into Hua’s formula
Burnside orbit counting formula:
finite group G acts on set X
|X/G| = 1

|G|
∑

g∈G |Xg | =
∑

[g]∈G/G
|Xg |

|Cg |
, where

Xg = {x ∈ X |gx = x}
Count orbits of Gα on Vα, i.e. find MΓ(α, q) := |Vα/Gα|

λ, µ ∈ P then λ = (λ1, . . . , λl) and µ = (µ1, . . . , µm) then
〈λ, µ〉 =

∑
ij min(λi , µj)

the cardinality of the centralizer of Jλ(f) = ⊕Jλi (f) ∈ GLd|λ|(Fq)

|CJλ(f)| = qd〈λ,λ〉∏
k
∏mk (λ)

i (1 − q−i)

let Jλ(f) ∈ GLm(Fq) and Jµ(g) ∈ GLn(Fq) then

|{M ∈ Matm×n(Fq) | Jλ(f)M = MJµ(g)}| =

{
qdeg(f)〈λ,µ〉 if f = g

1 ow

Krull-Schmidt⇒
∑
α∈NI MΓ(α, q)Xα =

∏
α∈NI (1 − Xα)−IΓ(α,q),

where IΓ(α, q) := |(Vα/Gα)indec.|

inclusion-exclusion + Möbius⇒
AΓ(rα, q) =

∑
d|r

1
d
∑

k |d µ(k)IΓ( d
k α, q

k ) where α indivisible
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Étale cohomology

X variety defined over Z
(Grothendieck 1958) constructs étale cohomology
Hk

c (X(Fq);Q`)

Frobq : Fq → Fq by x 7→ xq Frobenius automorphism {

Frobq : X(Fq)→ X(Fq) {
Frobq : Hk

c (X(Fq);Q`)→ Hk
c (X(Fq);Q`)

as (Fq)Frobq = Fq Grothendieck-Lefschetz fixed point theorem
{

|X(Fq)| = |X(Fq)Frobq | =
2n∑

i=0

(−1)itr(Frobq : Hi
c(X ,Q`)→ Hi

c(X ,Q`))

as Frobqk = (Frobq)k {

|X(Fqk )| = λk
1 + λk

2 + · · ·+ λk
N, where λi ∈ Q` eigenvalues of

Frobq

(Deligne 1974) proved Weil’s Riemann hypothesis:
eigenvalues of Frobq have absolute value qi/2 for i ∈ N
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Weight filtration

Jordan decomposition of Frobq on Hk
c ⇒ weight filtration

Wl ⊂ Hk
c containing all Jordan blocks of eigenvalue with

modulus qi/2 i ≤ l
comparison theorem: H∗c(X(C);C) � H∗c(X(Fq),Q`) ⊗ C

(Deligne 1974) constructs weight filtration on
W0 ⊂ · · · ⊂ Wi ⊂ · · · ⊂ Wk = Hk

c (X(C);Q) which is functorial
when Wk−1 ∩ Hk

c (X ;Q) = 0
the weight filtration is pure;
e.g. when X is smooth projective;
or when X ⊂ X , with X smooth projective and injects on H∗c
e.g. when X is a symplectic quiver variety; a Nakajima quiver
variety,MDR moduli space of flat connections andMDol the
moduli space of Higgs bundles on a Riemann surface
weight filtration is not pure or mixed e.g. for X = GLn or for
MB the character variety of representations of the
fundamental group of a Riemann surface to GLn
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Example

Take X = C× = C \ {0} � {(x, y) ∈ C2|xy = 1}
H2

c (X ;C) � C, H1
c (X ,C) � C

X(Fq) = F
×

q

Frobq : F
×

q → F
×

q
x 7→ xq

X(Fq)Frobq = X(Fq) = Fq \ {0}, thus |X(Fq)Frobq | = q − 1

Grothendieck-Lefschetz⇒
|X(Fq)Frobq | =

∑2
i=0(−1)itr(Frobq : Hi

c(X ,Q`)→ Hi
c(X ,Q`))

thus 1 = Frobq : H1
c (X ;Q`)→ H1

c (X ,Q`)) and
q · = Frobq : H2

c (X ;Q`)→ H2
c (X ,Q`))

⇒ 0 = W1(H2
c (X(C),Q)) and

W0(H1
c (X(C);Q)) = H1

c (X(C),Q)

weight filtration is mixed on H1(X(C),Q)
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Arithmetic and topological content of the E-polynomial
For a complex variety X(C) define E-polynomial
E(X ; q) =

∑
dim(Wi/Wi−1(Hk

c (X)))(−1)k q
i
2

basic properties:
additive - if Xi ⊂ X locally closed s. t. ∪̇Xi = X then
E(X ; q) =

∑
E(Xi; q)

multiplicative - F → E → B locally trivial in the Zariski
topology E(E; q) = E(B; q)E(F ; q)
when weight filtration is pure
E(X ; q) =

∑
dim(Hk

c (X))(−q1/2)k is the Poincaré polynomial
if all eigenvalues λi of Frobq on H∗c(X(Fq);Q`) are integer
powers of q, then |X(Fqn )| =

∑
λn

i is a polynomial in qn and
= E(X ; q)

Theorem (Katz 2006)

If X is a variety defined over Z and #{X(Fq)} = E(q) is a
polynomial in q, then E(M; q) = E(q).

e.g. if E(q) ∈ Q[q]
Katz
⇒ E(q)∈ Z[q] proves Kac’s result that

AΓ(α, q) = #{Z(Γ, α)(Fq)} ∈ Z[q] 24 / 41



Remarks on questions

Let X = C2 \ {0} smooth, π := X → P1 by π(x, y) 7→ [x : y] is a
geometric quotient by the group action of C× by x 7→ λx {
principal bundle locally trivial in the Zariski topology
E(X ; q) = E(P1; q)E(C×; q) = (q + 1)(q − 1) = q2 − 1 but
Pc(P1; t) = 1 + t2, Pc(C×; t) = t + t2 and Pc(X ; t) = t + t4 but
(1 + t2)(t + t2) = (t + t2 + t3 + t4) , t + t4!
cohomology is not multiplicative (and not additive either)

hint for question 2 on Problem list 1:
define an ordering ≤ on NI such that if γi ≤ βi for all i then
γ ≤ β;
find the smallest non-trivial term in F := 1 +

∑
α∈NI\{0} aαXα

say Xγ with γ ∈ NI \ {0}
then show that F(1 − Xγ)aγ has no non-trivial terms Xβ for
β ≤ γ.
Proceed with F(1 − Xγ)aγ .
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Examples

E(C×; q) = q − 1; E(C×; q) = E(C; q) + E({0}; q) = q

LetU be the variety x1y1 + x2y2 = 1 in C2 × C2.
the number of solutions of the equation x1y1 + x2y2 = 1 in Fq

is 2(2q − 1)(q − 1) + (q − 2)(q − 1)2 = (q − 1)(q2 + q)
because

(2q − 1)(q − 1) when x1y1 = 0
(q − 1)(2q − 1) when x1y1 = 1
(q − 1)2 in the other q − 2 cases.

⇒ the number of points onU(Fq) is (q − 1)(q2 + q),
Katz
⇒ E(U, q) = (q − 1)(q2 + q)
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Affine GIT quotients

Let M be a complex affine variety i.e. M = Spec(C[M]), where
C[M] is a finitely generated C-algebra without nilpotents

G is a complex reductive group⇔ G = KC is a
complexification of its maximal compact subgroup K ⊂ G
(i.e. g = k ⊗ C)

G acts on M, then the invariants C[M]G form a finitely
generated C-algebra without nilpotents

define M//G := Spec(C[M]G) the quotient map π : M → M//G
arises via the embedding C[M]G ⊂ C[M]

M//G parametrizes closed orbits of G (good quotient)

when G acts freely M//G is identified with the orbit space
(geometric quotient)

when G acts freely and M is additionally non-singular⇒ M//G
is non-singular and M → M//G is a principal bundle
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Example of an affine GIT quotients

Let M = Cn then C[M] = C[z1, . . . , zn]

the circle group G = GL1 = C× is reductive as it is the
complexification U(1) ⊂ GL1

Let G = GL1 = C× act on Cn by multiplication x 7→ λx

then λ ∈ GL1 acts on C[z1, . . . , zn] as zi 7→ λzi

thus C[M]G = C{ Cn//C× = {0} is a point

there is only one closed orbit of 0 ∈ Cn
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Affine symplectic quotients

M non-singular affine variety
ω ∈ H0(M; Λ2(T∗M)) is symplectic⇔ it is nowhere
degenerate and dω = 0
X ∈ H0(M; TM) vector field is Hamiltonian⇔ there exists
algebraic function f : M → C such that for every
Y ∈ H0(M; TM) ω(X ,Y) = df(Y)
in particular df(X) = 0⇔ X is tangent to the level sets of f
(conservation of energy)
an action of an algebraic group G on (M, ω) is Hamiltonian⇔
if the vector fields Xv ∈ H0(M; TM) induced by any one
parameter subgroup Gv for v ∈ g are simultaneously
Hamiltonian⇔ there is a map µ : M → g∗ such that
〈Tµ(Y), v〉 = ω(Xv ,Y)
µ is called a moment map; it is G-equivariant with respect to
the coadjoint action of G on g∗

assume complex reductive group G acts on a symplectic
affine variety M with moment map µ then the complex
symplectic quotient at level ξ ∈ (g∗)G is M////ξG := µ−1(ξ)//G
M////ξG is a symplectic affine variety at its regular points
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Example

Let M := T∗C2 = C4; C[M] = C[x1, x2, y1, y2];
symplectic form ω = dx1 ∧ dy1 + dx2 ∧ dy2

λ ∈ C× acts symplectically on M by
(x1, x2, y1, y2) 7→ (λx1, λx2, λ

−1y1, λ
−1y2)

the vector field X1 = ∂
∂x1

+ ∂
∂x2
− ∂

∂y1
− ∂

∂y2
is the Hamiltonian

vector field of f : M → C given by f(x1, x2, y1, y2) = x1y1 + x2y2

because df = y1dx1 + x1dy1 + y2dx2 + x2dy2 = ω(X1, .)
The moment map µ : M → g∗ is just µ = f
the level set µ−1(1) isU = {x1y1 + x2y2 = 1} non-singular
acted upon freely by C× { X := M////1G = µ−1(1)//C× is a
non-singular symplectic affine surface
the map X → P1 induced by (x1, x2, y1, y2) 7→ (x1, x2) makes it
a fibration with fibers � A1

⇒ weight filtration on H∗c(X) is pure
U → X is GL1-principal bundle, and so

|X(Fq)| =
|U(Fq)|

|GL1(Fq)|
= q2 + q

Katz
⇒ E(X ; q) = q2 + q

⇒ by purity Pc(X ; t) = t2 + t4
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Linear symplectic quotients

G complex reductive group; V finite dimensional complex
vector space

assume G acts on V linearly via the representation
ρ : G→ GL(V), with derivative the Lie algebra
homomorphism % : g→ gl(V)

symplectic structure onM := V × V∗ given by
ω((v1,w1), (v2,w2)) = w1(v2) − w2(v1)

G acts on V × V∗symplectically via the representation ρ ⊕ ρ∗

where ρ∗ : G→ GL(V∗) is the dual representation

this action is Hamiltonian with moment map
µ : V × V∗ → g∗defined by µ(v ,w)(X) = 〈%(X)v ,w〉

for ξ ∈ (g∗)G we have the linear symplectic quotient
M////ξG = µ−1(ξ)//G
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Symplectic Quiver varieties

For a quiver Γ and dimension vector α let {Vi}i∈I be a collection
of finite dimensional vector spaces of dimension α
Vα =

⊕
a∈E Hom(Vt(a),Vh(a))

Gα =
�

i∈IGL(Vi)/GL1, where
GL1 = (λ, . . . , λ)λ∈GL1 <

�
i∈I Z(GL(Vi)) <

�
i∈I GL(Vi)

its Lie algebra gα = {Xi ∈ gl(Vi)|
∑

i tr(Xi) = 0} ⊂
�

i gl(Vi)
action ρ : Gα → GL(Vα) from left and right
for a generic ξ ∈ (g∗α)Gα define the quiver variety by

Mα = Vα × V
∗
α////ξGα

if α ∈ NI is indivisible (gcd(α) = 1) thenMα is non-singular,
while if α is divisible (gcd(α) > 1)Mα has singular points
(when non-empty).
when non-empty dimMα = 2 − 2(α, α)
(Crawley-Boevey, Van den Bergh 2004) when α indivisible
|Mα(Fq)| = q1−(α,α)AΓ(α, q) & H∗c(Mα;Q) is pure {
q1−(α,α)AΓ(α, q) = Pc(Mα, q1/2) ∈ N[q]
{ Kac’s Conjecture 2 when α indivisible
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Example: Affine ALE spaces

Γ affine quiver

δ minimal positive imaginary root

Then δ is indivisible and 2 − 2(δ, δ) = 2

{ for generic ξ ∈ (g∗δ)
Gδ

Mξ(δ) is non-singular surface affine ALE space
(Kronheimer 1990)

whileM0(δ) = C2//H, where H < SL2 is a finite subgroup
corresponding to Γ via the McKay correspondence

previous example corresponded to Â1 quiver
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Nakajima quiver varieties

v,w ∈ NI and dim(Vi) = vi and dim(Wi) = wi then
Gv = ×i∈IGL(Vi) naturally acts on
Vv,w =

⊕
(i,j)∈E Hom(Vi ,Vj) ⊕

⊕
i∈I Hom(Wi ,Vi)

the corresponding holomorphic symplectic quotient

M(v,w) = µ−1
v,w(1v)//Gv

is the affine Nakajima quiver variety

always non-singular of dimension
2dv,w = 2

(∑
(i,j)∈E vivj +

∑
i∈I vi(wi − vi)

)
Crawley-Boevey’s trick: to a quiver Γ with two dimension
vectors v,w ∈ NI { Γw which has 2n vertices I′ = {1, . . . , n, ∗}
with the same oriented arrows on I ⊂ I′ and wi arrows from ∗
to i. Then one can identifyM(v,w) =MΓw

(v,1)
, (v, 1) is clearly

indivisible so Pc(Mv,w; q1/2) = qdAΓw((v, 1), q)
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Fourier transform on a finite vector space

V finite dimensional vector space over Fq

Ψ : Fq → C
× non-trivial additive character

f : V → C its Fourier transform f̂ : V∗ → C

f̂(Y) :=
∑
X∈V

f(X)Ψ(〈X ,Y〉).

Fourier inversion formula: ˆ̂f(x) = |V |f(−x)
first application (Kraft-Riedtmann 1985)
finite group G acts on V then
F : CV → CV∗ given by F (f) = f̂ is a linear map, an
isomorphism by Fourier Inversion and G equivariant by
definition
⇒ |V/G| = dim((CV )G) = dim((CV∗)G) = |V∗/G|
⇒ |VΓ

α(Fq)/Gα| = |V
Γ′
α /Gα|,

where Γ′ is obtained from Γ by reversing one arrow⇒
MΓ(α, q) is independent of the orientiation on Γ⇒
AΓ(α, q) is independent of the orientation of the arrows
(without Kac-Stanley-Hua combinatorics) 35 / 41



Fourier transform on g∗

Recall G acts on V, with derivative % : g→ gl(V), inducing
action onM := V × V∗, Hamiltonian with moment map
µ : M→ g∗, given by µ(v ,w)(X) = 〈%(X)v ,w〉

For ξ ∈ g∗(Fq) the count function of the moment map
µ : V(Fq) × V∗(Fq)→ g∗(Fq)
#µ(ξ) := #{(v ,w) ∈ V(Fq) × V∗(Fq)|µ(v ,w) = ξ} =∑

(v ,w)∈M δµ(v ,w)(ξ)

#̂µ(x) =
∑

(v ,w)∈M δ̂µ(v ,w)(x) =
∑

(v ,w)∈MΨ(〈µ(v ,w), x〉) =∑
(v ,w)∈MΨ(〈%(x)v ,w〉) =

∑
v∈V

∑
w∈V∗ Ψ(〈%(x)v ,w〉) =

|V|
∑

v∈V δ0(ρ(x)v) = |V|aρ(x),
where a%(x) = | ker %(x)|

Proposition (Hausel, 2006)

#̂µ(x) = |V|a%(x)

Fourier
inversion

=⇒ #µ =
|V|

|g|
â%
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Example

% : gl(1)→ gl(C2) by (α) 7→

(
α 0
0 α

)
a% : Fq → C is a%(α) = 1 unless α = 0 when a%(0) = q2

a% = 1 + (q2 − 1)δ0 and so
âµ = qδ0 + (q2 − 1).
Now µ : C2 × C2 → gl(1)∗ is given by x1y1 + x2y2.
RecallU = µ−1(1). Indeed
#U(Fq) = #µ(1) = q2

q âρ(1) = q(q2 − 1) = (q − 1)(q2 + q)
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Fourier transform for Nakajima quiver varieties

we start counting points onM(v,w)(Fq) by Fourier transform.
Recall %v,w : gv → gl(Vv,w) a%v,w = | ker(%v,w)|
V(v,w) := µ−1

v,w(1v)

Φ(w) :=
∑

v∈NI |M(v,w)(Fq)| |gv |
|Vv,w |

Xv =∑
v∈NI

|V(v,w)(Fq)|

|Gv(Fq)|
|gv |
|Vv,w |

Xv =
∑

v∈NI
∑

x∈gv
a%v,w (x)Ψ(trv(x))

|Gv(Fq)|
Xv =∑

v∈NI
∑

[x]∈gv/Gv

a%v,w (x)Ψ(trv(x))

|Cx |
Xv.

Φnil(w) :=
∑

v∈NI
∑

[x]∈(gv/Gv)nil
a%v,w (x)

|Cx |
Xv and

Φreg :=
∑

v∈NI
∑

[x]∈(gv/Gv)reg
a%v,0 (x)Ψ(trv(x))

|Cx |
Xv.

we notice Φ(w) = ΦregΦnil(w) but Φ(0) = 1⇒ Φreg = 1
Φnil(0)

Φ(w) =
Φnil(w)
Φnil(0)

we find combinatorially Φnil(w) it is a rational function in q ⇒

so is |M(v,w)(Fq)| ⇒ it is a polynomial
Katz
⇒ it is E(M(v,w); q)

we show that the weight filtration onM(v,w)(C) is pure by
finding a compactificationM(v,w) which is an orbifold and
surjects on cohomology⇒
E(M(v,w); q) = Pc(M(w,w); q1/2)
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Betti numbers of Nakajima quiver varieties

Theorem (Hausel 2006)

For any quiver Γ, and w ∈ NI the Betti numbers Nakajima quiver
varieties are:∑

v∈NI

∑
i

dim(H2i
c (M(v,w)))qi−d(v,w)Xv =

=

∑
v∈NI

Xv
∑

λ∈P(v)

(∏
(i,j)∈E q〈λ

i ,λj 〉
)(∏

i∈I q〈λ
i ,(1wi )〉

)
∏

i∈I

(
q〈λi ,λi 〉∏

k
∏mk (λi )

j=1 (1−q−j)
)

∑
v∈NI

Xv
∑

λ∈P(v)

∏
(i,j)∈E q〈λi ,λj 〉∏

i∈I

(
q〈λi ,λi 〉∏

k
∏mk (λi )

j=1 (1−q−j)
) ,

where 2d(v,w) = 2
∑

(i,j)∈E vivj + 2
∑

i∈I vi(wi − vi) is the
dimension ofM(v,w), Xv =

∏
i∈I Tvi

i and 〈λ, µ〉 =
∑

i,j min(λi , µj)

Note that the denominator is the LHS of Hua’s formula!
Need to relate it to the Kac denominator formula.
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Weyl-Kac character formula for Nakajima quiver varieties

Theorem (Kac 1974)

Let L(w) be an irreducible representation of g(Γ) of highest weight
Λ ∈ P. Let L(Λ) = ⊕α∈NI L(Λ)Λ−α denote its weight space
decomposition. Then∑

α∈NI

dim (L(Λ)Λ−α) Xα =

∑
w∈W

det(w)XΛ+ρ−w(Λ+ρ)

∏
α∈NI (1 − Xα)mα

Theorem (Nakajima 1998)

Fix w ∈ NI then there is an irreducible representation of the
Kac-Moody algebra g(Γ) of highest weight Λw on⊕

v∈NI H2dv,w
c (M(v,w)), in particular∑

v∈NI

dim
(
H2dv,w(M(v,w)

)
Xv =

∑
w∈W

det(w)XΛw+ρ−w(Λw+ρ)

∏
α∈NI (1 − Xα)mα
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Proof of Kac’s Conjecture 1
Weyl-Kac-Nakajima formula + our main formula {∑

w∈W

det(w)XΛw+ρ−w(Λw+ρ)

∏
α∈NI (1 − Xα)mα

=



∑
v∈NI

Xv
∑

λ∈P(v)

(∏
(i,j)∈E q〈λ

i ,λj 〉
)(∏

i∈I q〈λ
i ,(1wi )〉

)
∏

i∈I

(
q〈λi ,λi 〉∏

k
∏mk (λi )

j=1 (1−q−j)
)

∑
v∈NI

Xv
∑

λ∈P(v)

∏
(i,j)∈E q〈λi ,λj 〉∏

i∈I

(
q〈λi ,λi 〉∏

k
∏mk (λi )

j=1 (1−q−j)
)


q=0

In the special case when w = m1, i.e. Λw = mρ and m → ∞∏
α∈NI

(1 − Xα)mα =


∑
v∈NI

Xv
∑

λ∈P(v)

∏
(i,j)∈E q〈λ

i ,λj〉∏
i∈I

(
q〈λi ,λi〉

∏
k
∏mk (λi)

j=1 (1 − q−j)
)


q=0

Hua
=

∏
α∈Nn

∞∏
j=0

∞∏
i=0

(1 − qi+jXα)tαi


q=0

=
∏
α∈Nn

(1 − Xα)tα0

Theorem (Hausel 2006)

AΓ(α, 0) = mα
41 / 41




